版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
2024-2025學(xué)年度高一學(xué)年上學(xué)期期中考試試卷數(shù)學(xué)試題一、選擇題:本題共8小題,每小題5分,共40分.在每小題給出的四個選項中,只有一項是符合題目要求的.1.設(shè)全集,集合滿足,則()A. B. C. D.【答案】C【解析】【分析】由補集運算得出集合,再由元素與集合的關(guān)系判斷.【詳解】因為全集,所以,根據(jù)元素與集合的關(guān)系可知,ABD錯誤,C正確.故選:C.2.命題,,則命題的否定形式是()A., B.,C., D.,【答案】C【解析】【分析】根據(jù)全稱量詞命題的否定為存在量詞命題即可得到結(jié)論.【詳解】命題,,為全稱量詞命題,則該命題的否定為:,.故選:C.3.下列命題中正確的是()A若,則 B.若,則C.若,,則 D.若,,則【答案】D【解析】【分析】根據(jù)不等性質(zhì)分別判斷各選項.【詳解】A選項:當(dāng)時,,A選項錯誤;B選項:當(dāng),時,成立,,B選項錯誤;C選項:,,,所以,C選項錯誤;D選項:,則,又,所以,D選項正確;故選:D.4.已知是冪函數(shù),則“是正偶數(shù)”是“的值域為”的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分也不必要條件【答案】A【解析】【分析】利用冪函數(shù)的性質(zhì)結(jié)合充分、必要條件的定義判定即可.【詳解】當(dāng)是正偶數(shù)時,顯然,即其值域為.當(dāng)時,的值域為,但不是正偶數(shù).故“是正偶數(shù)”是“的值域為”的充分不必要條件.故選:A5.已知是定義在上的奇函數(shù),若,則()A. B. C.2 D.3【答案】C【解析】【分析】根據(jù)給定條件,利用奇函數(shù)的性質(zhì)求出函數(shù)的性質(zhì),進(jìn)而求出.【詳解】由是定義在上的奇函數(shù),得,即,令,則,而,所以.故選:C6.若兩個正實數(shù)滿足,若至少存在一組使得成立,則實數(shù)的取值范圍是()A. B. C. D.【答案】C【解析】【分析】根據(jù)題意得,即求,利用基本不等式,可解得,進(jìn)而得到,進(jìn)而可求解.【詳解】至少存在一組使得成立,即,又由兩個正實數(shù)滿足,可得,當(dāng)且僅當(dāng),即時,等號成立,,故有,解得,故,所以實數(shù)的取值范圍是故選:C.7.已知函數(shù)為定義在上的奇函數(shù),且在為減函數(shù),在為增函數(shù),,則不等式的解集為()A. B.C. D.【答案】D【解析】【分析】先根據(jù)奇函數(shù)性質(zhì)確認(rèn)函數(shù)零點,再根據(jù)已知單調(diào)性可以求出函數(shù)在各個區(qū)間符號,由不等式性質(zhì)可得解.【詳解】因為為定義在上的奇函數(shù),所以,且又因,所以,又因在為增函數(shù),在上,在上,又因在為減函數(shù),所以上,綜上,當(dāng)時,,當(dāng)時,當(dāng)時,則,所以,則,當(dāng)時,則,所以,則,不等式可化簡變形為,綜上所述可知當(dāng)時,.故選:D8.若函數(shù)在定義域上的值域為,則稱為“函數(shù)”.已知函數(shù)是“函數(shù)”,則實數(shù)的取值范圍是()A. B. C. D.【答案】C【解析】【分析】根據(jù)“函數(shù)”的定義確定的值域為,結(jié)合每段上的函數(shù)的取值范圍列出相應(yīng)不等式,即可求得答案.【詳解】由題意可知的定義域為,又因為函數(shù)是“函數(shù)”,故其值域為;而,則值域為;當(dāng)時,,當(dāng)時,,此時函數(shù)在上單調(diào)遞增,則,故由函數(shù)是“函數(shù)”可得,解得,即實數(shù)的取值范圍是,故選:C二、選擇題:本題共3小題,每小題6分,共18分.在每小題給出的選項中,有多項符合題目要求.全部選對的得6分,部分選對的得部分,有選錯的得0分.9.下列說法正確的是()A.若的定義域為,則的定義域為B.表示同一個函數(shù)C.函數(shù)值域為D.函數(shù)滿足,則【答案】ACD【解析】【分析】根據(jù)抽象函數(shù)的定義域的求解判斷A;利用同一函數(shù)得定義判斷B;利用換元法,結(jié)合二次函數(shù)的性質(zhì)求得其值域,判斷C;利用方程組法判斷D.【詳解】解:對于A,因為的定義域為,對于函數(shù),則,解得,即的定義域為,故A正確;對于B,定義域為,定義域為,不是同一函數(shù),故B不正確;對于C,令,則,,所以,,所以當(dāng)時,函數(shù)取得最大值,最大值為,所以函數(shù)的值域為,故C正確;對于D,,,化簡得,兩式相加得,解得,故D正確.故選:ACD.10.已知關(guān)于x的不等式的解集為,則()A.B.點在第二象限C.的最小值為2D.關(guān)于的不等式的解集為【答案】ACD【解析】【分析】根據(jù)題意,由原不等式的解集可得,,即可判斷ABD,然后再由基本不等式即可判斷C.【詳解】原不等式等價于,因為其解集為,所以且,,故A正確;因為,則點在第一象限,故B錯誤;由可得,,當(dāng)且僅當(dāng)時,即時,等號成立,所以的最小值為2,故C正確;由可得,不等式即為,化簡可得,則其解集為,故D正確;故選:ACD11.已知函數(shù),的圖象分別如圖1,2所示,方程,的實根個數(shù)分別為,則()A B. C. D.【答案】AB【解析】【分析】根據(jù)圖象,確定,,的值,代入驗證即可.【詳解】由圖,方程,,此時對應(yīng)4個解,故;方程,得或者,此時有2個解,故;方程,取到4個值,如圖所示:即或或或,則對應(yīng)的的解,有6個,故.
