版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
學(xué)校________________班級____________姓名____________考場____________準(zhǔn)考證號學(xué)校________________班級____________姓名____________考場____________準(zhǔn)考證號…………密…………封…………線…………內(nèi)…………不…………要…………答…………題…………第1頁,共8頁廣東省佛山市六峰中學(xué)2024年九年級數(shù)學(xué)第一學(xué)期開學(xué)預(yù)測試題題號一二三四五總分得分批閱人A卷(100分)一、選擇題(本大題共8個小題,每小題4分,共32分,每小題均有四個選項,其中只有一項符合題目要求)1、(4分)如圖,在中,點、、分別在邊、、上,且,.下列說法中不正確的是()A.四邊形是平行四邊形B.如果,那么四邊形是矩形.C.如果平分,那么四邊形是正方形.D.如果且,那么四邊形是菱形.2、(4分)下列所給圖形中,既是中心對稱圖形又是軸對稱圖形的是()A. B. C. D.3、(4分)下列二次根式中,化簡后能與合并的是A. B. C. D.4、(4分)如圖,在菱形ABCD中,∠A=60°,E,F(xiàn)分別是AB,AD的中點,DE,BF相交于點G,連接BD,CG,有下列結(jié)論:①∠BGD=120°;②BG+DG=CG;③△BDF≌△CGB;④.其中正確的結(jié)論有()A.1個 B.2個 C.3個 D.4個5、(4分)使有意義的x的取值范圍是(▲)A.x>-1 B.x≥-1 C.x≠-1 D.x≤-16、(4分)如圖,在斜坡的頂部有一鐵塔AB,B是CD的中點,CD是水平的,在陽光的照射下,塔影DE留在坡面上.已知鐵塔底座寬CD=12m,塔影長DE=18m,小明和小華的身高都是1.6m,同一時刻,小明站在點E處,影子在坡面上,小華站在平地上,影子也在平地上,兩人的影長分別為2m和1m,那么塔高AB為()A.24m B.22m C.20m D.18m7、(4分)下列方程中是一元二次方程的是()A.x2﹣1=0 B.y=2x2+1 C.x+=0 D.x2+y2=18、(4分)在下列汽車標(biāo)志中,既是軸對稱圖形,又是中心對稱圖形的是()A. B. C. D.二、填空題(本大題共5個小題,每小題4分,共20分)9、(4分)飛機著陸后滑行的距離s(單位:米)關(guān)于滑行的時間t(單位:秒)的函數(shù)解析式是,則飛機著陸后滑行的最長時間為秒.10、(4分)如圖,把正方形紙片對折得到矩形ABCD,點E在BC上,把△ECD沿ED折疊,使點C恰好落在AD上點C′處,點M、N分別是線段AC′與線段BE上的點,把四邊形ABNM沿NM向下翻折,點A落在DE的中點A′處.若原正方形的邊長為12,則線段MN的長為_____.11、(4分)已知?ABCD的兩條對角線相交于O,若∠ABC=120°,AB=BC=4,則OD=______.12、(4分)已知直線與平行且經(jīng)過點,則的表達(dá)式是__________.13、(4分)如圖,在△ABC中,∠B=90°,∠A=30°,DE是斜邊AC的垂直平分線,分別交AB,AC于點D,E,若BC=2,則DE=___.三、解答題(本大題共5個小題,共48分)14、(12分)如圖,在菱形ABCD中,AB=2,∠DAB=60°,點E是AD邊的中點,點M是AB邊上的一個動點(不與點A重合),延長ME交CD的延長線于點N,連接MD,AN.