新高考數(shù)學(xué)一輪復(fù)習(xí)考點(diǎn)精講練+易錯(cuò)題型第05講 基本不等式及應(yīng)用(解析版)_第1頁(yè)
新高考數(shù)學(xué)一輪復(fù)習(xí)考點(diǎn)精講練+易錯(cuò)題型第05講 基本不等式及應(yīng)用(解析版)_第2頁(yè)
新高考數(shù)學(xué)一輪復(fù)習(xí)考點(diǎn)精講練+易錯(cuò)題型第05講 基本不等式及應(yīng)用(解析版)_第3頁(yè)
新高考數(shù)學(xué)一輪復(fù)習(xí)考點(diǎn)精講練+易錯(cuò)題型第05講 基本不等式及應(yīng)用(解析版)_第4頁(yè)
新高考數(shù)學(xué)一輪復(fù)習(xí)考點(diǎn)精講練+易錯(cuò)題型第05講 基本不等式及應(yīng)用(解析版)_第5頁(yè)
已閱讀5頁(yè),還剩27頁(yè)未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

第05講基本不等式及應(yīng)用【基礎(chǔ)知識(shí)網(wǎng)絡(luò)圖】不等式的綜合應(yīng)用解不等式問(wèn)題不等式的綜合應(yīng)用解不等式問(wèn)題實(shí)際應(yīng)用問(wèn)題不等式中的含參問(wèn)題不等式證明【基礎(chǔ)知識(shí)全通關(guān)】知識(shí)點(diǎn)01:不等式問(wèn)題中相關(guān)方法1.解不等式的核心問(wèn)題是不等式的同解變形,不等式的性質(zhì)則是不等式變形的理論依據(jù),方程的根、函數(shù)的性質(zhì)和圖象都與不等式的解法密切相關(guān),要善于把它們有機(jī)地聯(lián)系起來(lái),互相轉(zhuǎn)化.在解不等式中,換元法和圖解法是常用的技巧之一.通過(guò)換元,可將較復(fù)雜的不等式化歸為較簡(jiǎn)單的或基本不等式,通過(guò)構(gòu)造函數(shù)、數(shù)形結(jié)合,則可將不等式的解化歸為直觀、形象的圖形關(guān)系,對(duì)含有參數(shù)的不等式,運(yùn)用圖解法可以使得分類標(biāo)準(zhǔn)明晰.2.整式不等式(主要是一次、二次不等式)的解法是解不等式的基礎(chǔ),利用不等式的性質(zhì)及函數(shù)的單調(diào)性,將分式不等式、絕對(duì)值不等式等化歸為整式不等式(組)是解不等式的基本思想,分類、換元、數(shù)形結(jié)合是解不等式的常用方法.方程的根、函數(shù)的性質(zhì)和圖象都與不等式的解密切相關(guān),要善于把它們有機(jī)地聯(lián)系起來(lái),相互轉(zhuǎn)化和相互變用.3.在不等式的求解中,換元法和圖解法是常用的技巧之一,通過(guò)換元,可將較復(fù)雜的不等式化歸為較簡(jiǎn)單的或基本不等式,通過(guò)構(gòu)造函數(shù),將不等式的解化歸為直觀、形象的圖象關(guān)系,對(duì)含有參數(shù)的不等式,運(yùn)用圖解法,可以使分類標(biāo)準(zhǔn)更加明晰.通過(guò)復(fù)習(xí),感悟到不等式的核心問(wèn)題是不等式的同解變形,能否正確的得到不等式的解集,不等式同解變形的理論起了重要的作用.4.比較法是不等式證明中最基本、也是最常用的方法,比較法的一般步驟是:作差(商)→變形→判斷符號(hào)(值).5.證明不等式的方法靈活多樣,內(nèi)容豐富、技巧性較強(qiáng),這對(duì)發(fā)展分析綜合能力、正逆思維等,將會(huì)起到很好的促進(jìn)作用.在證明不等式前,要依據(jù)題設(shè)和待證不等式的結(jié)構(gòu)特點(diǎn)、內(nèi)在聯(lián)系,選擇適當(dāng)?shù)淖C明方法.通過(guò)等式或不等式的運(yùn)算,將待證的不等式化為明顯的、熟知的不等式,從而使原不等式得到證明;反之亦可從明顯的、熟知的不等式入手,經(jīng)過(guò)一系列的運(yùn)算而導(dǎo)出待證的不等式,前者是“執(zhí)果索因”,后者是“由因?qū)Ч?,為溝通?lián)系的途徑,證明時(shí)往往聯(lián)合使用分析綜合法,兩面夾擊,相輔相成,達(dá)到欲證的目的.6.證明不等式的方法靈活多樣,但比較法、綜合法、分析法和數(shù)學(xué)歸納法仍是證明不等式的基本方法.要依據(jù)題設(shè)、題斷的結(jié)構(gòu)特點(diǎn)、內(nèi)在聯(lián)系,選擇適當(dāng)?shù)淖C明方法,要熟悉各種證法中的推理思維,并掌握相應(yīng)的步驟,技巧和語(yǔ)言特點(diǎn).知識(shí)點(diǎn)02:不等式與相關(guān)知識(shí)的滲透1.不等式這部分知識(shí),滲透在中學(xué)數(shù)學(xué)各個(gè)分支中,有著十分廣泛的應(yīng)用.因此不等式應(yīng)用問(wèn)題體現(xiàn)了一定的綜合性、靈活多樣性,這對(duì)同學(xué)們將所學(xué)數(shù)學(xué)各部分知識(shí)融會(huì)貫通,起到了很好的促進(jìn)作用.在解決問(wèn)題時(shí),要依據(jù)題設(shè)、題斷的結(jié)構(gòu)特點(diǎn)、內(nèi)在聯(lián)系、選擇適當(dāng)?shù)慕鉀Q方案,最終歸結(jié)為不等式的求解或證明.不等式的應(yīng)用范圍十分廣泛,它始終貫串在整個(gè)中學(xué)數(shù)學(xué)之中.諸如集合問(wèn)題,方程(組)的解的討論,函數(shù)單調(diào)性的研究,函數(shù)定義域的確定,三角、數(shù)列、復(fù)數(shù)、立體幾何、解析幾何中的最大值、最小值問(wèn)題,無(wú)一不與不等式有著密切的聯(lián)系,許多問(wèn)題,最終都可歸結(jié)為不等式的求解或證明。2.不等式應(yīng)用問(wèn)題體現(xiàn)了一定的綜合性.這類問(wèn)題大致可以分為兩類:一類是建立不等式、解不等式;另一類是建立函數(shù)式求最大值或最小值.利用平均值不等式求函數(shù)的最值時(shí),要特別注意“正數(shù)、定值和相等”三個(gè)條件缺一不可,有時(shí)需要適當(dāng)拼湊,使之符合這三個(gè)條件.利用不等式解應(yīng)用題的基本步驟:10審題,20建立不等式模型,30解數(shù)學(xué)問(wèn)題,40作答?!