版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2024屆重慶市開州區(qū)開州中學高三下學期質量檢測試題考試(三)數學試題注意事項:1.答題前,考生先將自己的姓名、準考證號碼填寫清楚,將條形碼準確粘貼在條形碼區(qū)域內。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知函數,若對任意,都有成立,則實數的取值范圍是()A. B. C. D.2.已知數列的前項和為,且,,,則的通項公式()A. B. C. D.3.已知x,y滿足不等式,且目標函數z=9x+6y最大值的變化范圍[20,22],則t的取值范圍()A.[2,4] B.[4,6] C.[5,8] D.[6,7]4.記遞增數列的前項和為.若,,且對中的任意兩項與(),其和,或其積,或其商仍是該數列中的項,則()A. B.C. D.5.已知,滿足約束條件,則的最大值為A. B. C. D.6.設為坐標原點,是以為焦點的拋物線上任意一點,是線段上的點,且,則直線的斜率的最大值為()A. B. C. D.17.已知是定義在上的奇函數,且當時,.若,則的解集是()A. B.C. D.8.已知函數,其中,若恒成立,則函數的單調遞增區(qū)間為()A. B.C. D.9.()A. B. C. D.10.數列滿足:,則數列前項的和為A. B. C. D.11.過雙曲線的左焦點作傾斜角為的直線,若與軸的交點坐標為,則該雙曲線的標準方程可能為()A. B. C. D.12.已知數列為等差數列,為其前項和,,則()A.7 B.14 C.28 D.84二、填空題:本題共4小題,每小題5分,共20分。13.已知半徑為的圓周上有一定點,在圓周上等可能地任意取一點與點連接,則所得弦長介于與之間的概率為__________.14.隨著國力的發(fā)展,人們的生活水平越來越好,我國的人均身高較新中國成立初期有大幅提高.為了掌握學生的體質與健康現狀,合理制定學校體育衛(wèi)生工作發(fā)展規(guī)劃,某市進行了一次全市高中男生身高統計調查,數據顯示全市30000名高中男生的身高(單位:)服從正態(tài)分布,且,那么該市身高高于的高中男生人數大約為__________.15.給出下列四個命題,其中正確命題的序號是_____.(寫出所有正確命題的序號)因為所以不是函數的周期;對于定義在上的函數若則函數不是偶函數;“”是“”成立的充分必要條件;若實數滿足則.16.已知集合,則_______.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知橢圓()的離心率為,且經過點.(1)求橢圓的方程;(2)過點作直線與橢圓交于不同的兩點,,試問在軸上是否存在定點使得直線與直線恰關于軸對稱?若存在,求出點的坐標;若不存在,說明理由.18.(12分)已知函數.(1)若,求函數的單調區(qū)間;(2)若恒成立,求實數的取值范圍.19.(12分)在,角、、所對的邊分別為、、,已知.(1)求的值;(2)若,邊上的中線,求的面積.20.(12分)在中,,,.求邊上的高.①,②,③,這三個條件中任選一個,補充在上面問題中并作答.21.(12分)已知數列滿足,且.(1)求證:數列是等差數列,并求出數列的通項公式;(2)求數列的前項和.22.(10分)已知矩形紙片中,,將矩形紙片的右下角沿線段折疊,使矩形的頂點B落在矩形的邊上,記該點為E,且折痕的兩端點M,N分別在邊上.設,的面積為S.(1)將l表示成θ的函數,并確定θ的取值范圍;(2)求l的最小值及此時的值;(3)問當θ為何值時,的面積S取得最小值?并求出這個最小值.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解析】
先將所求問題轉化為對任意恒成立,即得圖象恒在函數圖象的上方,再利用數形結合即可解決.【詳解】由得,由題意函數得圖象恒在函數圖象的上方,作出函數的圖象如圖所示過原點作函數的切線,設切點為,則,解得,所以切線斜率為,所以,解得.故選:D.【點睛】本題考查導數在不等式恒成立中的應用,考查了學生轉化與化歸思想以及數形結合的思想,是一道中檔題.2、C【解析】
利用證得數列為常數列,并由此求得的通項公式.【詳解】由,得,可得().相減得,則(),又由,,得,所以,所以為常數列,所以,故.故選:C【點睛】本小題考查數列的通項與前項和的關系等基礎知識;考查運算求解能力,邏輯推理能力,應用意識.3、B【解析】