根據(jù)選項,可得A,B成立.
故選:AB.三、填空題:本題共3小題,每小題5分,共15分.12.函數(shù)的定義域為__________.【答案】【解析】【分析】根據(jù)分式、根式以及零次方的意義列式求解即可.【詳解】令,解得或,所以函數(shù)的定義域為.故答案為:.13.“”是“”的充分不必要條件,則實數(shù)的取值范圍是___.【答案】【解析】【分析】求解一元二次不等式和一元一次不等式,根據(jù)充分不必要性,列出不等式,則問題得解.【詳解】由,解得;由,即,解得x>2或;又“”是“”的充分不必要條件,故可得,解得.故答案為:.【點睛】本題考查由命題之間的充分性和必要性求參數(shù)范圍,屬基礎(chǔ)題.14.定義:對于非空集合,若元素,則必有,則稱集合為“和集合”.已知集合,則集合所有子集中,是“8和集合”的集合有_____個.【答案】15【解析】【分析】由新定義可得集合的子集中,、、、一定成組出現(xiàn),再由子集的概念即可得解.【詳解】由題意,集合的子集中,、、、一定成組出現(xiàn),當(dāng)集合的子集中只有1個元素時,即為,共1個;當(dāng)集合的子集中有2個元素時,即為,共3個;當(dāng)集合的子集中有3個元素時,即為,共3個;當(dāng)集合的子集中有4個元素時,即為,共3個;當(dāng)集合的子集中有5個元素時,即為,共3個;當(dāng)集合的子集中有6個元素時,即為,共1個.當(dāng)集合的子集中有7個元素時,即為,共1個.則集合所有子集中,是“8和集合”的集合有15個.故答案為:15.四、解答題:本題共5小題,共77分.解答應(yīng)寫出文字說明、證明過程或演算步驟.15.已知,.(1)求集合;(2)求,.【答案】(1)(2)或,或【解析】【分析】(1)解出一元二次不等式得到集合即可;(2)由集合的交集與補集的運算求解即可.【小問1詳解】因為,所以解不等式可得:,故集合【小問2詳解】由(1)可知:,又,所以,所以或.或,或.16.已知命題:“,使等式成立”是真命題.(1)求實數(shù)的取值集合;(2)設(shè)不等式的解集為,若是的必要條件,求的取值范圍.【答案】(1)(2)或【解析】【分析】(1)根據(jù)題意,將方程有解問題轉(zhuǎn)化為在值域內(nèi),求得二次函數(shù)的值域,即可得到結(jié)果;(2)根據(jù)題意,將問題轉(zhuǎn)化為,然后分,與討論,即可求解.【小問1詳解】由題意,方程在?1,1上有解,令,只需在的值域內(nèi),當(dāng)時,,當(dāng)時,,所以值域為,的取值集合為;【小問2詳解】由題意,,顯然不為空集.①當(dāng),即時,,,;②當(dāng),即時,,不合題意舍去;③當(dāng),即時,.,;綜上可得或.17.某奶茶店今年年初花費16萬元購買了一臺制作冰淇淋的設(shè)備,經(jīng)估算,該設(shè)備每年可為該奶茶店提供12萬元的總收入.已知使用x年(x為正整數(shù))所需的各種維護(hù)費用總計為萬元(今年為第一年).(1)試問:該奶茶店第幾年開始盈利(總收入超過總支出)?(2)該奶茶店在若干年后要賣出該冰淇淋設(shè)備,有以下兩種方案:①當(dāng)盈利總額達(dá)到最大值時,以1萬元的價格賣出該設(shè)備;②當(dāng)年均盈利達(dá)到最大值時,以2萬元的價格賣出該設(shè)備.試問哪一種方案較為劃算?請說明理由.【答案】(1)從第三年開始盈利.(2)兩種方案盈利總數(shù)一樣,但方案②時間短,較為劃算.【解析】【分析】(1)列出純收入的函數(shù)表達(dá)式,解純收入大于0的不等式即可.(2)分別計算兩種方案盈利和時間,比較后得結(jié)論.【小問1詳解】由題意可知,總收入扣除支出后的純收入,,解得,由,所以從第三年開始盈利.【小問2詳解】方案①:純收入,則5年后盈利總額達(dá)到最大值9萬元,以1萬元的價格賣出該設(shè)備,共盈利10萬元;方案②:年均盈利,由,,當(dāng)且僅當(dāng),即時等號成立,,當(dāng)4年后年均盈利達(dá)到最大值2萬元時,以2萬元的價格賣出該設(shè)備,共盈利萬元.