(1)求證:四邊形AMDN是平行四邊形.(2)當(dāng)AM的值為何值時,四邊形AMDN是矩形,請說明理由.15、(8分)如圖,平行四邊形AEFG的頂點G在平行四邊形ABCD的邊CD上,平行四邊形ABCD的頂點B在平行四邊形AEFG的邊EF上.求證:□ABCD=□AEFG16、(8分)在平面直角坐標(biāo)系xOy中,對于兩點A,B,給出如下定義:以線段AB為邊的正方形稱為點A,B的“確定正方形”.如圖為點A,B的“確定正方形”的示意圖.(1)如果點M的坐標(biāo)為(0,1),點N的坐標(biāo)為(3,1),那么點M,N的“確定正方形”的面積為___________;(2)已知點O的坐標(biāo)為(0,0),點C為直線上一動點,當(dāng)點O,C的“確定正方形”的面積最小,且最小面積為2時,求b的值.(3)已知點E在以邊長為2的正方形的邊上,且該正方形的邊與兩坐標(biāo)軸平行,對角線交點為P(m,0),點F在直線上,若要使所有點E,F(xiàn)的“確定正方形”的面積都不小于2,直接寫出m的取值范圍.17、(10分)如圖,矩形中,是的中點,延長,交于點,連接,.(1)求證:四邊形是平行四邊形;(2)當(dāng)平分時,猜想與的數(shù)量關(guān)系,并證明你的結(jié)論.18、(10分)已知坐標(biāo)平面內(nèi)的三個點、、.(1)比較點到軸的距離與點到軸距離的大小;(2)平移至,當(dāng)點和點重合時,求點的坐標(biāo);(3)平移至,需要至少向下平移超過單位,并且至少向左平移個單位,才能使位于第三象限.B卷(50分)一、填空題(本大題共5個小題,每小題4分,共20分)19、(4分)A、B、C三瓶不同濃度的酒精,A瓶內(nèi)有酒精2kg,濃度x%,B瓶有酒精3kg,濃度y%,C瓶有酒精5kg,濃度z%,從A瓶中倒出10%,B瓶中倒出20%,C瓶中倒出24%,混合后測得濃度33.5%,將混合后的溶液倒回瓶中,使它們恢復(fù)原來的質(zhì)量,再從A瓶倒出30%,B瓶倒出30%,C瓶倒出30%,混合后測得濃度為31.5%,測量發(fā)現(xiàn)20≤x≤30,20≤y≤30,35≤z≤45,且x、y、z均為整數(shù),則把起初A、B兩瓶酒精全部混合后的濃度為______.20、(4分)已知P1(1,y1),P2(2,y2)是正比例函數(shù)的圖象上的兩點,則y1y2(填“>”或“<”或“=”).21、(4分)小明統(tǒng)計了家里3月份的電話通話清單,按通話時間畫出頻數(shù)分布直方圖(如圖所示),則通話時間不足10分鐘的通話次數(shù)的頻率是_____.22、(4分)二次函數(shù)y=ax2+bx+c的函數(shù)值y自變量x之間的部分對應(yīng)值如表:此函數(shù)圖象的對稱軸為_____.x……-1014……y……4-1-4-1……23、(4分)如圖,在□ABCD中,AB=10,AD=8,AC⊥BC.則□ABCD的面積是__________.二、解答題(本大題共3個小題,共30分)24、(8分)如圖,在矩形ABCD中,E是AD的中點,將△ABE沿BE折疊,點A的對應(yīng)點為點G.(1)填空:如圖1,當(dāng)點G恰好在BC邊上時,四邊形ABGE的形狀是___________形;(2)如圖2,當(dāng)點G在矩形ABCD內(nèi)部時,延長BG交DC邊于點F.求證:BF=AB+DF;若AD=AB,試探索線段DF與FC的數(shù)量關(guān)系.25、(10分)小明將一副三角板如圖所示擺放在一起,發(fā)現(xiàn)只要知道其中一邊的長就可以求出其他各邊的長.若已知CD=,求AB的長.26、(12分)如圖,若在△ABC的外部作正方形ABEF和正方形ACGH,求證:△ABC的高線AD平分線段FH
