版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
2022-2023學(xué)年山東省肥城市泰西中學(xué)高三入學(xué)調(diào)研數(shù)學(xué)試題(2)試卷請(qǐng)考生注意:1.請(qǐng)用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請(qǐng)用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫(xiě)在答題紙相應(yīng)的答題區(qū)內(nèi)。寫(xiě)在試題卷、草稿紙上均無(wú)效。2.答題前,認(rèn)真閱讀答題紙上的《注意事項(xiàng)》,按規(guī)定答題。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.某幾何體的三視圖如圖所示(單位:cm),則該幾何體的表面積是()A. B. C. D.2.函數(shù)在上的圖象大致為()A. B.C. D.3.如圖,在四邊形中,,,,,,則的長(zhǎng)度為()A. B.C. D.4.已知函數(shù),,若總有恒成立.記的最小值為,則的最大值為()A.1 B. C. D.5.函數(shù)的圖像大致為().A. B.C. D.6.下列命題為真命題的個(gè)數(shù)是()(其中,為無(wú)理數(shù))①;②;③.A.0 B.1 C.2 D.37.設(shè)點(diǎn),P為曲線上動(dòng)點(diǎn),若點(diǎn)A,P間距離的最小值為,則實(shí)數(shù)t的值為()A. B. C. D.8.設(shè)正項(xiàng)等差數(shù)列的前項(xiàng)和為,且滿足,則的最小值為A.8 B.16 C.24 D.369.若數(shù)列滿足且,則使的的值為()A. B. C. D.10.已知復(fù)數(shù)為虛數(shù)單位),則z的虛部為()A.2 B. C.4 D.11.已知非零向量,滿足,,則與的夾角為()A. B. C. D.12.若的展開(kāi)式中含有常數(shù)項(xiàng),且的最小值為,則()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知拋物線的焦點(diǎn)為,過(guò)點(diǎn)且斜率為1的直線與拋物線交于點(diǎn),以線段為直徑的圓上存在點(diǎn),使得以為直徑的圓過(guò)點(diǎn),則實(shí)數(shù)的取值范圍為_(kāi)_______.14.已知下列命題:①命題“?x0∈R,”的否定是“?x∈R,x2+1<3x”;②已知p,q為兩個(gè)命題,若“p∨q”為假命題,則“”為真命題;③“a>2”是“a>5”的充分不必要條件;④“若xy=0,則x=0且y=0”的逆否命題為真命題.其中所有真命題的序號(hào)是________.15.已知實(shí)數(shù),滿足約束條件,則的最大值是__________.16.六位同學(xué)坐在一排,現(xiàn)讓六位同學(xué)重新坐,恰有兩位同學(xué)坐自己原來(lái)的位置,則不同的坐法有________種(用數(shù)字回答).三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)如圖所示,在四棱錐中,∥,,點(diǎn)分別為的中點(diǎn).(1)證明:∥面;(2)若,且,面面,求二面角的余弦值.18.(12分)數(shù)列滿足.(1)求數(shù)列的通項(xiàng)公式;(2)設(shè),為的前n項(xiàng)和,求證:.19.(12分)在中,角、、所對(duì)的邊分別為、、,角、、的度數(shù)成等差數(shù)列,.(1)若,求的值;(2)求的最大值.20.(12分)若,且(1)求的最小值;(2)是否存在,使得?并說(shuō)明理由.21.