疽c(diǎn)詮釋】⑴解不等式的基本思想是轉(zhuǎn)化、化歸,一般都轉(zhuǎn)化為最簡(jiǎn)單的一元一次不等式(組)或一元二次不等式(組)來(lái)求解,。⑵解含參數(shù)不等式時(shí),要特別注意數(shù)形結(jié)合思想,函數(shù)與方程思想,分類討論思想的錄活運(yùn)用。⑶不等式證明方法有多種,既要注意到各種證法的適用范圍,又要注意在掌握常規(guī)證法的基礎(chǔ)上,選用一些特殊技巧。如運(yùn)用放縮法證明不等式時(shí)要注意調(diào)整放縮的度。⑷根據(jù)題目結(jié)構(gòu)特點(diǎn),執(zhí)果索因,往往是有效的思維方法?!究键c(diǎn)研習(xí)一點(diǎn)通】考點(diǎn)01:基本不等式應(yīng)用1.設(shè)SKIPIF1<0,SKIPIF1<0,求證:SKIPIF1<0【證明】SKIPIF1<0SKIPIF1<0SKIPIF1<0成立【變式1】已知SKIPIF1<0,求證:SKIPIF1<0【解析】SKIPIF1<0(當(dāng)且僅當(dāng)SKIPIF1<0即SKIPIF1<0,等號(hào)成立).2.已知SKIPIF1<0,且SKIPIF1<0.(1)若SKIPIF1<0則SKIPIF1<0的值為.(2)求證:SKIPIF1<0【解析】(1)由題意可得SKIPIF1<0帶入計(jì)算可得SKIPIF1<0(2)由題意和基本不等式可得SKIPIF1<0,SKIPIF1<0,SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0【變式】已知函數(shù)SKIPIF1<0的定義域?yàn)镽.(1)求實(shí)數(shù)m的取值范圍.(2)若m的最大值為n,當(dāng)正數(shù)a、b滿足SKIPIF1<0時(shí),求7a+4b的最小值.【解析】(1)因?yàn)楹瘮?shù)的定義域?yàn)镽,SKIPIF1<0恒成立設(shè)函數(shù)SKIPIF1<0則m不大于SKIPIF1<0的最小值SKIPIF1<0即SKIPIF1<0的最小值為4,SKIPIF1<0(2)由(1)知n=4SKIPIF1<0SKIPIF1<0當(dāng)且僅當(dāng)SKIPIF1<0時(shí),即SKIPIF1<0時(shí)取等號(hào).SKIPIF1<0的最小值為SKIPIF1<0考點(diǎn)02:不等式與相關(guān)知識(shí)的融合3.已知a,b,c是實(shí)數(shù),函數(shù)f(x)=ax2+bx+c,g(x)=ax+b,當(dāng)-1≤x≤1時(shí)|f(x)|≤1.(1)證明:|c|≤1;(2)證明:當(dāng)-1≤x≤1時(shí),|g(x)|≤2;(3)設(shè)a>0,有-1≤x≤1時(shí),g(x)的最大值為2,求f(x).【思路點(diǎn)撥】關(guān)于函數(shù)不等式,需要對(duì)自變量靈活取值,湊出需要的函數(shù)值。(1)證明:由條件當(dāng)=1≤x≤1時(shí),|f(x)|≤1,取x=0得:|c|=|f(0)|≤1,即|c|≤1.(2)證法一:依題設(shè)|f(0)|≤1而f(0)=c,所以|c|≤1.當(dāng)a>0時(shí),g(x)=ax+b在[-1,1]上是增函數(shù),于是g(-1)≤g(x)≤g(1),(-1≤x≤1).∵|f(x)|≤1,(-1≤x≤1),|c|≤1,∴g(1)=a+b=f(1)-c≤|f(1)|+|c|=2,g(-1)=-a+b=-f(-1)+c≥-(|f(-2)|+|c|)≥-2,因此得|g(x)|≤2(-1≤x≤1);當(dāng)a<0時(shí),g(x)=ax+b在[-1,1]上是減函數(shù),于是g(-1)≥g(x)≥g(1),(-1≤x≤1),∵|f(x)|≤1(-1≤x≤1),|c|≤1∴|g(x)|=|f(1)-c|≤|f(1)|+|c|≤2.綜合以上結(jié)果,當(dāng)-1≤x≤1時(shí),都有|g(x)|≤2.證法二:∵|f(x)|≤1(-1≤x≤1)∴|f(-1)|≤1,|f(1)|≤1,|f(0)|≤1,∵f(x)=ax2+bx+c,∴|a-b+c|≤1,|a+b+c|≤1,|c|≤1,因此,根據(jù)絕對(duì)值不等式性質(zhì)得:|a-b|=|(a-b+c)-c|≤|a-b+c|+|c|≤2,|a+b|=|(a+b+c)-c|≤|a+b+c|+|c|≤2,∵g(x)=ax+b,∴|g(±1)|=|±a+b|=|a±b|≤2,函數(shù)g(x)=ax+b的圖象是一條直線,因此|g(x)|在[-1,1]上的最大值只能在區(qū)間的端點(diǎn)x=-1或x=1處取得,于是由|g(±1)|≤2得|g(x)|≤2,(-1<x<1SKIPIF1<0.SKIPIF1<0當(dāng)-1≤x≤1時(shí),有0≤SKIPIF1<0≤1,-1≤SKIPIF1<0≤0,∵|f(x)|≤1,(-1≤x≤1),∴|fSKIPIF1<0|≤1,|f(SKIPIF1<0)|≤1;因此當(dāng)-1≤x≤1時(shí),|g(x)|≤|fSKIPIF1<0|+|f(SKIPIF1<0)|≤2.(3)解:因?yàn)閍>0,g(x)在[-1,1]上是增函數(shù),當(dāng)x=1時(shí)取得最大值2,即g(1)=a+b=f(1)-f(0)=2. ①∵-1≤f(0)=f(1)-2≤1-2=-1,∴c=f(0)=-1.因?yàn)楫?dāng)-1≤x≤1時(shí),f(x)≥-1,即f(x)≥f(0),根據(jù)二次函數(shù)的性質(zhì),直線x=0為f(x)的圖象的對(duì)稱軸,由此得-SKIPIF1<0<0,即b=0.由①得a=2,所以f(x)=2x2-1.【變式1】已知函數(shù)f(x)=SKIPIF1<0(b<0)的值域是[1,3],(1)求b、c的值;(2)判斷函數(shù)F(x)=lgf(x),當(dāng)x∈[-1,1]時(shí)的單調(diào)性,并證明你的結(jié)論;(3)若t∈R,求證:lgSKIPIF1<0≤F(|t-SKIPIF1<0|-|t+SKIPIF1<0|)≤lgSKIPIF1<0.