參考答案與詳細(xì)解析一、選擇題(本大題共8個小題,每小題4分,共32分,每小題均有四個選項,其中只有一項符合題目要求)1、C【解析】
根據(jù)特殊的平行四邊形的判定定理來作答.【詳解】解:由DE∥CA,DF∥BA,根據(jù)兩組對邊分別平行的四邊形是平行四邊形可得四邊形AEDF是平行四邊形;又有∠BAC=90°,根據(jù)有一角是直角的平行四邊形是矩形,可得四邊形AEDF是矩形.故A、B正確;如果AD平分∠BAC,那么∠EAD=∠FAD,又有DF∥BA,可得∠EAD=∠ADF,∴∠FAD=∠ADF,∴AF=FD,那么根據(jù)鄰邊相等的平行四邊形是菱形,可得四邊形AEDF是菱形,而不一定是矩形.故C錯誤;如果AD⊥BC且AB=AC,那么AD平分∠BAC,同上可得四邊形AEDF是菱形.故D正確.故選:C.本題考查平行四邊形、矩形及菱形的判定,具體選擇哪種方法需要根據(jù)已知條件來確定.2、D【解析】
結(jié)合中心對稱圖形和軸對稱圖形的概念求解即可.【詳解】解:A、是軸對稱圖形,不是中心對稱圖形.故本選項錯誤;B、不是軸對稱圖形,是中心對稱圖形.故本選項錯誤;C、是軸對稱圖形,不是中心對稱圖形.故本選項錯誤;D、既是中心對稱圖形,又是軸對稱圖形.故本選項正確;
故選:D.本題主要考查了中心對稱圖形與軸對稱圖形的概念:軸對稱圖形的關(guān)鍵是尋找對稱軸,圖形兩部分沿對稱軸折疊后可重合;中心對稱圖形是要尋找對稱中心,旋轉(zhuǎn)180度后與原圖重合.3、B【解析】
根據(jù)二次根式的性質(zhì)把各選項的二次根式化簡,再根據(jù)能合并的二次根式是同類二次根式解答.【詳解】、,不能與合并,故本選項錯誤;、,能與合并,故本選項正確;、,不能與合并,故本選項錯誤;、,不能與合并,故本選項錯誤.故選.本題考查同類二次根式的概念,同類二次根式是化為最簡二次根式后,被開方數(shù)相同的二次根式稱為同類二次根式.4、C【解析】試題解析:①由菱形的性質(zhì)可得△ABD、BDC是等邊三角形,∠DGB=∠GBE+∠GEB=30°+90°=120°,故①正確;②∵∠DCG=∠BCG=30°,DE⊥AB,∴可得DG=CG(30°角所對直角邊等于斜邊一半)、BG=CG,故可得出BG+DG=CG,即②也正確;③首先可得對應(yīng)邊BG≠FD,因為BG=DG,DG>FD,故可得△BDF不全等△CGB,即③錯誤;④S△ABD=AB?DE=AB?BE=AB?AB=AB2,即④正確.綜上可得①②④正確,共3個.故選C.5、B【解析】分析:讓被開方數(shù)為非負(fù)數(shù)列式求值即可.解答:解:由題意得:x+1≥0,解得x≥-1.故選B.6、A【解析】
過點D構(gòu)造矩形,把塔高的影長分解為平地上的BD,斜坡上的DE.然后根據(jù)影長的比分別求得AG,GB長,把它們相加即可.【詳解】解:過D作DF⊥CD,交AE于點F,過F作FG⊥AB,垂足為G.由題意得:.∴DF=DE×1.6÷2=14.4(m).
∴GF=BD=CD=6m.又∵.∴AG=1.6×6=9.6(m).
∴AB=14.4+9.6=24(m).
