版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
陜西省西安市西安中學(xué)2025屆數(shù)學(xué)高二上期末統(tǒng)考試題請(qǐng)考生注意:1.請(qǐng)用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請(qǐng)用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應(yīng)的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認(rèn)真閱讀答題紙上的《注意事項(xiàng)》,按規(guī)定答題。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.雙曲線的焦點(diǎn)到漸近線的距離為()A. B.2C. D.2.過原點(diǎn)O作兩條相互垂直的直線分別與橢圓交于A、C與B、D,則四邊形ABCD面積最小值為()A. B.C. D.3.若拋物線的焦點(diǎn)與橢圓的下焦點(diǎn)重合,則m的值為()A.4 B.2C. D.4.已知?jiǎng)訄AM與直線y=2相切,且與定圓C:外切,求動(dòng)圓圓心M的軌跡方程A. B.C. D.5.?dāng)?shù)學(xué)家歐拉1765年在其所著的《三角形幾何學(xué)》一書中提出:任意三角形的外心、重心、垂心在同一條直線上,后人稱這條直線為歐拉線.已知△ABC的頂點(diǎn)分別為,,,則△ABC的歐拉線方程為()A. B.C. D.6.已知等比數(shù)列滿足,則q=()A.1 B.-1C.3 D.-37.過橢圓右焦點(diǎn)作x軸的垂線,并交C于A,B兩點(diǎn),直線l過C的左焦點(diǎn)和上頂點(diǎn).若以線段AB為直徑的圓與有2個(gè)公共點(diǎn),則C的離心率e的取值范圍是()A. B.C. D.8.原點(diǎn)到直線的距離的最大值為()A. B.C. D.9.已知圓錐的表面積為,且它的側(cè)面展開圖是一個(gè)半圓,則這個(gè)圓錐的體積為()A. B.C. D.10.下面四個(gè)說法中,正確說法的個(gè)數(shù)為()(1)如果兩個(gè)平面有三個(gè)公共點(diǎn),那么這兩個(gè)平面重合;(2)兩條直線可以確定一個(gè)平面;(3)若,,,則;(4)空間中,兩兩相交的三條直線在同一平面內(nèi).A.1 B.2C.3 D.411.在正項(xiàng)等比數(shù)列中,和為方程的兩根,則等于()A.8 B.10C.16 D.3212.若是函數(shù)的極值點(diǎn),則函數(shù)()A.有最小值,無最大值 B.有最大值,無最小值C.有最小值,最大值 D.無最大值,無最小值二、填空題:本題共4小題,每小題5分,共20分。13.已知是雙曲線上的一點(diǎn),是上的兩個(gè)焦點(diǎn),若,則的取值范圍是_______________14.已知數(shù)列是等差數(shù)列,若,則___________.15.已知空間向量,,若,則______.16.?dāng)?shù)學(xué)中有許多形狀優(yōu)美、寓意美好的曲線,曲線就是其中之一(如圖),給出下列三個(gè)結(jié)論:①曲線C恰好經(jīng)過6個(gè)整點(diǎn)(即橫、縱坐標(biāo)均為整數(shù)的點(diǎn));②曲線C上任意一點(diǎn)到原點(diǎn)的距離都不超過;③曲線C所圍成的“心形”區(qū)域的面積小于3;其中,所有正確結(jié)論的序號(hào)是________三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)如圖,點(diǎn)是曲線上的動(dòng)點(diǎn)(點(diǎn)在軸左側(cè)),以點(diǎn)為頂點(diǎn)作等腰梯形,使點(diǎn)在此曲線上,點(diǎn)在軸上.