版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
內(nèi)蒙古呼倫貝爾市莫旗尼爾基一中2025屆數(shù)學(xué)高二上期末學(xué)業(yè)水平測(cè)試試題請(qǐng)考生注意:1.請(qǐng)用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請(qǐng)用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫(xiě)在答題紙相應(yīng)的答題區(qū)內(nèi)。寫(xiě)在試題卷、草稿紙上均無(wú)效。2.答題前,認(rèn)真閱讀答題紙上的《注意事項(xiàng)》,按規(guī)定答題。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.已知曲線的方程為,則下列說(shuō)法正確的是()①曲線關(guān)于坐標(biāo)原點(diǎn)對(duì)稱;②曲線是一個(gè)橢圓;③曲線圍成區(qū)域的面積小于橢圓圍成區(qū)域的面積.A.① B.①②C.③ D.①③2.拋物線y=4x2的焦點(diǎn)坐標(biāo)是()A.(0,1) B.(1,0)C. D.3.已知、,則直線的傾斜角為()A. B.C. D.4.已知,則下列說(shuō)法中一定正確的是()A. B.C. D.5.如圖,在棱長(zhǎng)為1的正方體中,點(diǎn)B到直線的距離為()A. B.C. D.6.已知,是橢圓的左,右焦點(diǎn),是的左頂點(diǎn),點(diǎn)在過(guò)且斜率為的直線上,為等腰三角形,,則的離心率為A. B.C. D.7.已知過(guò)點(diǎn)A(a,0)作曲線C:y=x?ex的切線有且僅有兩條,則實(shí)數(shù)a的取值范圍是()A.(﹣∞,﹣4)∪(0,+∞) B.(0,+∞)C.(﹣∞,﹣1)∪(1,+∞) D.(﹣∞,﹣1)8.已知三棱錐的各頂點(diǎn)都在同一球面上,且平面,若該棱錐的體積為,,,,則此球的表面積等于()A. B.C. D.9.某公司要建造一個(gè)長(zhǎng)方體狀的無(wú)蓋箱子,其容積為48m3,高為3m,如果箱底每1m2的造價(jià)為15元,箱壁每1m2造價(jià)為12元,則箱子的最低總造價(jià)為()A.72元 B.300元C.512元 D.816元10.已知雙曲線的一條漸近線方程為,則該雙曲線的離心率為()A. B.C. D.11.已知m,n表示兩條不同直線,表示兩個(gè)不同平面.設(shè)有兩個(gè)命題::若,則;:若,則.則下列命題中為真命題的是()A. B.C. D.12.橢圓()的右頂點(diǎn)是拋物線的焦點(diǎn),且短軸長(zhǎng)為2,則該橢圓方程為()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知向量與是平面的兩個(gè)法向量,則__________14.“第七屆全國(guó)畫(huà)院美術(shù)作品展”于2021年12月2日至2022年2月20日在鄭州美術(shù)館展出.已知某油畫(huà)作品高2米,寬6米,畫(huà)的底部離地有2.7米(如圖所示).有一身高為1.8米的游客從正面觀賞它(該游客頭頂E到眼睛C的距離為10),設(shè)該游客離墻距離CD為x米,視角為.為使觀賞視角最大,x應(yīng)為_(kāi)__________米.15.已知離心率為的橢圓:和離心率為的雙曲線:有公共的焦點(diǎn),其中為左焦點(diǎn),P是與在第一象限的公共點(diǎn).線段的垂直平分線經(jīng)過(guò)坐標(biāo)原點(diǎn),則的最小值為_(kāi)____________.16.已知雙曲線中心在坐標(biāo)原點(diǎn),左右焦點(diǎn)分別為,漸近線分別為,過(guò)點(diǎn)且與垂直的直線分別交于兩點(diǎn),且,則雙曲線的離心率為_(kāi)_______三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)已知函數(shù)(1)討論函數(shù)的單調(diào)性;(2)證明:對(duì)任意正整數(shù)n,18.