答:鐵塔的高度為24m.故選A.7、A【解析】解:A.x2﹣1=0是一元二次方程,故A正確;B.y=2x2+1是二次函數(shù),故B錯誤;C.x+=0是分式方程,故C錯誤;D.x2+y2=1中含有兩個未知數(shù),故D錯誤.故選A.8、A【解析】
根據(jù)中心對稱圖形和軸對稱圖形的概念逐一進(jìn)行分析即可.【詳解】A、是中心對稱圖形,也是軸對稱圖形,故符合題意;B、不是中心對稱圖形,是軸對稱圖形,故不符合題意;C、不是中心對稱圖形,是軸對稱圖形,故不符合題意;D、不是中心對稱圖形,是軸對稱圖形,故不符合題意,故選A.本題主要考查軸對稱圖形和中心對稱圖形,在平面內(nèi),如果一個圖形沿一條直線折疊,直線兩旁的部分能夠完全重合,這樣的圖形叫做軸對稱圖形;在平面內(nèi),如果把一個圖形繞某個點旋轉(zhuǎn)180°后,能與原圖形重合,那么就說這個圖形是中心對稱圖形.二、填空題(本大題共5個小題,每小題4分,共20分)9、1.【解析】
把解析式化為頂點式,再根據(jù)二次函數(shù)的性質(zhì)得出答案即可。【詳解】解:,∴當(dāng)t=1時,s取得最大值,此時s=2.故答案為1.考點:二次函數(shù)的應(yīng)用;最值問題;二次函數(shù)的最值.10、2【解析】
作A′G⊥AD于G,A′H⊥AB于H,交MN于O,連接AA′交MN于K.想辦法求出MK,再證明MN=4MK即可解決問題;【詳解】解:如圖,作A′G⊥AD于G,A′H⊥AB于H,交MN于O,連接AA′交MN于K.由題意四邊形DCEC′是正方形,△DGA′是等腰直角三角形,∴DG=GA′=3,AG=AD﹣DG=9,設(shè)AM=MA′=x,在Rt△MGA′中,x2=(9﹣x)2+32,∴x=5,AA′=,∵sin∠MAK=,∴,∴MK=,∵AM∥OA′,AK=KA′,∴MK=KO,∵BN∥HA′∥AD,DA′=EA′,∴MO=ON,∴MN=4MK=2,故答案為2.本題考查翻折變換、正方形的性質(zhì).矩形的性質(zhì)、勾股定理、銳角三角函數(shù)等知識,解題的關(guān)鍵是學(xué)會添加常用輔助線,構(gòu)造直角三角形解決問題,學(xué)會利用參數(shù)構(gòu)建方程解決問題,屬于中考填空題中的壓軸題.11、1【解析】
根據(jù)菱形的判定可得?ABCD是菱形,再根據(jù)性質(zhì)求得∠BCO的度數(shù),可求OB,進(jìn)一步求得OD的長.【詳解】解:∵四邊形ABCD是平行四邊形,AB=BC=4,∴?ABCD是菱形,∵∠ABC=110°,∴∠BCO=30°,∠BOC=90°,∴OB==1,∴OD=1.故答案為:1.本題主要考查了平行四邊形的性質(zhì)、菱形的性質(zhì)、30度角所對的直角邊等于斜邊的一半,解決問題的關(guān)鍵是掌握:菱形的對角線平分每一組對角.12、【解析】
先根據(jù)兩直線平行的問題得到k=2,然后把(1,3)代入y=2x+b中求出b即可.【詳解】∵直線y=kx+b與y=2x+1平行,∴k=2,把(1,3)代入y=2x+b得2+b=3,解得b=1,∴y=kx+b的表達(dá)式是y=2x+1.故答案為:y=2x+1.此題考查一次函數(shù)中的直線位置關(guān)系,解題關(guān)鍵在于求k的值.13、1【解析】