【解析】設(shè)y=SKIPIF1<0,則(y-2)x2-bx+y-c=0 ①∵x∈R,∴①的判別式Δ≥0,即b2-4(y-2)(y-c)≥0,即4y2-4(2+c)y+8c+b2≤0 ②由條件知,不等式②的解集是[1,3]∴1,3是方程4y2-4(2+c)y+8c+b2=0的兩根SKIPIF1<0∴c=2,b=-2,b=2(舍)(2)任取x1,x2∈[-1,1],且x2>x1,則x2-x1>0,且(x2-x1)(1-x1x2)>0,∴f(x2)-f(x1)=-SKIPIF1<0>0,∴f(x2)>f(x1),lgf(x2)>lgf(x1),即F(x2)>F(x1)∴F(x)為增函數(shù).SKIPIF1<0即-SKIPIF1<0≤u≤SKIPIF1<0,根據(jù)F(x)的單調(diào)性知F(-SKIPIF1<0)≤F(u)≤F(SKIPIF1<0),∴l(xiāng)gSKIPIF1<0≤F(|t-SKIPIF1<0|-|t+SKIPIF1<0|)≤lgSKIPIF1<0對(duì)任意實(shí)數(shù)t成立.考點(diǎn)02:不等式證明4.已知a>0,b>0且a+b=1求證:SKIPIF1<0【思路點(diǎn)撥】利用不等式SKIPIF1<0【證明】若x>0,y>0,SKIPIF1<0則SKIPIF1<0即SKIPIF1<0所以當(dāng)a>0,b>0,且a+b=1時(shí)SKIPIF1<0SKIPIF1<0當(dāng)且僅當(dāng)SKIPIF1<0即SKIPIF1<0時(shí)取等號(hào).【總結(jié)升華】本題考查不等式的證明,解題關(guān)鍵時(shí)要注意到基本不等式與均值不等式之間的關(guān)系,同時(shí)要考慮到不等式中等號(hào)成立的條件.【變式】(1)已知函數(shù)SKIPIF1<0,SKIPIF1<0設(shè)SKIPIF1<0是函數(shù)y=f(x)圖像的一條對(duì)稱軸,求SKIPIF1<0的值.(2)已知函數(shù)SKIPIF1<0在SKIPIF1<0時(shí),SKIPIF1<0成立,求SKIPIF1<0的取值范圍.【解析】(1)由題意SKIPIF1<0SKIPIF1<0是函數(shù)SKIPIF1<0的一條對(duì)稱軸SKIPIF1<0SKIPIF1<0SKIPIF1<0當(dāng)SKIPIF1<0為偶數(shù)時(shí),SKIPIF1<0,當(dāng)SKIPIF1<0為奇數(shù)時(shí)SKIPIF1<0(2)SKIPIF1<0成立SKIPIF1<0SKIPIF1<0(SKIPIF1<0時(shí)取等號(hào))SKIPIF1<0考點(diǎn)03:基本不等式在實(shí)際問(wèn)題中的應(yīng)用5.某農(nóng)場(chǎng)有廢棄的豬圈,留有一面舊墻長(zhǎng)12m,現(xiàn)準(zhǔn)備在該地區(qū)重新建立一座豬圈,平面圖為矩形,面積為SKIPIF1<0,預(yù)計(jì)(1)修復(fù)SKIPIF1<0舊墻的費(fèi)用是建造SKIPIF1<0新墻費(fèi)用的SKIPIF1<0,(2)拆去SKIPIF1<0舊墻用以改造建成SKIPIF1<0新墻的費(fèi)用是建SKIPIF1<0新墻的SKIPIF1<0,(3)為安裝圈門,要在圍墻的適當(dāng)處留出SKIPIF1<0的空缺。試問(wèn):這里建造豬圈的圍墻應(yīng)怎樣利用舊墻,才能使所需的總費(fèi)用最???【解析】顯然,使舊墻全部得到利用,并把圈門留在新墻處為好。設(shè)修復(fù)成新墻的舊墻為SKIPIF1<0,則拆改成新墻的舊墻為SKIPIF1<0,于是還需要建造新墻的長(zhǎng)為SKIPIF1<0設(shè)建造SKIPIF1<0新墻需用SKIPIF1<0元,建造圍墻的總造價(jià)為SKIPIF1<0元,則SKIPIF1<0SKIPIF1<0(當(dāng)且僅當(dāng)SKIPIF1<0即SKIPIF1<0時(shí),等號(hào)成立)故拆除改造舊墻約為SKIPIF1<0米時(shí),總造價(jià)最小.【變式】某游泳館出售冬季學(xué)生游泳卡,每張卡240元.并規(guī)定不記名,每卡每次只限1人,每天只限1次.某班有48名學(xué)生,教師準(zhǔn)備組織學(xué)生集體冬泳,除需要購(gòu)買若干張游泳卡外,每次去游泳還要包一輛汽車,無(wú)論乘坐多少學(xué)生,每次的包車費(fèi)為40元.要使每個(gè)學(xué)生游8次,每人最少交多少錢?【解析】設(shè)購(gòu)買x張游泳卡,活動(dòng)開支為y元,則SKIPIF1<0(當(dāng)且僅當(dāng)x=8時(shí)取“=”)此時(shí)每人最少交80元.【考點(diǎn)易錯(cuò)】1.已知△ABC的三邊長(zhǎng)是SKIPIF1<0,且SKIPIF1<0為正數(shù),求證:SKIPIF1<0.【點(diǎn)撥】尋找各項(xiàng)的統(tǒng)一性,可以從函數(shù)單調(diào)性方面來(lái)考慮。證明:設(shè)SKIPIF1<0,易知SKIPIF1<0是SKIPIF1<0的遞增區(qū)間SKIPIF1<0,即SKIPIF1<0而SKIPIF1<0SKIPIF1<0【總結(jié)】函數(shù)是高中數(shù)學(xué)的重要知識(shí),很多問(wèn)題都可以從函數(shù)的角度來(lái)思考和分析。【變式1】設(shè)函數(shù)f(x)定義在R上,對(duì)任意m、n恒有f(m+n)=f(m)·f(n),且當(dāng)x>0時(shí),0<f(x)<1.(1)求證:f(0)=1,且當(dāng)x<0時(shí),f(x)>1;(2)求證:f(x)在R上單調(diào)遞減;(3)設(shè)集合A={(x,y)|f(x2)·f(y2)>f(1)},集合B={(x,y)|f(ax-g+2)=1,a∈R},若A∩B=SKIPIF1<0,求a的取值范圍.證明:令m>0,n=0得:f(m)=f(m)·f(0).∵f(m)≠0,∴f(0)=1取m=m,n=-m,(m<0),得f(0)=f(m)f(-m)∴f(m)=SKIPIF1<0,∵m<0,∴-m>0,∴0<f(-m)<1,∴f(m)>1(2)證明:任取x1,x2∈R,則f(x1)-f(x2)=f(x1)-f[(x2-x1)+x1]=f(x1)-f(x2-x1)·f(x1)=f(x1)[1-f(x2-x1)],∵f(x1)>0,1-f(x2-x1)>0,∴f(x1)>f(x2),∴函數(shù)f(x)在R上為單調(diào)減函數(shù).(3)SKIPIF1<0,由題意此不等式組無(wú)解,數(shù)形結(jié)合得:SKIPIF1<0≥1,解得a2≤3∴a∈[-SKIPIF1<0,SKIPIF1<0]2.已知函數(shù)SKIPIF1<0(其中常數(shù)m>0)(1)當(dāng)m=2時(shí),求SKIPIF1<0的極大值.