兩種方案盈利總數(shù)一樣,但方案②時間短,較為劃算.18.已知函數(shù)經(jīng)過,兩點.(1)求函數(shù)的解析式;(2)判斷函數(shù)在上的單調(diào)性并用定義進(jìn)行證明;(3)若對任意恒成立,求實數(shù)的取值范圍.【答案】(1)(2)在上單調(diào)遞減,證明見解析(3)【解析】【分析】(1)將點的坐標(biāo)代入列方程組求解即可;(2)利用單調(diào)性定義證明即可;(3)將問題轉(zhuǎn)化為,然后利用單調(diào)性求解最值即可得解.【小問1詳解】,,,解得,.【小問2詳解】在0,1上單調(diào)遞減,證明如下:任取,且,則,,且,,,∴,,即,所以函數(shù)在0,1上單調(diào)遞減.【小問3詳解】由對任意恒成立得,由(2)知在0,1上單調(diào)遞減,函數(shù)在上的最大值為,,所求實數(shù)的取值范圍為.19.若函數(shù)y=fx與y=gx滿足:對任意,,都有,則稱函數(shù)y=fx是函數(shù)y=gx在集合上的“約束函數(shù)”.已知函數(shù)y=fx是函數(shù)y=gx(1)若,,判斷函數(shù)y=gx的奇偶性,并說明理由;(2)若,,,求實數(shù)a的取值范圍.【答案】(1)偶函數(shù),理由見解析(2)【解析】【分析】對于(1),先分析得到,然后根據(jù)得到,的關(guān)系,由此完成證明;對于(2)根據(jù)題設(shè)條件將問題轉(zhuǎn)化為“時,”,然后構(gòu)造并進(jìn)行
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024新疆二手房買賣合同模板:包含房屋質(zhì)量及安全隱患排查3篇
- 2024影樓與攝影師違約責(zé)任及賠償合同范本3篇
- 2024智能化設(shè)計合同范本
- 23《童年的發(fā)現(xiàn)》說課稿2023-2024學(xué)年統(tǒng)編版語文五年級下冊
- 2 丁香結(jié) 說課稿-2024-2025學(xué)年統(tǒng)編版語文六年級上冊
- 專業(yè)餐飲顧問服務(wù)合同(2024年修訂)版
- 2024跨境電子商務(wù)平臺搭建與運營服務(wù)合同
- 職業(yè)學(xué)生退宿申請表
- 2024年簡化版勞務(wù)協(xié)議格式
- 福建省南平市吳屯中學(xué)2021年高二化學(xué)上學(xué)期期末試卷含解析
- 2024年中國社會科學(xué)院外國文學(xué)研究所專業(yè)技術(shù)人員招聘3人歷年高頻難、易錯點500題模擬試題附帶答案詳解
- DFMEA-第五版標(biāo)準(zhǔn)表格
- 2024年軟件資格考試信息系統(tǒng)運行管理員(初級)(基礎(chǔ)知識、應(yīng)用技術(shù))合卷試卷及解答參考
- 第8課《列夫-托爾斯泰》公開課一等獎創(chuàng)新教學(xué)設(shè)計
- 職業(yè)咖啡比賽方案策劃書
- 人教版2024-2025學(xué)年七年級數(shù)學(xué)上冊計算題專項訓(xùn)專題09運用運算律簡便運算(計算題專項訓(xùn)練)(學(xué)生版+解析)
- 2023年二輪復(fù)習(xí)解答題專題十七:二次函數(shù)的應(yīng)用(銷售利潤問題)(原卷版+解析)
- 《ISO56001-2024創(chuàng)新管理體系 - 要求》之26:“9績效評價-9.3管理評審”解讀和應(yīng)用指導(dǎo)材料(雷澤佳編制-2024)
- GB 26134-2024乘用車頂部抗壓強(qiáng)度
- 2024年高中生物新教材同步必修第二冊學(xué)習(xí)筆記第3章 本章知識網(wǎng)絡(luò)
- 三年級上冊乘法豎式計算練習(xí)200道及答案
評論
0/150
提交評論