設(shè),等腰梯的面積為.(1)寫出函數(shù)的解析式,并求出函數(shù)的定義域;(2)當(dāng)為何值時(shí),等腰梯形的面積最大?求出最大面積.18.(12分)已知直線和的交點(diǎn)為P,求:(1)過點(diǎn)P且與直線垂直的直線l的方程;(2)以點(diǎn)P為圓心,且與直線相交所得弦長為12的圓的方程;(3)從下面①②兩個(gè)問題中選一個(gè)作答,①若直線l過點(diǎn),且與兩坐標(biāo)軸的正半軸所圍成的三角形面積為,求直線l的方程②求圓心在直線上,與x軸相切,被直線截得的弦長的圓的方程注:如果選擇兩個(gè)問題分別作答,按第一個(gè)計(jì)分19.(12分)設(shè)函數(shù).(1)當(dāng)k=1時(shí),求函數(shù)的單調(diào)區(qū)間;(2)當(dāng)時(shí),求函數(shù)在上的最小值m和最大值M.20.(12分)已知拋物線的焦點(diǎn)為,經(jīng)過點(diǎn)的直線與拋物線交于兩點(diǎn),其中點(diǎn)A在第一象限;(1)若直線的斜率為,求的值;(2)求線段的長度的最小值21.(12分)已知等差數(shù)列滿足(1)求的通項(xiàng)公式;(2)設(shè),求數(shù)列的前n項(xiàng)和22.(10分)已知p:方程所表示的曲線為焦點(diǎn)在x軸上的橢圓;q:當(dāng)時(shí),函數(shù)恒成立.(1)若p為真,求實(shí)數(shù)t的取值范圍;(2)若為假命題,且為真命題,求實(shí)數(shù)t的取值范圍
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、A【解析】根據(jù)點(diǎn)到直線距離公式進(jìn)行求解即可.【詳解】由雙曲線的標(biāo)準(zhǔn)方程可知:,該雙曲線的焦點(diǎn)坐標(biāo)為:,雙曲線的漸近線方程為:,所以焦點(diǎn)到漸近線的距離為:,故選:A2、A【解析】直線AC、BD與坐標(biāo)軸重合時(shí)求出四邊形面積,與坐標(biāo)軸不重合求出四邊形ABCD面積最小值,再比較大小即可作答.【詳解】因四邊形ABCD的兩條對(duì)角線互相垂直,由橢圓性質(zhì)知,四邊形ABCD的四個(gè)頂點(diǎn)為橢圓頂點(diǎn)時(shí),而,四邊形ABCD的面積,當(dāng)直線AC斜率存在且不0時(shí),設(shè)其方程為,由消去y得:,設(shè),則,,直線BD方程為,同理得:,則有,當(dāng)且僅當(dāng),即或時(shí)取“=”,而,所以四邊形ABCD面積最小值為.故選:A3、D【解析】求出橢圓的下焦點(diǎn),即拋物線的焦點(diǎn),即可得解.【詳解】解:橢圓的下焦點(diǎn)為,即為拋物線焦點(diǎn),∴,∴.故選:D.4、D【解析】由題意動(dòng)圓M與直線y=2相切,且與定圓C:外切∴動(dòng)點(diǎn)M到C(0,-3)的距離與到直線y=3的距離相等由拋物線的定義知,點(diǎn)M的軌跡是以C(0,-3)為焦點(diǎn),直線y=3為準(zhǔn)線的拋物線故所求M的軌跡方程為考點(diǎn):軌跡方程5、A【解析】求出重心坐標(biāo),求出AB邊上高和AC邊上高所在直線方程,聯(lián)立兩直線可得垂心坐標(biāo),即可求出歐拉線方程.