(12分)在直角坐標(biāo)系中,以坐標(biāo)原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為,曲線的極坐標(biāo)方程為.(1)求曲線的直角坐標(biāo)方程和曲線的參數(shù)方程;(2)設(shè)曲線與曲線在第二象限的交點(diǎn)為,曲線與軸的交點(diǎn)為,點(diǎn),求的周長(zhǎng)的最大值.22.(10分)已知函數(shù).(1)求證:當(dāng)時(shí),;(2)若對(duì)任意存在和使成立,求實(shí)數(shù)的最小值.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.D【解析】
根據(jù)三視圖判斷出幾何體為正四棱錐,由此計(jì)算出幾何體的表面積.【詳解】根據(jù)三視圖可知,該幾何體為正四棱錐.底面積為.側(cè)面的高為,所以側(cè)面積為.所以該幾何體的表面積是.故選:D【點(diǎn)睛】本小題主要考查由三視圖判斷原圖,考查錐體表面積的計(jì)算,屬于基礎(chǔ)題.2.A【解析】
首先判斷函數(shù)的奇偶性,再根據(jù)特殊值即可利用排除法解得;【詳解】解:依題意,,故函數(shù)為偶函數(shù),圖象關(guān)于軸對(duì)稱,排除C;而,排除B;,排除D.故選:.【點(diǎn)睛】本題考查函數(shù)圖象的識(shí)別,函數(shù)的奇偶性的應(yīng)用,屬于基礎(chǔ)題.3.D【解析】
設(shè),在中,由余弦定理得,從而求得,再由由正弦定理得,求得,然后在中,用余弦定理求解.【詳解】設(shè),在中,由余弦定理得,則,從而,由正弦定理得,即,從而,在中,由余弦定理得:,則.故選:D【點(diǎn)睛】本題主要考查正弦定理和余弦定理的應(yīng)用,還考查了數(shù)形結(jié)合的思想和運(yùn)算求解的能力,屬于中檔題.4.C【解析】
根據(jù)總有恒成立可構(gòu)造函數(shù),求導(dǎo)后分情況討論的最大值可得最大值最大值,即.根據(jù)題意化簡(jiǎn)可得,求得,再換元求導(dǎo)分析最大值即可.【詳解】由題,總有即恒成立.設(shè),則的最大值小于等于0.又,若則,在上單調(diào)遞增,無(wú)最大值.若,則當(dāng)時(shí),,在上單調(diào)遞減,當(dāng)時(shí),,在上單調(diào)遞增.故在處取得最大值.故,化簡(jiǎn)得.故,令,可令,故,當(dāng)時(shí),,在遞減;當(dāng)時(shí),,在遞增.故在處取得極大值,為.故的最大值為.故選:C【點(diǎn)睛】本題主要考查了根據(jù)導(dǎo)數(shù)求解函數(shù)的最值問(wèn)題,需要根據(jù)題意分析導(dǎo)數(shù)中參數(shù)的范圍,再分析函數(shù)的最值,進(jìn)而求導(dǎo)構(gòu)造函數(shù)求解的最大值.屬于難題.5.A【解析】
本題采用排除法:由排除選項(xiàng)D;根據(jù)特殊值排除選項(xiàng)C;由,且無(wú)限接近于0時(shí),排除選項(xiàng)B;【詳解】對(duì)于選項(xiàng)D:由題意可得,令函數(shù),則,;即.故選項(xiàng)D排除;對(duì)于選項(xiàng)C:因?yàn)?故選項(xiàng)C排除;對(duì)于選項(xiàng)B:當(dāng),且無(wú)限接近于0時(shí),接近于,,此時(shí).故選項(xiàng)B排除;故選項(xiàng):A【點(diǎn)睛】本題考查函數(shù)解析式較復(fù)雜的圖象的判斷;利用函數(shù)奇偶性、特殊值符號(hào)的正負(fù)等有關(guān)性質(zhì)進(jìn)行逐一排除是解題的關(guān)鍵;屬于中檔題.6.C【解析】