連接DC,由垂直平分線的性質(zhì)可得DC=DA,易得∠ACD=∠A=30°,∠BCD=30°,利用銳角三角函數(shù)定義可得CD的長,利用“在直角三角形中,30°角所對的直角邊等于斜邊的一半.”可得DE的長.【詳解】解:連接DC,∵∠B=90°,∠A=30°,DE是斜邊AC的垂直平分線,∴DC=DA,∴∠ACD=∠A=30°,∠BCD=30°,,∵∠BCD=30°,,∴DE=1,故答案為1.本題主要考查了直角三角形的性質(zhì)和垂直平分線的性質(zhì),做出恰當(dāng)?shù)妮o助線是解答此題的關(guān)鍵.三、解答題(本大題共5個小題,共48分)14、(1)證明見解析;(2)AM=1.理由見解析.【解析】
解:(1)∵四邊形ABCD是菱形,∴ND∥AM,∴∠NDE=∠MAE,∠DNE=∠AME,∵點E是AD中點,∴DE=AE,在△NDE和△MAE中,,∴△NDE≌△MAE(AAS),∴ND=MA,∴四邊形AMDN是平行四邊形;(2)解:當(dāng)AM=1時,四邊形AMDN是矩形.理由如下:∵四邊形ABCD是菱形,∴AD=AB=2,∵平行四邊形AMDN是矩形,∴DM⊥AB,即∠DMA=90°,∵∠DAB=60°,∴∠ADM=30°,∴AM=AD=1.本題考查矩形的判定;平行四邊形的判定;菱形的性質(zhì).15、證明見解析.【解析】分析:連接BG,作AM⊥EF,垂足M,作AN⊥CD,垂足N.根據(jù)三角形的面積公式證明ABCD=△ABG,AEFG=ABG即可證明結(jié)論.詳解:連接BG,作AM⊥EF,垂足M,作AN⊥CD,垂足N.∵四邊形ABCD是平行四邊形,∴AB∥CD,AB=CD.∵,,∴,∴ABCD=△ABG,同理可證:AEFG=ABG,∴□ABCD=□AEFG.點睛:本題考查了平行四邊形的性質(zhì),等底同高的三角形面積相等,正確作出輔助線,證明ABCD=△ABG,AEFG=ABG是解答本題的關(guān)鍵.16、(1)9;(2)OC⊥直線于點C;①;②;(3)【解析】
(1)求出線段MN的長度,根據(jù)正方形的面積公式即可求出答案;(2)根據(jù)面積求出,根據(jù)面積最小確定OC⊥直線于點C,再分情況分別求出b;(3)分兩種情況:當(dāng)點E在直線y=-x-2是上方和下方時,分別求出點P的坐標(biāo),由此得到答案.【詳解】解:(1)∵M(jìn)(0,1),N(3,1),∴MN∥x軸,MN=3,∴點M,N的“確定正方形”的面積為,故答案為:9;(2)∵點O,C的“確定正方形”面積為2,∴.∵點O,C的“確定正方形”面積最小,∴OC⊥直線于點C.①當(dāng)b>0時,如圖可知OM=ON,△MON為等腰直角三角形,可求,∴②當(dāng)時,同理可求∴(3)如圖2中,當(dāng)正方形ABCD在直線y=-x-2的下方時,延長DB交直線y=-x-2于H,∴BH⊥直線y=-x-2,當(dāng)BH=時,點E、F的“確定正方形”的面積的最小值是2,此時P(-6,0);如圖3中,當(dāng)正方形ABCD在直線y=-x-2的上方時,延長DB交直線y=-x-2于H,∴BH⊥直線y=-x-2,當(dāng)BH=時,點E、F的“確定正方形”的面積的最小值是2,此時P(2,0),觀察圖象可知:當(dāng)或時,所有點E、F的“確定正方形”的面積都不小于2此題是一次函數(shù)的綜合題,考查一次函數(shù)的性質(zhì),正方形的性質(zhì),正確理解題中的正方形的特點畫出圖象求解是解題的關(guān)鍵.17、(1)詳見解析;(2)【解析】
(1)由矩形的性質(zhì)可知,因而只需通過證明說明即可.(2)由已知條件易證是等腰直角三角形,即CD=DE,而AD=2DE,由矩形的性質(zhì)即可知與的數(shù)量關(guān)系.【詳解】解:(1)∵四邊形是矩形,∴,∴.∵E是的中點,∴.又∵,∴.∴.又∵,∴四邊形是平行四邊形.(2).證明:∵平分,∴.∵,∴是等腰直角三角形,∴,∵E是的中點,∴,∵,∴.本題主要考查了平行四邊形的判定、矩形的性質(zhì),靈活應(yīng)用矩形的性質(zhì)是解題的關(guān)鍵.18、(1)點到軸的距離等于點到軸距離;(2);(1)1,1【解析】