【詳解】由題可知,△ABC的重心為,可得直線AB的斜率為,則AB邊上高所在的直線斜率為,則方程為,直線AC的斜率為,則AC邊上高所在的直線斜率為2,則方程為,聯(lián)立方程可得△ABC的垂心為,則直線GH斜率為,則可得直線GH方程為,故△ABC的歐拉線方程為.故選:A.6、C【解析】根據(jù)已知條件,利用等比數(shù)列的基本量列出方程,即可求得結(jié)果.【詳解】因?yàn)椋士傻?;解?故選:C.7、A【解析】求得以為直徑的圓的圓心和半徑,求得直線的方程,利用圓心到直線的距離小于半徑列不等式,化簡(jiǎn)后求得橢圓離心率的取值范圍.【詳解】橢圓的左焦點(diǎn),右焦點(diǎn),上頂點(diǎn),,所以為直徑的圓的圓心為,半徑為.直線的方程為,由于以線段為直徑的圓與相交,所以,,,,,所以橢圓的離心率的取值范圍是.故選:A8、C【解析】求出直線過的定點(diǎn),當(dāng)時(shí),原點(diǎn)到直線距離最大,則可求出原點(diǎn)到直線距離的最大值;【詳解】因?yàn)榭苫癁?,所以直線過直線與直線交點(diǎn),聯(lián)立可得所以直線過定點(diǎn),當(dāng)時(shí),原點(diǎn)到直線距離最大,最大距離即為,此時(shí)最大值為,故選:C.9、D【解析】設(shè)圓錐的半徑為,母線長,根據(jù)已知條件求出、的值,可求得該圓錐的高,利用錐體的體積公式可求得結(jié)果.【詳解】設(shè)圓錐的半徑為,母線長,因?yàn)閭?cè)面展開圖是一個(gè)半圓,則,即,又圓錐的表面積為,則,解得,,則圓錐的高,所以圓錐的體積,故選:D.10、A【解析】如果兩個(gè)平面有三個(gè)公共點(diǎn),那么這兩個(gè)平面重合或者是相交,即可判斷;利用兩條異面直線不能確定一個(gè)平面即可判斷;利用平面的基本性質(zhì)中的公理判斷即可;若兩兩相交的三條直線相交于同一點(diǎn),則相交于同一點(diǎn)的三直線不一定在同一平面內(nèi)(如棱錐的3條側(cè)棱),即可判斷.【詳解】如果兩個(gè)平面有三個(gè)公共點(diǎn),那么這兩個(gè)平面重合或者是相交,故(1)不正確;兩條異面直線不能確定一個(gè)平面,故(2)不正確;利用平面的基本性質(zhì)中的公理判斷(3)正確;空間中,若兩兩相交的三條直線相交于同一點(diǎn),則相交于同一點(diǎn)的三直線不一定在同一平面內(nèi)(如棱錐的3條側(cè)棱),故(4)不正確,綜上所述只有一個(gè)說法是正確的,故選:A【點(diǎn)睛】本題主要考查了空間中點(diǎn),線,面的位置關(guān)系.屬于較易題.11、C【解析】根據(jù)和為方程兩根,得到,然后再利用等比數(shù)列的性質(zhì)求解.【詳解】因?yàn)楹蜑榉匠痰膬筛?,所以,又因?yàn)閿?shù)列是等比數(shù)列,所以,故選:C12、A【解析】對(duì)求導(dǎo),根據(jù)極值點(diǎn)求參數(shù)a,再由導(dǎo)數(shù)研究其單調(diào)性并判斷其最值情況.【詳解】由題設(shè),且,∴,可得.∴且,當(dāng)時(shí),遞減;當(dāng)時(shí),遞增;∴有極小值,無極大值.綜上,有最小值,無最大值.故選:A二、填空題:本題共4小題,每小題5分,共20分。13、【解析】由題意,,.故答案為.14、8【解析】利用計(jì)算可得答案.【詳解】設(shè)等差數(shù)列的公差為,故答案為:8.15、2【解析】依據(jù)向量垂直充要條件列方程,解之即可解決.