(2)時(shí)談?wù)揝KIPIF1<0在區(qū)間SKIPIF1<0上的單調(diào)性(3)當(dāng)SKIPIF1<0時(shí),曲線SKIPIF1<0上總存在相異兩點(diǎn)SKIPIF1<0,SKIPIF1<0,使得曲線SKIPIF1<0在點(diǎn)SKIPIF1<0處的切線互相平行,求SKIPIF1<0的取值范圍.【解析】(1)當(dāng)m=2時(shí),SKIPIF1<0SKIPIF1<0令SKIPIF1<0可得SKIPIF1<0或SKIPIF1<0令SKIPIF1<0解得SKIPIF1<0SKIPIF1<0在SKIPIF1<0和SKIPIF1<0上單調(diào)遞減,在SKIPIF1<0單調(diào)遞增故SKIPIF1<0的極大值為SKIPIF1<0(2)SKIPIF1<0=1\*GB3①當(dāng)SKIPIF1<0時(shí),則SKIPIF1<0故SKIPIF1<0,SKIPIF1<0;SKIPIF1<0時(shí),SKIPIF1<0此時(shí)SKIPIF1<0在SKIPIF1<0上單調(diào)遞減,在SKIPIF1<0上單調(diào)遞增.=2\*GB3②當(dāng)SKIPIF1<0時(shí),SKIPIF1<0故SKIPIF1<0有SKIPIF1<0恒成立,此時(shí)SKIPIF1<0在SKIPIF1<0上單調(diào)遞減=3\*GB3③當(dāng)SKIPIF1<0時(shí),SKIPIF1<0故SKIPIF1<0時(shí),SKIPIF1<0;SKIPIF1<0時(shí)SKIPIF1<0此時(shí)SKIPIF1<0在SKIPIF1<0上單調(diào)遞減,在SKIPIF1<0上單調(diào)遞增.(3)由題意,可得SKIPIF1<0即SKIPIF1<0所以SKIPIF1<0SKIPIF1<0由不等式性質(zhì)可得SKIPIF1<0恒成立又SKIPIF1<0SKIPIF1<0即SKIPIF1<0對(duì)SKIPIF1<0恒成立令SKIPIF1<0易知SKIPIF1<0在SKIPIF1<0上單增SKIPIF1<0故SKIPIF1<0SKIPIF1<0SKIPIF1<0的取值范圍為SKIPIF1<0【變式】已知SKIPIF1<0,對(duì)SKIPIF1<0,SKIPIF1<0恒成立(1)求SKIPIF1<0的最小值;(2)求SKIPIF1<0的取值范圍.【解析】(1)SKIPIF1<0且SKIPIF1<0SKIPIF1<0當(dāng)且僅當(dāng)SKIPIF1<0時(shí)等號(hào)成立,又SKIPIF1<0即SKIPIF1<0時(shí),等號(hào)成立故SKIPIF1<0的最小值為9.(2)因?yàn)閷?duì)SKIPIF1<0使SKIPIF1<0恒成立所以SKIPIF1<0當(dāng)SKIPIF1<0時(shí),SKIPIF1<0SKIPIF1<0當(dāng)SKIPIF1<0時(shí),SKIPIF1<0SKIPIF1<0當(dāng)SKIPIF1<0時(shí),SKIPIF1<0SKIPIF1<0綜上可知SKIPIF1<0的取值范圍是SKIPIF1<0.3.某單位在國(guó)家科研部門的支持下,進(jìn)行技術(shù)攻關(guān),采用了新工藝,把二氧化碳轉(zhuǎn)化為一種可利用的化工產(chǎn)品.已知該單位每月的處理量最少為400噸,最多為600噸,月處理成本y(元)與月處理量x(噸)之間的函數(shù)關(guān)系可近似地表示為y=eq\f(1,2)x2-200x+80000,且每處理一噸二氧化碳得到可利用的化工產(chǎn)品價(jià)值為100元.(1)該單位每月處理量為多少噸時(shí),才能使每噸的平均處理成本最低?(2)該單位每月能否獲利?如果獲利,求出最大利潤(rùn);如果不獲利,則需要國(guó)家至少補(bǔ)貼多少元才能使單位不虧損?【解析】解(1)由題意可知,二氧化碳每噸的平均處理成本為eq\f(y,x)=eq\f(1,2)x+eq\f(80000,x)-200≥2eq\r(\f(1,2)x·\f(80000,x))-200=200,當(dāng)且僅當(dāng)eq\f(1,2)x=eq\f(80000,x),即x=400時(shí)等號(hào)成立,故該單位月處理量為400噸時(shí),才能使每噸的平均處理成本最低,最低成本為200元.(2)不獲利.設(shè)該單位每月獲利為S元,則S=100x-y=100x-eq\b\lc\(\rc\)(\a\vs4\al\co1(\f(1,2)x2-200x+80000))=-eq\f(1,2)x2+300x-80000=-eq\f(1,2)(x-300)2-35000,因?yàn)閤∈[400,600],所以S∈[-80000,-40000].故該單位每月不獲利,需要國(guó)家每月至少補(bǔ)貼40000元才能不虧損.【鞏固提升】1.已知a>b,c>d,則下列關(guān)系式正確的是()A.a(chǎn)c+bd>ad+bc B.a(chǎn)c+bd<ad+bcC.a(chǎn)c>bd D.a(chǎn)c<bd【答案】A【分析】利用作差法可判斷A、B,利用特值法可判斷C、D.【詳解】解:對(duì)于A、B:SKIPIF1<0a>b,c>d,SKIPIF1<0ac+bd-(ad+bc)=(a-b)(c-d)>0,故A正確,B錯(cuò)誤;對(duì)于C:當(dāng)b=0,c<0時(shí),ac<0,bd=0,故C錯(cuò)誤;對(duì)于D:當(dāng)a>b>0,c>d>0時(shí),ac>bd,故D錯(cuò)誤;故選:A.2.如果SKIPIF1<0那么下列說(shuō)法正確的是()A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】D【分析】根據(jù)不等式的性質(zhì)判斷,錯(cuò)誤的可舉反例.【詳解】因?yàn)镾KIPIF1<0,不等式兩邊同時(shí)減去SKIPIF1<0得SKIPIF1<0,D正確,若SKIPIF1<0,則AB錯(cuò)誤,若SKIPIF1<0,C錯(cuò)誤.故選:D.3.設(shè)SKIPIF1<0,使不等式SKIPIF1<0成立的SKIPIF1<0的取值范圍為__________.【答案】SKIPIF1<0【分析】通過(guò)因式分解,解不等式.【詳解】SKIPIF1<0,即SKIPIF1<0,即SKIPIF1<0,故SKIPIF1<0的取值范圍是SKIPIF1<0.