(1)根據(jù)橫坐標(biāo)為點到y(tǒng)軸的距離;縱坐標(biāo)為點到x軸的距離即可比較大?。唬?)由點A1和點B重合時,需將△ABC向右移2個單位,向下移2個單位,據(jù)此求解可得;(1)根據(jù)點A的縱坐標(biāo)得出向下平移的距離,由點B的橫坐標(biāo)得出向左平移的距離.【詳解】解:(1)∵,∴點到軸的距離為1∵,點到軸距離為1∴點到軸的距離等于點到軸距離(2)點和點重合時,需將向右移2個單位,向下移2個單位,∴點的對應(yīng)點的坐標(biāo)是(1)平移△ABO至△A2B2O2,需要至少向下平移超過1單位,并且至少向左平移1個單位,才能△A2B2O2使位于第三象限.故答案為:1,1.本題主要考查點的意義與圖形的變換-平移,注意:點到x軸的距離等于該點縱坐標(biāo)的絕對值;點到y(tǒng)軸的距離等于該點橫坐標(biāo)的絕對值;平面直角坐標(biāo)系中點的坐標(biāo)的平移規(guī)律.一、填空題(本大題共5個小題,每小題4分,共20分)19、23%【解析】
根據(jù)第一次A、B、C各取出部分混合后的濃度得到一條關(guān)于xyz的等式,再算出混合液倒回后A、B、C中后各自的酒精量,然后根據(jù)第二次混合再得到一條關(guān)于xyz的等式,聯(lián)立組成方程組,使用x、y表示z,根據(jù)x、y、z的取值范圍確定其準(zhǔn)確整數(shù)值即可求解.【詳解】解:A瓶倒出10%:2000×10%=200(克),剩余:2000-200=1800(克),
B瓶倒出20%:3000×20%=600(克),剩余:3000-600=2400(克),C瓶倒出24%:5000×24%=1200(克),剩余:5000-1200=3800(克),根據(jù)題意得:(200×x%+600×y%+1200×z%)÷(200+600+1200)=33.5%,混合液倒回后A瓶內(nèi)的酒精量:1800×x%+200×33.5%,混合液倒回后B瓶內(nèi)的酒精量:2400×y%+600×33.5%,混合液倒回后C瓶內(nèi)的酒精量:3800×z%+1200×33.5%,再根據(jù)題意可得:[(1800×x%+200×33.5%)×30%+(2400×y%+600×33.5%)×30%+(3800×z%+1200×33.5%)×30%]÷(2000×30%+3000×30%+5000×30%)=31.5%,整理組成方程組得:x+3y+6z=3359x+12y+19z=1240解得:z=355-3y7∵20≤x≤30,20≤y≤30,∴2657(約37.85則z=40或代入可得:x=20y=25z=40,或者x=21y=∵x、y、z均為整數(shù),則只有x=20y=25則把起初A、B兩瓶酒精混合后的濃度為:2000×20%+3000故答案為:23%.本題考查從題意提取信息列方程組的能力,也考查三元一次方程組得解法,準(zhǔn)確得出x、y和z之間的關(guān)系式再代入范圍求解,舍去不符合題意的解為解題的關(guān)鍵.20、<.【解析】試題分析:∵正比例函數(shù)的,∴y隨x的增大而增大.∵,∴y1<y1.考點:正比例函數(shù)的性質(zhì).21、0.7【解析】
用通話時間不足10分鐘的通話次數(shù)除以通話的總次數(shù)即可得.【詳解】由圖可知:小明家3月份通話總次數(shù)為20+15+10+5=50(次);其中通話不足10分鐘的次數(shù)為20+15=35(次),∴通話時間不足10分鐘的通話次數(shù)的頻率是35÷50=0.7.故答案為0.7.22、直線x=1【解析】