【詳解】空間向量,,由,可知,即,解之得故答案為:216、①②【解析】先根據(jù)圖像的對(duì)稱性找出整點(diǎn),再判斷是否還有其他的整點(diǎn)在曲線上;找出曲線上離原點(diǎn)距離最大的點(diǎn)的區(qū)域,再由基本不等式得到最大值不超過;在心形區(qū)域內(nèi)找到一個(gè)內(nèi)接多邊形,該多邊形的面積等于3,從而判斷出“心形”區(qū)域的面積大于3.【詳解】①:由于曲線,當(dāng)時(shí),;當(dāng)時(shí),;當(dāng)時(shí),;由于圖形的對(duì)稱性可知,沒有其他的整點(diǎn)在曲線上,故曲線恰好經(jīng)過6個(gè)整點(diǎn):,,,,,,所以①正確;②:由圖知,到原點(diǎn)距離的最大值是在時(shí),由基本不等式,當(dāng)時(shí),,所以即,所以②正確;③:由①知長方形CDFE的面積為2,三角形BCE的面積為1,所以曲線C所圍成的“心形”區(qū)域的面積大于3,故③錯(cuò)誤;故答案為:①②.【點(diǎn)睛】找準(zhǔn)圖形的關(guān)鍵信息,比如對(duì)稱性,整點(diǎn),內(nèi)接多邊形是解決本題的關(guān)鍵.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1);(2)當(dāng)時(shí)取到最大值,【解析】(1)設(shè)點(diǎn),則根據(jù)題意得,,故;(2)令,研究函數(shù)的單調(diào)性,進(jìn)而得的最值,進(jìn)而得的最大值.【詳解】解:(1)根據(jù)題意,設(shè)點(diǎn),由是曲線上的動(dòng)點(diǎn)得:,由于橢圓與軸交點(diǎn)為,故,所以即:(2)結(jié)合(1),對(duì)兩邊平方得:,令,則,所以當(dāng)時(shí),,當(dāng)時(shí),,所以在區(qū)間單調(diào)遞增,在上單調(diào)遞減,所以在處取到最大值,,所以當(dāng)時(shí),取到最大值,.【點(diǎn)睛】本題考查利用導(dǎo)數(shù)研究實(shí)際問題,考查數(shù)學(xué)應(yīng)用能力與計(jì)算能力,是中檔題.18、(1)(2)(3)答案見解析【解析】(1)聯(lián)立方程組求得交點(diǎn)的坐標(biāo),結(jié)合直線與直線垂直,求得直線的斜率為,利用直線的點(diǎn)斜式,即可求解;(2)先求得點(diǎn)到直線的距離為,由圓的的垂徑定理列出方程求得圓的半徑,即可求解;(3)若選①:設(shè)直線l的的斜率為,得到,結(jié)合題意列出方程,求得的值,即可求解;若選②,設(shè)所求圓的圓心為,半徑為,得到,利用圓的垂徑定理列出方程求得的值,即可求解.【小問1詳解】解:由直線和的交點(diǎn)為P,聯(lián)立方程組,解得,即,因?yàn)橹本€與直線垂直,所以直線的斜率為,所以過點(diǎn)且與直線垂直的直線方程為,即.【小問2詳解】解:因?yàn)辄c(diǎn)到直線的距離為,設(shè)所求圓的半徑為,由圓的的垂徑定理得,弦長,解得,所以所求圓的方程為.【小問3詳解】解:若選①:直線l過點(diǎn),且與兩坐標(biāo)軸的正半軸所圍成的三角形面積為,設(shè)直線l的的斜率為,可得直線的方程為,即,則直線與坐標(biāo)軸的交點(diǎn)分別為,由,解得或,所以所求直線的方程為或.若選②,設(shè)所求圓的圓心為,半徑為,因?yàn)閳A與x軸相切,可得,又由圓心到直線的距離為,利用圓的垂徑定理可得,即,解得,即圓心坐標(biāo)為或,所以所求圓的方程為或.19、(1)增區(qū)間為(2),【解析】(1)求導(dǎo),由判別式可判斷導(dǎo)數(shù)符號(hào),然后可得;(2)求導(dǎo),求導(dǎo)數(shù)零點(diǎn),比較函數(shù)極值和端點(diǎn)函數(shù)值,結(jié)合單調(diào)性可得.