【點(diǎn)睛】解一元二次不等式的步驟:(1)將二次項(xiàng)系數(shù)化為正數(shù);(2)解相應(yīng)的一元二次方程;(3)根據(jù)一元二次方程的根,結(jié)合不等號(hào)的方向畫圖;(4)寫出不等式的解集.容易出現(xiàn)的錯(cuò)誤有:①未將二次項(xiàng)系數(shù)化正,對(duì)應(yīng)錯(cuò)標(biāo)準(zhǔn)形式;②解方程出錯(cuò);③結(jié)果未按要求寫成集合.4.已知SKIPIF1<0,SKIPIF1<0,下列說(shuō)法錯(cuò)誤的是()A.若SKIPIF1<0,則SKIPIF1<0 B.若SKIPIF1<0,則SKIPIF1<0C.SKIPIF1<0恒成立 D.SKIPIF1<0,使得SKIPIF1<0【答案】D【分析】A選項(xiàng)可以構(gòu)造冪型函數(shù)來(lái)判斷;B、D選項(xiàng)借用求導(dǎo)的手段求出函數(shù)單調(diào)性來(lái)判斷大小關(guān)系;C選項(xiàng)利用基本不等式可判斷出大小關(guān)系.【詳解】解:對(duì)于A:SKIPIF1<0,所以SKIPIF1<0,因?yàn)镾KIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0,故A正確;對(duì)于B:設(shè)SKIPIF1<0,則SKIPIF1<0,所以SKIPIF1<0上單調(diào)遞增,因?yàn)镾KIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0,故B正確;對(duì)于C:已知SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0,當(dāng)且僅當(dāng)SKIPIF1<0時(shí),等號(hào)成立,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0成立,故C正確;對(duì)于D:令SKIPIF1<0,則SKIPIF1<0,因?yàn)镾KIPIF1<0,所以SKIPIF1<0單調(diào)遞增,則不存在SKIPIF1<0,故D錯(cuò)誤.故選:D.【點(diǎn)睛】實(shí)數(shù)間的大小比較,常見(jiàn)解題思路如下(1)構(gòu)造冪型函數(shù)、指數(shù)型函數(shù)、對(duì)數(shù)型函數(shù),三角函數(shù)等、利用函數(shù)性質(zhì),結(jié)合函數(shù)圖象進(jìn)行實(shí)數(shù)間的大小比較;(2)利用基本不等式、不等式性質(zhì)進(jìn)行實(shí)數(shù)間的大小比較;(3)利用導(dǎo)數(shù)判斷函數(shù)單調(diào)性進(jìn)行實(shí)數(shù)間的大小比較;(4)利用函數(shù)單調(diào)性、對(duì)稱性、奇偶性、周期性進(jìn)行實(shí)數(shù)間的大小比較.5.已知SKIPIF1<0,滿足SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,則()A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【分析】由給定條件分析出a>0,b<0及a與b間的關(guān)系,針對(duì)各選項(xiàng)逐一討論即可得解.【詳解】因SKIPIF1<0,SKIPIF1<0,則a>0,b<0,SKIPIF1<0,A不正確;SKIPIF1<0,則SKIPIF1<0,B不正確;又SKIPIF1<0,即SKIPIF1<0,則SKIPIF1<0,SKIPIF1<0,C正確;由SKIPIF1<0得SKIPIF1<0,D不正確.故選:C6.已知非零實(shí)數(shù)SKIPIF1<0,SKIPIF1<0滿足SKIPIF1<0,則下列不等式中一定成立的是()A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】D【分析】當(dāng)SKIPIF1<0時(shí),A,B,C均不成立,即可得到答案;【詳解】對(duì)A,當(dāng)SKIPIF1<0時(shí),不等式無(wú)意義,故A錯(cuò)誤;對(duì)B,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,故B錯(cuò)誤;對(duì)C,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,故C錯(cuò)誤;對(duì)D,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0成立,故D正確;故選:D.7.已知a>0,b>0,且a+b=1,則()A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0【答案】ABD【分析】根據(jù)SKIPIF1<0,結(jié)合基本不等式及二次函數(shù)知識(shí)進(jìn)行求解.【詳解】對(duì)于A,SKIPIF1<0SKIPIF1<0,當(dāng)且僅當(dāng)SKIPIF1<0時(shí),等號(hào)成立,故A正確;對(duì)于B,SKIPIF1<0,所以SKIPIF1<0,故B正確;對(duì)于C,SKIPIF1<0,當(dāng)且僅當(dāng)SKIPIF1<0時(shí),等號(hào)成立,故C不正確;對(duì)于D,因?yàn)镾KIPIF1<0,所以SKIPIF1<0,當(dāng)且僅當(dāng)SKIPIF1<0時(shí),等號(hào)成立,故D正確;故選:ABD【點(diǎn)睛】本題主要考查不等式的性質(zhì),綜合了基本不等式,指數(shù)函數(shù)及對(duì)數(shù)函數(shù)的單調(diào)性,側(cè)重考查數(shù)學(xué)運(yùn)算的核心素養(yǎng).8.若SKIPIF1<0,則下列不等式恒成立的是()A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0【答案】AC【分析】根據(jù)作差法比較大小或者取特殊值舉反例即可.