作出可行域,對t進行分類討論分析目標函數的最大值,即可求解.【詳解】畫出不等式組所表示的可行域如圖△AOB當t≤2時,可行域即為如圖中的△OAM,此時目標函數z=9x+6y在A(2,0)取得最大值Z=18不符合題意t>2時可知目標函數Z=9x+6y在的交點()處取得最大值,此時Z=t+16由題意可得,20≤t+16≤22解可得4≤t≤6故選:B.【點睛】此題考查線性規(guī)劃,根據可行域結合目標函數的最大值的取值范圍求參數的取值范圍,涉及分類討論思想,關鍵在于熟練掌握截距型目標函數的最大值最優(yōu)解的處理辦法.4、D【解析】
由題意可得,從而得到,再由就可以得出其它各項的值,進而判斷出的范圍.【詳解】解:,或其積,或其商仍是該數列中的項,或者或者是該數列中的項,又數列是遞增數列,,,,只有是該數列中的項,同理可以得到,,,也是該數列中的項,且有,,或(舍,,根據,,,同理易得,,,,,,,故選:D.【點睛】本題考查數列的新定義的理解和運用,以及運算能力和推理能力,屬于中檔題.5、D【解析】
作出不等式組對應的平面區(qū)域,利用目標函數的幾何意義,利用數形結合即可得到結論.【詳解】作出不等式組表示的平面區(qū)域如下圖中陰影部分所示,等價于,作直線,向上平移,易知當直線經過點時最大,所以,故選D.【點睛】本題主要考查線性規(guī)劃的應用,利用目標函數的幾何意義,結合數形結合的數學思想是解決此類問題的基本方法.6、C【解析】試題分析:設,由題意,顯然時不符合題意,故,則,可得:,當且僅當時取等號,故選C.考點:1.拋物線的簡單幾何性質;2.均值不等式.【方法點晴】本題主要考查的是向量在解析幾何中的應用及拋物線標準方程方程,均值不等式的靈活運用,屬于中檔題.解題時一定要注意分析條件,根據條件,利用向量的運算可知,寫出直線的斜率,注意均值不等式的使用,特別是要分析等號是否成立,否則易出問題.7、B【解析】
利用函數奇偶性可求得在時的解析式和,進而構造出不等式求得結果.【詳解】為定義在上的奇函數,.當時,,,為奇函數,,由得:或;綜上所述:若,則的解集為.故選:.【點睛】本題考查函數奇偶性的應用,涉及到利用函數奇偶性求解對稱區(qū)間的解析式;易錯點是忽略奇函數在處有意義時,的情況.8、A【解析】
,從而可得,,再解不等式即可.【詳解】由已知,,所以,,由,解得,.故選:A.【點睛】本題考查求正弦型函數的單調區(qū)間,涉及到恒成立問題,考查學生轉化與化歸的思想,是一道中檔題.9、D【解析】
利用,根據誘導公式進行化簡,可得,然后利用兩角差的正弦定理,可得結果.【詳解】由所以,所以原式所以原式故故選:D【點睛】本題考查誘導公式以及兩角差的正弦公式,關鍵在于掌握公式,屬基礎題.10、A【解析】分析:通過對an﹣an+1=2anan+1變形可知,進而可知,利用裂項相消法求和即可.詳解:∵,∴,又∵=5,∴,即,∴,∴數列前項的和為,故選A.點睛:裂項相消法是最難把握的求和方法之一,其原因是有時很難找到裂項的方向,突破這一難點的方法是根據式子的結構特點,常見的裂項技巧:(1);(2);(3);(4);此外,需注意裂項之后相消的過程中容易出現丟項或多項的問題,導致計算結果錯誤.11、A【解析】
直線的方程為,令,得,得到a,b的關系,結合選項求解即可【詳解】直線的方程為,令,得.因為,所以,只有選項滿足條件.故選:A【點睛】本題考查直線與雙曲線的位置關系以及雙曲線的標準方程,考查運算求解能力.12、D【解析】
利用等差數列的通項公式,可求解得到,利用求和公式和等差中項的性質,即得解【詳解】,解得..故選:D【點睛】本題考查了等差數列的通項公式、求和公式和等差中項,考查了學生綜合分析,轉化劃歸,數學運算的能力,屬于中檔題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】在圓上其他位置任取一點B,設圓半徑為R,其中滿足條件AB弦長介于與之間的弧長為?2πR,則AB弦的長度大于等于半徑長度的概率P==;故答案為:.14、3000【解析】
根據正態(tài)曲線的對稱性求出,進而可求出身高高于的高中男生人數.【詳解】解:全市30000名高中男生的身高(單位:)服從正態(tài)分布,且,則,該市身高高于的高中男生人數大約為.故答案為:.【點睛】本題考查正態(tài)曲線的對稱性的應用,是基礎題.15、【解析】
對①,根據周期的定義判定即可.對②,根據偶函數滿足的性質判定即可.對③,舉出反例判定即可.對④,求解不等式再判定即可.【詳解】解:因為當時,所以由周期函數的定義知不是函數的周期,故正確;對于定義在上的函數,若,由偶函數的定義知函數不是偶函數,故正確;當時不滿足則“”不是“”成立的充分不必要條件,故錯誤;若實數滿足則所以成立,故正確.正確命題的序號是.故答案為:.【點睛】本題主要考查了命題真假的判定,屬于基礎題.16、【解析】