(12分)甲乙兩人輪流投籃,每人每次投一球,約定甲先投且先投中者獲勝,一直到有人獲勝或每人都已投球3次時(shí)投籃結(jié)束,設(shè)甲每次投籃投中的概率為,乙每次投籃投中的概率為,且各次投籃互不影響(1)求甲乙各投球一次,比賽結(jié)束的概率;(2)求甲獲勝的概率19.(12分)已知函數(shù)(1)討論的單調(diào)性;(2)當(dāng)時(shí),證明20.(12分)如圖,三棱錐中,兩兩垂直,,且分別為線段的中點(diǎn).(1)若點(diǎn)是線段的中點(diǎn),求證:直線平面;(2)求證:平面平面.21.(12分)已知直線,,分別求實(shí)數(shù)的值,使得:(1);(2);(3)與相交.22.(10分)如圖,四棱錐,,,,為等邊三角形,平面平面ABCD,Q為PB中點(diǎn)(1)求證:平面平面PBC;(2)求平面PBC與平面PAD所成二面角的正弦值
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、D【解析】對(duì)于①在方程中換為,換為可判斷;對(duì)于②分析曲線的圖形是兩個(gè)拋物線的部分組成的可判斷;對(duì)于③在第一象限內(nèi),分析橢圓的圖形與曲線圖形的位置關(guān)系可判斷.【詳解】在曲線的方程中,換為,換為,方程不變,故曲線關(guān)于坐標(biāo)原點(diǎn)對(duì)稱所以①正確,當(dāng)時(shí),曲線的方程化為,此時(shí)當(dāng)時(shí),曲線的方程化為,此時(shí)所以曲線圖形是兩個(gè)拋物線的部分組成的,不是橢圓,故②不正確.當(dāng),時(shí),設(shè),設(shè),則,(當(dāng)且僅當(dāng)或時(shí)等號(hào)成立)所以在第一象限內(nèi),橢圓的圖形在曲線的上方.根據(jù)曲線和橢圓的的對(duì)稱性可得橢圓的圖形在曲線的外部(四個(gè)頂點(diǎn)在曲線上)所以曲線圍成區(qū)域的面積小于橢圓圍成區(qū)域的面積,故③正確.故選:D2、C【解析】將拋物線方程化為標(biāo)準(zhǔn)方程,由此可拋物線的焦點(diǎn)坐標(biāo)得選項(xiàng).【詳解】解:將拋物線y=4x2的化為標(biāo)準(zhǔn)方程為x2=y(tǒng),p=,開(kāi)口向上,焦點(diǎn)在y軸的正半軸上,故焦點(diǎn)坐標(biāo)為(0,).故選:C3、B【解析】設(shè)直線的傾斜角為,利用直線的斜率公式求出直線的斜率,進(jìn)而可得出直線的傾斜角.【詳解】設(shè)直線的傾斜角為,由斜率公式可得,,因此,.故選:B.4、B【解析】AD選項(xiàng),舉出反例即可;BC選項(xiàng),利用不等式的基本性質(zhì)進(jìn)行判斷.【詳解】當(dāng),時(shí),滿足,此時(shí),故A錯(cuò)誤;因,所以,,,B正確;因?yàn)?,所以,,故,C錯(cuò)誤;當(dāng),時(shí),滿足,,,所以,D錯(cuò)誤.故選:B5、A【解析】以為坐標(biāo)原點(diǎn),以為單位正交基底,建立空間直角坐標(biāo)系,取,,利用向量法,根據(jù)公式即可求出答案.【詳解】以為坐標(biāo)原點(diǎn),以為單位正交基底,建立如圖所示的空間直角坐標(biāo)系,則,,取,,則,,則點(diǎn)B到直線AC1的距離為.故選:A6、D【解析】分析:先根據(jù)條件得PF2=2c,再利用正弦定理得a,c關(guān)系,即得離心率.詳解:因?yàn)榈妊切?,,所以PF2=F1F2=2c,由斜率為得,,由正弦定理得,所以,故選D.