【詳解】對(duì)于A選項(xiàng),由于SKIPIF1<0,故SKIPIF1<0,所以SKIPIF1<0,即SKIPIF1<0,故A選項(xiàng)正確;對(duì)于B選項(xiàng),由于SKIPIF1<0,故SKIPIF1<0,SKIPIF1<0,故SKIPIF1<0,故B選項(xiàng)錯(cuò)誤;對(duì)于C選項(xiàng),因?yàn)镾KIPIF1<0,故SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0,故C選項(xiàng)正確;對(duì)于D選項(xiàng),令SKIPIF1<0,則SKIPIF1<0,所以SKIPIF1<0不成立,故D選項(xiàng)錯(cuò)誤;故選:AC【點(diǎn)睛】本題考查不等式的性質(zhì),作差法比較大小,考查運(yùn)算求解能力,是中檔題.本題解題的關(guān)鍵在于利用不等式的性質(zhì)或者作差法比較大小,進(jìn)而判斷.9.已知兩個(gè)不為零的實(shí)數(shù)SKIPIF1<0,SKIPIF1<0滿足SKIPIF1<0,則下列說(shuō)法中正確的有()A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】AC【分析】對(duì)四個(gè)選項(xiàng)一一驗(yàn)證:對(duì)于A:利用SKIPIF1<0為增函數(shù)直接證明;對(duì)于B:取特殊值判斷;對(duì)于C:若SKIPIF1<0時(shí),利用同向不等式相乘判斷;若SKIPIF1<0時(shí),有SKIPIF1<0SKIPIF1<0,直接判斷;若SKIPIF1<0時(shí),利用不等式的乘法性質(zhì)進(jìn)行判斷對(duì)于D:取特殊值判斷;【詳解】對(duì)于A:因?yàn)閮蓚€(gè)不為零的實(shí)數(shù)SKIPIF1<0,SKIPIF1<0滿足SKIPIF1<0,所以SKIPIF1<0,而SKIPIF1<0為增函數(shù),所以SKIPIF1<0,即SKIPIF1<0;故A正確;對(duì)于B:可以取SKIPIF1<0,則有SKIPIF1<0,所以SKIPIF1<0;故B不正確;對(duì)于C:若SKIPIF1<0時(shí),則有SKIPIF1<0根據(jù)同向不等式相乘得:SKIPIF1<0,即SKIPIF1<0成立;若SKIPIF1<0時(shí),有SKIPIF1<0SKIPIF1<0,故SKIPIF1<0成立;若SKIPIF1<0時(shí),則有SKIPIF1<0,SKIPIF1<0,因?yàn)镾KIPIF1<0,所以SKIPIF1<0,即SKIPIF1<0成立;故C正確;對(duì)于D:可以取SKIPIF1<0,則有SKIPIF1<0,所以SKIPIF1<0;故D不正確;故選:AC【點(diǎn)睛】(1)判斷不等式是否成立:①利用不等式的性質(zhì)或定理直接證明;②取特殊值進(jìn)行否定,用排除法;(2)多項(xiàng)選擇題是2020年高考新題型,需要要對(duì)選項(xiàng)一一驗(yàn)證.(3)要證明一個(gè)命題是真命題,需要嚴(yán)格的證明;要判斷一個(gè)命題是假命題,只需要舉一個(gè)反例否定就看可以了.10.已知SKIPIF1<0,SKIPIF1<0,若對(duì)任意SKIPIF1<0,不等式SKIPIF1<0恒成立,則SKIPIF1<0的最小值為___________.【答案】SKIPIF1<0【分析】考慮兩個(gè)函數(shù)SKIPIF1<0,SKIPIF1<0,由此確定SKIPIF1<0,SKIPIF1<0時(shí),SKIPIF1<0,SKIPIF1<0有相同的零點(diǎn),得出SKIPIF1<0的關(guān)系,檢驗(yàn)此時(shí)SKIPIF1<0也滿足題意,然后計(jì)算出SKIPIF1<0(用SKIPIF1<0表示),然后由基本不等式得最小值.【詳解】設(shè)SKIPIF1<0,SKIPIF1<0,SKIPIF1<0圖象是開口向上的拋物線,因此由SKIPIF1<0時(shí),SKIPIF1<0恒成立得SKIPIF1<0,SKIPIF1<0時(shí),SKIPIF1<0,SKIPIF1<0時(shí),SKIPIF1<0,SKIPIF1<0時(shí),SKIPIF1<0,因此SKIPIF1<0時(shí),SKIPIF1<0,SKIPIF1<0時(shí),SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0①,SKIPIF1<0②,由①得SKIPIF1<0,代入②得SKIPIF1<0,因?yàn)镾KIPIF1<0,此式顯然成立.SKIPIF1<0,當(dāng)且僅當(dāng)SKIPIF1<0,即SKIPIF1<0時(shí)等號(hào)成立,所以SKIPIF1<0的最小值是SKIPIF1<0.故答案為:SKIPIF1<0.【點(diǎn)睛】關(guān)鍵點(diǎn)點(diǎn)睛:本題考查不等式恒成立問(wèn)題,考查基本不等式求最值.解題關(guān)鍵是引入兩個(gè)函數(shù)SKIPIF1<0和SKIPIF1<0,把三次函數(shù)轉(zhuǎn)化為二次函數(shù)與一次函數(shù),降低了難度.由兩個(gè)函數(shù)的關(guān)系得出參數(shù)SKIPIF1<0的關(guān)系,從而可求得SKIPIF1<0的最小值.11.定義在R上的奇函數(shù)SKIPIF1<0滿足SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,則當(dāng)SKIPIF1<0時(shí),不等式SKIPIF1<0的解為___________.【答案】SKIPIF1<0【分析】根據(jù)奇函數(shù)的性質(zhì)及條件求得函數(shù)周期,從而求得SKIPIF1<0時(shí)對(duì)應(yīng)的函數(shù)解析式,然后解一元二次不等式即可.【詳解】SKIPIF1<0,函數(shù)周期為2;當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,則當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,由SKIPIF1<0知,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,故SKIPIF1<0時(shí),SKIPIF1<0則不等式SKIPIF1<0即SKIPIF1<0,解得SKIPIF1<0,故答案為:SKIPIF1<0【點(diǎn)睛】關(guān)鍵點(diǎn)點(diǎn)睛:難點(diǎn)在于求得函數(shù)在SKIPIF1<0對(duì)應(yīng)的函數(shù)解析式,從而解一元二次不等式.12.