由可得集合是奇數集,由此可以得出結果.【詳解】解:因為所以集合中的元素為奇數,所以.【點睛】本題考查了集合的交集,解析出集合B中元素的性質是本題解題的關鍵.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)(2)見解析【解析】
(1)由題得a,b,c的方程組求解即可(2)直線與直線恰關于軸對稱,等價于的斜率互為相反數,即,整理.設直線的方程為,與橢圓聯立,將韋達定理代入整理即可.【詳解】(1)由題意可得,,又,解得,.所以,橢圓的方程為(2)存在定點,滿足直線與直線恰關于軸對稱.設直線的方程為,與橢圓聯立,整理得,.設,,定點.(依題意則由韋達定理可得,,.直線與直線恰關于軸對稱,等價于的斜率互為相反數.所以,,即得.又,,所以,,整理得,.從而可得,,即,所以,當,即時,直線與直線恰關于軸對稱成立.特別地,當直線為軸時,也符合題意.綜上所述,存在軸上的定點,滿足直線與直線恰關于軸對稱.【點睛】本題考查橢圓方程,直線與橢圓位置關系,熟記橢圓方程簡單性質,熟練轉化題目條件,準確計算是關鍵,是中檔題.18、(1)增區(qū)間為,減區(qū)間為;(2).【解析】
(1)將代入函數的解析式,利用導數可得出函數的單調區(qū)間;(2)求函數的導數,分類討論的范圍,利用導數分析函數的單調性,求出函數的最值可判斷是否恒成立,可得實數的取值范圍.【詳解】(1)當時,,則,當時,,則,此時,函數為減函數;當時,,則,此時,函數為增函數.所以,函數的增區(qū)間為,減區(qū)間為;(2),則,.①當時,即當時,,由,得,此時,函數為增函數;由,得,此時,函數為減函數.則,不合乎題意;②當時,即時,.不妨設,其中,令,則或.(i)當時,,當時,,此時,函數為增函數;當時,,此時,函數為減函數;當時,,此時,函數為增函數.此時,而,構造函數,,則,所以,函數在區(qū)間上單調遞增,則,即當時,,所以,.,符合題意;②當時,,函數在上為增函數,,符合題意;③當時,同理可得函數在上單調遞增,在上單調遞減,在上單調遞增,此時,則,解得.綜上所述,實數的取值范圍是.【點睛】本題考查導數知識的運用,考查函數的單調性與最值,考查恒成立問題,正確求導和分類討論是關鍵,屬于難題.19、(1)(2)答案不唯一,見解析【解析】
(1)由題意根據和差角的三角函數公式可得,再根據同角三角函數基本關系可得的值;(2)在中,由余弦定理可得,解方程分別由三角形面積公式可得答案.【詳解】解:(1)在中,因為,又已知,所以,因為,所以,于是.所以.(2)在中,由余弦定理得,得解得或,當時,的面積,當時,的面積.【點睛】本題考查正余弦定理理解三角形,涉及三角形的面積公式和分類討論思想,屬于中檔題.20、詳見解析【解析】
選擇①,利用正弦定理求得,利用余弦定理求得,再計算邊上的高.選擇②,利用正弦定理得出,由余弦定理求出,再求邊上的高.選擇③,利用余弦定理列方程求出,再計算邊上的高.【詳解】選擇①,在中,由正弦定理得,即,解得;由余弦定理得,即,化簡得,解得或(舍去);所以邊上的高為.選擇②,在中,由正弦定理得,又因為,所以,即;由余弦定理得,即,化簡得,解得或(舍去);所以邊上的高為.選擇③,在中,由,得;由余弦定理得,即,化簡得,解得或(舍去);所以邊上的
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 中華優(yōu)xiu傳統文化(海南軟件職業(yè)技術學院)知到智慧樹答案
- 社團創(chuàng)新與組織發(fā)展社團工作計劃
- 《放射性污染的危害》課件
- 8物北師期末北京市一零一中教育集團2023-2024學年上學期期末模擬八年級物理練習
- 2024年浙江省嘉興市中考英語模擬試卷(6月份)
- 《促銷員培訓手冊》課件
- 初中物理教學工作參考計劃范文5篇
- 【大學課件】單片機原理與接口技術課件 單片機應用系統抗干擾技術
- 項目資金申請報告范文
- 油價上漲分析報告范文
- 年會策劃舞美搭建方案
- 口腔科年終工作總結模板
- 醫(yī)院零星維修工程投標方案(技術標)
- 東北大學冶金工程專業(yè)考研復試面試問題整理附面試技巧自我介紹
- 三角函數的概念說課高一上學期數學人教A版(2019)必修第一冊
- 基于毫米波技術的高頻射頻芯片設計
- 植樹問題牛獻禮課件
- 新能源汽車發(fā)展趨勢及前景論文5000字
- 標準化班組建設演示幻燈片
- 生產車間量化考核方案
- 2023超星爾雅《藝術鑒賞》期末考試答案
評論
0/150
提交評論