點(diǎn)睛:解決橢圓和雙曲線的離心率的求值及范圍問(wèn)題其關(guān)鍵就是確立一個(gè)關(guān)于的方程或不等式,再根據(jù)的關(guān)系消掉得到的關(guān)系式,而建立關(guān)于的方程或不等式,要充分利用橢圓和雙曲線的幾何性質(zhì)、點(diǎn)的坐標(biāo)的范圍等.7、A【解析】設(shè)出切點(diǎn),對(duì)函數(shù)求導(dǎo)得到切點(diǎn)處的斜率,由點(diǎn)斜式得到切線方程,化簡(jiǎn)為,整理得到方程有兩個(gè)解即可,解出不等式即可.【詳解】設(shè)切點(diǎn)為,,,則切線方程為:,切線過(guò)點(diǎn)代入得:,,即方程有兩個(gè)解,則有或.故答案為:A.【點(diǎn)睛】這個(gè)題目考查了函數(shù)的導(dǎo)函數(shù)的求法,以及過(guò)某一點(diǎn)的切線方程的求法,其中應(yīng)用到導(dǎo)數(shù)的幾何意義,一般過(guò)某一點(diǎn)求切線方程的步驟為:一:設(shè)切點(diǎn),求導(dǎo)并且表示在切點(diǎn)處的斜率;二:根據(jù)點(diǎn)斜式寫(xiě)切點(diǎn)處的切線方程;三:將所過(guò)的點(diǎn)代入切線方程,求出切點(diǎn)坐標(biāo);四:將切點(diǎn)代入切線方程,得到具體的表達(dá)式.8、D【解析】由條件確定三棱錐的外接球的球心位置及球的半徑,再利用球的表面積公式求外接球的表面積.【詳解】由已知,,,可得三棱錐的底面是直角三角形,,由平面可得就是三棱錐外接球的直徑,,,即,則,故三棱錐外接球的半徑為,所以三棱錐外接球的表面積為故選:D.【點(diǎn)睛】與球有關(guān)的組合體問(wèn)題,一種是內(nèi)切,一種是外接.解題時(shí)要認(rèn)真分析圖形,明確切點(diǎn)和接點(diǎn)的位置,確定有關(guān)元素間的數(shù)量關(guān)系,并作出合適的截面圖,如球內(nèi)切于正方體,切點(diǎn)為正方體各個(gè)面的中心,正方體的棱長(zhǎng)等于球的直徑;球外接于正方體,正方體的頂點(diǎn)均在球面上,正方體的體對(duì)角線長(zhǎng)等于球的直徑.9、D【解析】設(shè)這個(gè)箱子的箱底的長(zhǎng)為xm,則寬為m,設(shè)箱子總造價(jià)為f(x)元,則f(x)=72(x)+240,由此利用均值不等式能求出箱子的最低總造價(jià)【詳解】設(shè)這個(gè)箱子的箱底的長(zhǎng)為xm,則寬為m,設(shè)箱子總造價(jià)為f(x)元,∴f(x)=15×16+12×3(2x)=72(x)+240≥144240=816,當(dāng)且僅當(dāng)x,即x=4時(shí),f(x)取最小值816元故選:D10、B【解析】由雙曲線的漸近線方程以及即可求得離心率.【詳解】由已知條件得,∴,∴,∴,∴,故選:.11、B【解析】利用直線與平面,平面與平面的位置關(guān)系判斷2個(gè)命題的真假,再利用復(fù)合命題的真值表判斷選項(xiàng)的正誤即可【詳解】,表示兩條不同直線,,表示兩個(gè)不同平面:若,,則也可能,也可能與相交,所以是假命題,為真命題;:令直線的方向向量為,直線的方向向量為,若,則,則,所以是真命題,所以為假命題;所以為假命題,是真命題,為假命題,是真命題,所以為假命題故選:12、A【解析】求得拋物線的焦點(diǎn)從而求得,再結(jié)合題意求得,即可寫(xiě)出橢圓方程.【詳解】因?yàn)閽佄锞€的焦點(diǎn)坐標(biāo)為,故可得;又短軸長(zhǎng)為2,故可得,即;故橢圓方程為:.故選:.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】由且為非零向量可直接構(gòu)造方程求得,進(jìn)而得到結(jié)果.【詳解】由題意知:,,解得:(舍)或,.故答案為:.14、【解析】設(shè),進(jìn)而得到,,從而求出,再利用基本不等式即可求得答案.【詳解】設(shè),則,,所以,當(dāng)且僅當(dāng)時(shí)取“=”.所以該游客離墻距離為米時(shí),觀賞視角最大.故答案為:.15、##4.5【解析】設(shè)為右焦點(diǎn),半焦距為,,由題意,,則,所以,從而有,最后利用均值不等式即可求解.