對(duì)于①中,根據(jù)指數(shù)冪的運(yùn)算性質(zhì)和不等式的性質(zhì),可判定值正確的;對(duì)于②中,構(gòu)造新函數(shù),利用導(dǎo)數(shù)得到函數(shù)為單調(diào)遞增函數(shù),進(jìn)而得到,即可判定是錯(cuò)誤的;對(duì)于③中,構(gòu)造新函數(shù),利用導(dǎo)數(shù)求得函數(shù)的最大值為,進(jìn)而得到,即可判定是正確的.【詳解】由題意,對(duì)于①中,由,可得,根據(jù)不等式的性質(zhì),可得成立,所以是正確的;對(duì)于②中,設(shè)函數(shù),則,所以函數(shù)為單調(diào)遞增函數(shù),因?yàn)椋瑒t又由,所以,即,所以②不正確;對(duì)于③中,設(shè)函數(shù),則,當(dāng)時(shí),,函數(shù)單調(diào)遞增,當(dāng)時(shí),,函數(shù)單調(diào)遞減,所以當(dāng)時(shí),函數(shù)取得最大值,最大值為,所以,即,即,所以是正確的.故選:C.【點(diǎn)睛】本題主要考查了不等式的性質(zhì),以及導(dǎo)數(shù)在函數(shù)中的綜合應(yīng)用,其中解答中根據(jù)題意,合理構(gòu)造新函數(shù),利用導(dǎo)數(shù)求得函數(shù)的單調(diào)性和最值是解答的關(guān)鍵,著重考查了構(gòu)造思想,以及推理與運(yùn)算能力,屬于中檔試題.7.C【解析】
設(shè),求,作為的函數(shù),其最小值是6,利用導(dǎo)數(shù)知識(shí)求的最小值.【詳解】設(shè),則,記,,易知是增函數(shù),且的值域是,∴的唯一解,且時(shí),,時(shí),,即,由題意,而,,∴,解得,.∴.故選:C.【點(diǎn)睛】本題考查導(dǎo)數(shù)的應(yīng)用,考查用導(dǎo)數(shù)求最值.解題時(shí)對(duì)和的關(guān)系的處理是解題關(guān)鍵.8.B【解析】
方法一:由題意得,根據(jù)等差數(shù)列的性質(zhì),得成等差數(shù)列,設(shè),則,,則,當(dāng)且僅當(dāng)時(shí)等號(hào)成立,從而的最小值為16,故選B.方法二:設(shè)正項(xiàng)等差數(shù)列的公差為d,由等差數(shù)列的前項(xiàng)和公式及,化簡(jiǎn)可得,即,則,當(dāng)且僅當(dāng),即時(shí)等號(hào)成立,從而的最小值為16,故選B.9.C【解析】因?yàn)?,所以是等差?shù)列,且公差,則,所以由題設(shè)可得,則,應(yīng)選答案C.10.A【解析】
對(duì)復(fù)數(shù)進(jìn)行乘法運(yùn)算,并計(jì)算得到,從而得到虛部為2.【詳解】因?yàn)?,所以z的虛部為2.【點(diǎn)睛】本題考查復(fù)數(shù)的四則運(yùn)算及虛部的概念,計(jì)算過(guò)程要注意.11.B【解析】
由平面向量垂直的數(shù)量積關(guān)系化簡(jiǎn),即可由平面向量數(shù)量積定義求得與的夾角.【詳解】根據(jù)平面向量數(shù)量積的垂直關(guān)系可得,,所以,即,由平面向量數(shù)量積定義可得,所以,而,即與的夾角為.故選:B【點(diǎn)睛】本題考查了平面向量數(shù)量積的運(yùn)算,平面向量夾角的求法,屬于基礎(chǔ)題.12.C【解析】展開(kāi)式的通項(xiàng)為,因?yàn)檎归_(kāi)式中含有常數(shù)項(xiàng),所以,即為整數(shù),故n的最小值為1.所以.故選C點(diǎn)睛:求二項(xiàng)展開(kāi)式有關(guān)問(wèn)題的常見(jiàn)類(lèi)型及解題策略(1)求展開(kāi)式中的特定項(xiàng).可依據(jù)條件寫(xiě)出第項(xiàng),再由特定項(xiàng)的特點(diǎn)求出值即可.(2)已知展開(kāi)式的某項(xiàng),求特定項(xiàng)的系數(shù).可由某項(xiàng)得出參數(shù)項(xiàng),再由通項(xiàng)寫(xiě)出第項(xiàng),由特定項(xiàng)得出值,最后求出其參數(shù).二、填空題:本題共4小題,每小題5分,共20分。13.【解析】