【小問1詳解】因?yàn)?,所以,,因?yàn)?,所以恒成立所以的增區(qū)間為.【小問2詳解】當(dāng)時(shí),,令,解得,當(dāng)時(shí),,當(dāng)時(shí),,當(dāng)時(shí),所以,函數(shù)在上單調(diào)遞增,在上單調(diào)遞減,在上單調(diào)遞增.因?yàn)?,所以在區(qū)間上的最大值,最小值為20、(1)3;(2)12.【解析】(1)聯(lián)立直線l與拋物線C的方程,求出A和B的橫坐標(biāo)即可得AFBF(2)設(shè)直線l方程為,與拋物線C方程聯(lián)立,求出線段AB長度求其最小值即可.【小問1詳解】設(shè),拋物線的焦點(diǎn)為,直線l經(jīng)過點(diǎn)F且斜率,直線l的方程為,將直線l方程與拋物線消去y可得,點(diǎn)A是第一象限內(nèi)的交點(diǎn),解方程得,∴.【小問2詳解】設(shè),由題知直線l斜率不為0,故設(shè)直線l的方程為:,代入拋物線C的方程化簡(jiǎn)得,,∵>0,∴,∴,當(dāng)且僅當(dāng)m=0時(shí)取等號(hào),∴AB長度最小值為12.21、(1)(2)【解析】(1)設(shè)等差數(shù)列的公差為d,由題意得列出方程組,可求得的值,代入公式,即可得答案.(2)由(1)可得,利用等比數(shù)列的定義,可證數(shù)列為等比數(shù)列,結(jié)合前n項(xiàng)和公式,即可得答案.【小問1詳解】設(shè)等差數(shù)列的公差為d,由題意得,解得,
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年度大理石石材行業(yè)知識(shí)產(chǎn)權(quán)保護(hù)合同12篇
- 2024年高風(fēng)險(xiǎn)項(xiàng)目利息支付借款協(xié)議3篇
- 2024蔬菜種子研發(fā)與推廣合作協(xié)議范本3篇
- 2024版維修改造施工合同
- 二零二五年度高壓開關(guān)設(shè)備采購及調(diào)試合同
- 二零二五年電力公司運(yùn)維檢修人員勞動(dòng)合同范本3篇
- 2025年度核電站設(shè)備安裝施工合同協(xié)議3篇
- 二零二五年度醫(yī)療設(shè)備租賃與維修一體化服務(wù)合同3篇
- 2025年度新型電子商務(wù)平臺(tái)安全協(xié)議應(yīng)用指南合同3篇
- 2024聘用至退休合同續(xù)簽書:醫(yī)療行業(yè)專家續(xù)聘6篇
- 第二章 運(yùn)營管理戰(zhàn)略
- 《三本白皮書》全文內(nèi)容及應(yīng)知應(yīng)會(huì)知識(shí)點(diǎn)
- 專題14 思想方法專題:線段與角計(jì)算中的思想方法壓軸題四種模型全攻略(解析版)
- 醫(yī)院外來器械及植入物管理制度(4篇)
- 圖像識(shí)別領(lǐng)域自適應(yīng)技術(shù)-洞察分析
- 港口與港口工程概論
- 《念珠菌感染的治療》課件
- 門店裝修設(shè)計(jì)手冊(cè)
- 新概念英語第二冊(cè)考評(píng)試卷含答案(第49-56課)
- 商業(yè)倫理與企業(yè)社會(huì)責(zé)任(山東財(cái)經(jīng)大學(xué))智慧樹知到期末考試答案章節(jié)答案2024年山東財(cái)經(jīng)大學(xué)
- 【奧運(yùn)會(huì)獎(jiǎng)牌榜預(yù)測(cè)建模實(shí)證探析12000字(論文)】
評(píng)論
0/150
提交評(píng)論