不等式SKIPIF1<0的解集是___________.【答案】SKIPIF1<0【分析】由指數(shù)函數(shù)的單調(diào)性可得SKIPIF1<0,求解即可.【詳解】SKIPIF1<0,SKIPIF1<0,即SKIPIF1<0,解得SKIPIF1<0,故不等式的解集為SKIPIF1<0.故答案為:SKIPIF1<0.13.設(shè)SKIPIF1<0,解不等式SKIPIF1<0.【答案】SKIPIF1<0【分析】根據(jù)絕對(duì)值定義化為三個(gè)方程組,解得結(jié)果【詳解】SKIPIF1<0或SKIPIF1<0或SKIPIF1<0SKIPIF1<0或SKIPIF1<0或SKIPIF1<0所以解集為:SKIPIF1<0【點(diǎn)睛】本題考查分類討論解含絕對(duì)值不等式,考查基本分析求解能力,屬基礎(chǔ)題.14.已知SKIPIF1<0,SKIPIF1<0是橢圓SKIPIF1<0:SKIPIF1<0的兩個(gè)焦點(diǎn),點(diǎn)SKIPIF1<0在SKIPIF1<0上,則SKIPIF1<0的最大值為()A.13 B.12 C.9 D.6【答案】C【分析】本題通過(guò)利用橢圓定義得到SKIPIF1<0,借助基本不等式SKIPIF1<0即可得到答案.【詳解】由題,SKIPIF1<0,則SKIPIF1<0,所以SKIPIF1<0(當(dāng)且僅當(dāng)SKIPIF1<0時(shí),等號(hào)成立).故選:C.【點(diǎn)睛】橢圓上的點(diǎn)與橢圓的兩焦點(diǎn)的距離問(wèn)題,常常從橢圓的定義入手,注意基本不等式得靈活運(yùn)用,或者記住定理:兩正數(shù),和一定相等時(shí)及最大,積一定,相等時(shí)和最小,也可快速求解.15.某公司購(gòu)買一批機(jī)器投入生產(chǎn),若每臺(tái)機(jī)器生產(chǎn)的產(chǎn)品可獲得的總利潤(rùn)s(萬(wàn)元)與機(jī)器運(yùn)轉(zhuǎn)時(shí)間t(年數(shù),SKIPIF1<0)的關(guān)系為SKIPIF1<0,要使年平均利潤(rùn)最大,則每臺(tái)機(jī)器運(yùn)轉(zhuǎn)的年數(shù)t為()A.5 B.6 C.7 D.8【答案】D【分析】根據(jù)題意求出年平均利潤(rùn)函數(shù)。利用均值不等式求最值.【詳解】因?yàn)槊颗_(tái)機(jī)器生產(chǎn)的產(chǎn)品可獲得的總利潤(rùn)s(萬(wàn)元)與機(jī)器運(yùn)轉(zhuǎn)時(shí)間t(年數(shù),SKIPIF1<0)的關(guān)系為SKIPIF1<0,所以年平均利潤(rùn)SKIPIF1<0當(dāng)且僅當(dāng)SKIPIF1<0時(shí)等號(hào)成立,即年平均利潤(rùn)最大,則每臺(tái)機(jī)器運(yùn)轉(zhuǎn)的年數(shù)t為8,故選:D16.(多選題)已知SKIPIF1<0,SKIPIF1<0為正實(shí)數(shù),且SKIPIF1<0,則()A.SKIPIF1<0的最大值為2 B.SKIPIF1<0的最小值為4C.SKIPIF1<0的最小值為3 D.SKIPIF1<0的最小值為SKIPIF1<0【答案】ABD【分析】對(duì)條件進(jìn)行變形,利用不等式的基本性質(zhì)對(duì)選項(xiàng)一一分析即可.【詳解】解:因?yàn)镾KIPIF1<0,當(dāng)且僅當(dāng)SKIPIF1<0時(shí)取等號(hào),解得SKIPIF1<0,即SKIPIF1<0,故SKIPIF1<0的最大值為2,A正確;由SKIPIF1<0得SKIPIF1<0,所以SKIPIF1<0,當(dāng)且僅當(dāng)SKIPIF1<0,即SKIPIF1<0時(shí)取等號(hào),此時(shí)取得最小值4,B正確;SKIPIF1<0,當(dāng)且僅當(dāng)SKIPIF1<0,即SKIPIF1<0時(shí)取等號(hào),C錯(cuò)誤;SKIPIF1<0,當(dāng)且僅當(dāng)SKIPIF1<0時(shí)取等號(hào),此時(shí)SKIPIF1<0取得最小值SKIPIF1<0,D正確.故選:ABD.17.(多選題)已知SKIPIF1<0,則下列選項(xiàng)一定正確的是()A.SKIPIF1<0 B.SKIPIF1<0的最大值為SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0【答案】BD【分析】依題意得出SKIPIF1<0的取值范圍,由此可得SKIPIF1<0的范圍,即可判斷A的正誤;利用基本不等式可判斷B、C的正誤;根據(jù)基本不等式及二次函數(shù)知識(shí)即可判斷D的正誤.【詳解】因?yàn)镾KIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0.對(duì)于A:由SKIPIF1<0可得SKIPIF1<0,所以SKIPIF1<0,故A錯(cuò)誤;對(duì)于B:SKIPIF1<0,當(dāng)且僅當(dāng)SKIPIF1<0,即SKIPIF1<0時(shí)等號(hào)成立,所以SKIPIF1<0的最大值為SKIPIF1<0,故B正確;對(duì)于C:因?yàn)镾KIPIF1<0,所以SKIPIF1<0當(dāng)且僅當(dāng)SKIPIF1<0,即SKIPIF1<0時(shí)等號(hào)成立,故C錯(cuò)誤;對(duì)于D:因?yàn)镾KIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0,當(dāng)且僅當(dāng)SKIPIF1<0,即SKIPIF1<0時(shí)等號(hào)成立,因?yàn)镾KIPIF1<0,所以SKIPIF1<0,當(dāng)SKIPIF1<0時(shí)取最大值,此時(shí)SKIPIF1<0,此時(shí)兩次取等號(hào)條件不一致,故SKIPIF1<0,故D正確.故選:BD.【點(diǎn)睛】方法點(diǎn)睛:在應(yīng)用基本不等式求最值時(shí),要把握不等式成立的三個(gè)條件,就是“一正——各項(xiàng)均為正;二定——積或和為定值;三相等——等號(hào)能否取得”,若忽略了某個(gè)條件,就會(huì)出現(xiàn)錯(cuò)誤.18.