根據(jù)拋物線的對稱性,x=0、x=4時的函數(shù)值相等,然后列式計算即可得解.【詳解】解:∵x=0、x=4時的函數(shù)值都是?1,∴此函數(shù)圖象的對稱軸為直線x==1,即直線x=1.故答案為:直線x=1.本題考查了二次函數(shù)的性質(zhì),主要利用了二次函數(shù)圖象的對稱性.23、1【解析】
先根據(jù)平行四邊形的性質(zhì)求出BC的長,再根據(jù)勾股定理及三角形的面積公式解答即可.【詳解】根據(jù)平行四邊形的性質(zhì)得AD=BC=8
在Rt△ABC中,AB=10,AD=8,AC⊥BC
根據(jù)勾股定理得AC==6,
則S平行四邊形ABCD=BC?AC=1,故答案為:1.本題考查了平行四邊形的對邊相等的性質(zhì)和勾股定理,正確求出AC的長是解題的關(guān)鍵.二、解答題(本大題共3個小題,共30分)24、正方形【解析】分析:(1)如圖1,當(dāng)點G恰好在BC邊上時,四邊形ABGE的形狀是正方形,理由為:由折疊得到兩對邊相等,三個角為直角,確定出四邊形ABEG為矩形,再由矩形對邊相等,等量代換得到四條邊相等,即鄰邊相等,即可得證;(2)①如圖2,連接EF,由ABCD為矩形,得到兩組對邊相等,四個角為直角,再由E為AD中點,得到AE=DE,由折疊的性質(zhì)得到BG=AB,EG=AE=ED,且∠EGB=∠A=90°,利用HL得到直角三角形EFG與直角△EDF全等,利用全等三角形對應(yīng)邊相等得到DF=FG,由BF=BG+GF,等量代換即可得證;②CF=DF,理由為:不妨假設(shè)AB=DC=a,DF=b,表示出AD=BC,由①得:BF=AB+DF,進(jìn)而表示出BF,CF,在直角△BCF中,利用勾股定理列出關(guān)系式,整理得到a=2b,由CD-DF=FC,代換即可得證.詳解:(1)正方形;(2)①如圖2,連結(jié)EF,在矩形ABCD中,AB=DC,A
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 深入解析技術(shù)服務(wù)合同范本模板
- 保安服務(wù)提供商合同
- 延期還款協(xié)議
- 物資招標(biāo)文件寫作技巧
- 水利建設(shè)合同協(xié)議
- 貨品購買合同格式
- 專業(yè)合同協(xié)議合規(guī)管理方法服務(wù)
- 聯(lián)營共營合同范例
- 心理輔導(dǎo)與咨詢服務(wù)
- 節(jié)能改造合同能源
- 2024-2025學(xué)年人教版八年級上冊數(shù)學(xué)期末押題卷(含答案)
- 高標(biāo)準(zhǔn)農(nóng)田建設(shè)的風(fēng)險管理與應(yīng)急預(yù)案
- (T8聯(lián)考)2025屆高三部分重點中學(xué)12月聯(lián)合測評語文試卷(含答案解析)
- 2024年考研(英語一)真題及參考答案
- 2023年軍隊文職統(tǒng)一考試(公共科目)試卷(含解析)
- NB/T 11127-2023在用鋼絲繩芯輸送帶報廢檢測技術(shù)規(guī)范
- 2024年GYB創(chuàng)業(yè)意識及就業(yè)能力知識考試題庫(附含答案)
- 《民用爆炸物品企業(yè)安全生產(chǎn)標(biāo)準(zhǔn)化實施細(xì)則》解讀
- 行政復(fù)議法-形考作業(yè)2-國開(ZJ)-參考資料
- 智能化實驗室建設(shè)方案
- 歌曲演唱 萬疆
評論
0/150
提交評論