由題意求出以線段AB為直徑的圓E的方程,且點(diǎn)D恒在圓E外,即圓E上存在點(diǎn),使得,則當(dāng)與圓E相切時(shí),此時(shí),由此列出不等式,即可求解?!驹斀狻坑深}意可得,直線的方程為,聯(lián)立方程組,可得,設(shè),則,,設(shè),則,,又,所以圓是以為圓心,4為半徑的圓,所以點(diǎn)恒在圓外.圓上存在點(diǎn),使得以為直徑的圓過(guò)點(diǎn),即圓上存在點(diǎn),使得,設(shè)過(guò)點(diǎn)的兩直線分別切圓于點(diǎn),要滿足題意,則,所以,整理得,解得,故實(shí)數(shù)的取值范圍為【點(diǎn)睛】本題主要考查了直線與拋物線位置關(guān)系的應(yīng)用,以及直線與圓的位置關(guān)系的應(yīng)用,其中解答中準(zhǔn)確求得圓E的方程,把圓上存在點(diǎn),使得以為直徑的圓過(guò)點(diǎn),轉(zhuǎn)化為圓上存在點(diǎn),使得是解答的關(guān)鍵,著重考查了分析問(wèn)題和解答問(wèn)題的能力,屬于中檔試題。14.②【解析】命題“?x∈R,x2+1>3x”的否定是“?x∈R,x2+1≤3x”,故①錯(cuò)誤;“p∨q”為假命題說(shuō)明p假q假,則(p)∧(q)為真命題,故②正確;a>5?a>2,但a>2?/a>5,故“a>2”是“a>5”的必要不充分條件,故③錯(cuò)誤;因?yàn)椤叭魓y=0,則x=0或y=0”,所以原命題為假命題,故其逆否命題也為假命題,故④錯(cuò)誤.15.【解析】
令,所求問(wèn)題的最大值為,只需求出即可,作出可行域,利用幾何意義即可解決.【詳解】作出可行域,如圖令,則,顯然當(dāng)直線經(jīng)過(guò)時(shí),最大,且,故的最大值為.故答案為:.【點(diǎn)睛】本題考查線性規(guī)劃中非線性目標(biāo)函數(shù)的最值問(wèn)題,要做好此類(lèi)題,前提是正確畫(huà)出可行域,本題是一道基礎(chǔ)題.16.135【解析】
根據(jù)題意先確定2個(gè)人位置不變,共有種選擇,再確定4個(gè)人坐4個(gè)位置,但是不能坐原來(lái)的位置,計(jì)算得到答案.【詳解】根據(jù)題意先確定2個(gè)人位置不變,共有種選擇.再確定4個(gè)人坐4個(gè)位置,但是不能坐原來(lái)的位置,共有種選擇,故不同的坐法有.故答案為:.【點(diǎn)睛】本題考查了分步乘法原理,意在考查學(xué)生的計(jì)算能力和應(yīng)用能力.三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17.(1)證明見(jiàn)解析(2)【解析】
(1)根據(jù)題意,連接交于,連接,利用三角形全等得,進(jìn)而可得結(jié)論;(2)建立空間直角坐標(biāo)系,利用向量求得平面的法向量,進(jìn)而可得二面角的余弦值.【詳解】(1)證明:連接交于,連接,,≌,且,面面,面,(2)取中點(diǎn),連,.由,面面面,又由,以分別為軸建立如圖所示空間直角坐標(biāo)系,設(shè),則,,,,,,為面的一個(gè)法向量,設(shè)面的法向量為,依題意,即,令,解得,所以,平面的法向量,,又因二面角為銳角,故二面角的余弦值為.【點(diǎn)睛】本題考查直線與平面平行的證明,考查二面角的余弦值的求法,解題時(shí)要認(rèn)真審題,注意中位線和向量法的合理運(yùn)用,屬于基礎(chǔ)題.18.(1)(2)證明見(jiàn)解析【解析】