(多選題)已知SKIPIF1<0,SKIPIF1<0,則下列說(shuō)法正確的是()A.SKIPIF1<0最小值為SKIPIF1<0B.若SKIPIF1<0,則SKIPIF1<0的最小值為SKIPIF1<0C.若SKIPIF1<0,則SKIPIF1<0的最小值為SKIPIF1<0D.若SKIPIF1<0,則SKIPIF1<0的最小值為SKIPIF1<0【答案】BC【分析】選項(xiàng)A.設(shè)SKIPIF1<0,求出導(dǎo)數(shù),得出單調(diào)性,可判斷;選項(xiàng)B.先將SKIPIF1<0展開先利用均值不等式放縮再配方,然后利用均值不等式可判斷;選項(xiàng)C由SKIPIF1<0得SKIPIF1<0,代入SKIPIF1<0由均值不等式可判斷;選項(xiàng)D.由SKIPIF1<0兩邊同時(shí)乘以SKIPIF1<0結(jié)合均值不等式可得答案.【詳解】對(duì)于A,設(shè)SKIPIF1<0,則SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0;當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,故SKIPIF1<0,而SKIPIF1<0不為定值,故A錯(cuò)誤.對(duì)于B,SKIPIF1<0SKIPIF1<0,當(dāng)且僅當(dāng)SKIPIF1<0即SKIPIF1<0時(shí)取等號(hào),故B正確.對(duì)于C,由SKIPIF1<0得SKIPIF1<0,由SKIPIF1<0,所以SKIPIF1<0,SKIPIF1<0,當(dāng)且僅當(dāng)SKIPIF1<0時(shí)取等號(hào),故C正確.對(duì)于D,由SKIPIF1<0得SKIPIF1<0,則SKIPIF1<0,解得SKIPIF1<0,故D錯(cuò)誤.故選:BC.【點(diǎn)睛】易錯(cuò)點(diǎn)睛:利用基本不等式求最值時(shí),要注意其必須滿足的三個(gè)條件:(1)“一正二定三相等”“一正”就是各項(xiàng)必須為正數(shù);(2)“二定”就是要求和的最小值,必須把構(gòu)成和的二項(xiàng)之積轉(zhuǎn)化成定值;要求積的最大值,則必須把構(gòu)成積的因式的和轉(zhuǎn)化成定值;(3)“三相等”是利用基本不等式求最值時(shí),必須驗(yàn)證等號(hào)成立的條件,若不能取等號(hào)則這個(gè)定值就不是所求的最值,這也是最容易發(fā)生錯(cuò)誤的地方,這時(shí)改用勾型函數(shù)的單調(diào)性求最值.19.已知正實(shí)數(shù)SKIPIF1<0,SKIPIF1<0滿足SKIPIF1<0,則SKIPIF1<0的最大值等于______.【答案】1【分析】由題意利用基本不等式可得SKIPIF1<0,由此求得SKIPIF1<0的最大值.【詳解】正實(shí)數(shù)SKIPIF1<0,SKIPIF1<0滿足SKIPIF1<0,即SKIPIF1<0,SKIPIF1<0∴SKIPIF1<0(當(dāng)且僅當(dāng)SKIPIF1<0時(shí),取等號(hào)),∴SKIPIF1<0,即SKIPIF1<0,則SKIPIF1<0的最大值等于1,故答案為:1.20.如圖,在平行四邊形ABCD中,點(diǎn)E是CD的中點(diǎn),點(diǎn)F為線段BD上的一動(dòng)點(diǎn),若SKIPIF1<0SKIPIF1<0,則SKIPIF1<0的最大值為___________.【答案】SKIPIF1<0【分析】設(shè)BD與AE的交點(diǎn)為O,結(jié)合比例關(guān)系可求出SKIPIF1<0SKIPIF1<0,得出SKIPIF1<0,則SKIPIF1<0可代換為SKIPIF1<0,結(jié)合三點(diǎn)共線性質(zhì)得SKIPIF1<0,原式代換為SKIPIF1<0,再結(jié)合基本不等式即可求解【詳解】如圖,設(shè)BD與AE的交點(diǎn)為O,則由SKIPIF1<0,得SKIPIF1<0SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0SKIPIF1<0.由點(diǎn)O,F(xiàn),B共線,得SKIPIF1<0SKIPIF1<0,所以SKIPIF1<0,當(dāng)且僅當(dāng)SKIPIF1<0時(shí)取等號(hào),即SKIPIF1<0的最大值為SKIPIF1<0故答案為:SKIPIF1<0【點(diǎn)睛】本題考查平面向量三點(diǎn)共線性質(zhì)的應(yīng)用,基本不等式求最值,屬于中檔題21.已知SKIPIF1<0都為正實(shí)數(shù),則SKIPIF1<0的最小值為___________.【答案】SKIPIF1<0【分析】化簡(jiǎn)SKIPIF1<0,由基本不等式得SKIPIF1<0,再代入原式得SKIPIF1<0,判斷相等條件后即可得最小值.【詳解】SKIPIF1<0,因?yàn)镾KIPIF1<0都為正實(shí)數(shù),SKIPIF1<0,當(dāng)且僅當(dāng)SKIPIF1<0,即SKIPIF1<0時(shí)等號(hào)成立,所以SKIPIF1<0,當(dāng)且僅當(dāng)SKIPIF1<0,即SKIPIF1<0時(shí)等號(hào)成立,綜上所述,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0取最小值為SKIPIF1<0.故答案為:SKIPIF1<0【點(diǎn)睛】解答本題的關(guān)鍵在于分別利用兩次基本不等式,根據(jù)“一正二定三相等”的原則判斷最小值.22.《九章算術(shù)》是中國(guó)傳統(tǒng)數(shù)學(xué)最重要的著作,奠定了中國(guó)傳統(tǒng)數(shù)學(xué)的基本框架,其中卷第九勾股中記載:“今有邑,東西七里,南北九里,各中開門.出東門一十五里有木.問(wèn)出南門幾何步而見(jiàn)木?”其算法為:東門南到城角的步數(shù),乘南門東到城角的步數(shù),乘積作被除數(shù),以樹距離東門的步數(shù)作除數(shù),被除數(shù)除以除數(shù)得結(jié)果,即出南門SKIPIF1<0里見(jiàn)到樹,則SKIPIF1<0.若一小城,如圖所示,出東門SKIPIF1<0

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論