(1)利用與的關(guān)系即可求解.(2)利用裂項(xiàng)求和法即可求解.【詳解】解析:(1)當(dāng)時(shí),;當(dāng),,可得,又∵當(dāng)時(shí)也成立,;(2),【點(diǎn)睛】本題主要考查了與的關(guān)系、裂項(xiàng)求和法,屬于基礎(chǔ)題.19.(1);(2).【解析】
(1)由角的度數(shù)成等差數(shù)列,得.又.由正弦定理,得,即.由余弦定理,得,即,解得.(2)由正弦定理,得.由,得.所以當(dāng),即時(shí),.【方法點(diǎn)睛】解三角形問(wèn)題基本思想方法:從條件出發(fā),利用正弦定理(或余弦定理)進(jìn)行代換、轉(zhuǎn)化.逐步化為純粹的邊與邊或角與角的關(guān)系,即考慮如下兩條途徑:①統(tǒng)一成角進(jìn)行判斷,常用正弦定理及三角恒等變換;②統(tǒng)一成邊進(jìn)行判斷,常用余弦定理、面積公式等.20.(1);(2)不存在.【解析】
(1)由已知,利用基本不等式的和積轉(zhuǎn)化可求,利用基本不等式可將轉(zhuǎn)化為,由不等式的傳遞性,可求的最小值;(2)由基本不等式可求的最小值為,而,故不存在.【詳解】(1)由,得,且當(dāng)時(shí)取等號(hào).故,且當(dāng)時(shí)取等號(hào).所以的最小值為;(2)由(1)知,.由于,從而不存在,使得成立.【考點(diǎn)定位】基本不等式.21.(1)曲線的直角坐標(biāo)方程為,曲線的參數(shù)方程為為參數(shù)(2)【解析】
(1)將代入,可得,所以曲線的直角坐標(biāo)方程為.由可得,將,代入上式,可得,整理可得,所以曲線的參數(shù)方程為為參數(shù).(2)由題可設(shè),,,所以,,,所以,因?yàn)?,所以,所以?dāng),即時(shí),l取得最大值為,所以的周長(zhǎng)的最大值為.22.(1)見(jiàn)解析;(2)【解析】
(1)不等式等價(jià)于,設(shè),利用導(dǎo)數(shù)可證恒成立,從而原不等式成立.(2)由題設(shè)條件可得在上有兩個(gè)不同零點(diǎn),且,利用導(dǎo)數(shù)討論的單調(diào)性后可得其最小值,結(jié)合前述的集合的包含關(guān)系可得的取值范圍.【詳解】(1)設(shè),則,當(dāng)時(shí),由,所以在上是減函數(shù),所以,故.因
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 樣本土地征用協(xié)議書(shū)示范
- 大學(xué)生畢業(yè)實(shí)習(xí)就業(yè)協(xié)議書(shū)模板
- 2024年商鋪房屋買(mǎi)賣(mài)合同范本
- 新型連鎖商品供貸合同書(shū)
- 建筑項(xiàng)目承包合同模版
- 產(chǎn)品責(zé)任保險(xiǎn)合同條款全新解讀
- 擋土墻工程設(shè)計(jì)施工總包合同
- 房屋建造安全協(xié)議
- 試用期勞動(dòng)合同維權(quán)寶典
- 快遞承包合同的格式與內(nèi)容
- 臨戰(zhàn)轉(zhuǎn)換措施
- 2020年滴滴出行行程報(bào)銷(xiāo)單
- GB/T 8888-2014重有色金屬加工產(chǎn)品的包裝、標(biāo)志、運(yùn)輸、貯存和質(zhì)量證明書(shū)
- 遠(yuǎn)離賭博賭博危害教育講座PPT模板(推薦)
- DB51T 2968-2022 經(jīng)濟(jì)開(kāi)發(fā)區(qū)安全風(fēng)險(xiǎn)評(píng)估導(dǎo)則
- 社會(huì)網(wǎng)絡(luò)分析課件
- 小學(xué)生學(xué)習(xí)興趣和習(xí)慣培養(yǎng)課件
- 保安公司客戶滿意度調(diào)查表
- 課間安全教育主題班會(huì)課件
- 民法典 婚姻家庭編課件
- 電氣工程及其自動(dòng)化專(zhuān)業(yè)人才需求調(diào)研報(bào)告(新)5100字
評(píng)論
0/150
提交評(píng)論