【詳解】解:設(shè)為右焦點(diǎn),半焦距為,,由題意,,則,所以,即,故,當(dāng)且僅當(dāng)時(shí)取等,所以,故答案為:.16、【解析】判斷出三角形的形狀,求得點(diǎn)坐標(biāo),由此列方程求得,進(jìn)而求得雙曲線的離心率.【詳解】依題意設(shè)雙曲線方程為,雙曲線的漸近線方程為,右焦點(diǎn),不妨設(shè).由于,所以是線段的中點(diǎn),由于,所以是線段的垂直平均分,所以三角形是等腰三角形,則.直線的斜率為,則直線的斜率為,所以直線的方程為,由解得,則,即,化簡(jiǎn)得,所以雙曲線的離心率為.故答案為:三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17、(1)見(jiàn)解析(2)見(jiàn)解析【解析】(1)由,令,得,或,又的定義域?yàn)?,討論兩個(gè)根及的大小關(guān)系,即可判定函數(shù)的單調(diào)性;(2)當(dāng)時(shí),在,上遞減,則,即,由此能夠證明【小問(wèn)1詳解】的定義域?yàn)?,,令,得,或,①?dāng),即時(shí),若,則,遞增;若,則,遞減;②當(dāng),即時(shí),若,則,遞減;若,則,遞增;若,則,遞減;綜上所述,當(dāng)-2<a<0時(shí),f(x)在,單調(diào)遞減,在單調(diào)遞增;當(dāng)a≥0時(shí),f(x)在單調(diào)遞增,在單調(diào)遞減.【小問(wèn)2詳解】由(2)知當(dāng)時(shí),在,上遞減,,即,,,,2,3,,,,【點(diǎn)睛】本題考查利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,本題的關(guān)鍵是令a=1,用已知函數(shù)的單調(diào)性構(gòu)造,再令x=恰當(dāng)?shù)乩脤?duì)數(shù)求和進(jìn)行解題18、(1)(2)【解析】(1)設(shè)事件“甲在第次投籃投中”,設(shè)事件“乙在第次投籃投中”,記“甲乙各投球一次,比賽結(jié)束”為事件,則,利用獨(dú)立事件和互斥事件的概率公式,即得解(2)記“甲獲勝”為事件,由題意,根據(jù)概率的加法公式和獨(dú)立事件的概率公式,即得解【小問(wèn)1詳解】設(shè)事件“甲在第次投籃投中”,其中設(shè)事件“乙在第次投籃投中”,其中則,,其中記“甲乙各投球一次,比賽結(jié)束”為事件,,事件與事件相互獨(dú)立根據(jù)事件獨(dú)立性定義得:甲乙各投球一次,比賽結(jié)束的概率為【小問(wèn)2詳解】記“甲獲勝”為事件,事件、事件、事件彼此互斥根據(jù)概率加法公式和事件獨(dú)立性定義得:甲獲勝的概率為19、(1)答案見(jiàn)解析(2)證明見(jiàn)解析【解析】(1)求導(dǎo)得,進(jìn)而分和兩種情況討論求解即可;(2)根據(jù)題意證明,進(jìn)而令,再結(jié)合(1)得,研究函數(shù)的性質(zhì)得,進(jìn)而得時(shí),,即不等式成立.【小問(wèn)1詳解】解:函數(shù)的定義域?yàn)椋?,∴?dāng)時(shí),在上恒成立,故函數(shù)在區(qū)間上單調(diào)遞增;當(dāng)時(shí),由得,由得,即函數(shù)在區(qū)間上單調(diào)遞增,在上單調(diào)遞減;綜上,當(dāng)時(shí),在區(qū)間上單調(diào)遞增;當(dāng)時(shí),在區(qū)間上單調(diào)遞增,在上單調(diào)遞減;【小問(wèn)2詳解】證明:因?yàn)闀r(shí),證明,只需證明,由(1)知,當(dāng)時(shí),函數(shù)在區(qū)間上單調(diào)遞增,在上單調(diào)遞減;所以.令,則,所以當(dāng)時(shí),,函數(shù)單調(diào)遞減;當(dāng)時(shí),,函數(shù)單調(diào)遞增,所以.所以時(shí),,所以當(dāng)時(shí),20、(1)證明見(jiàn)解析(2)證明見(jiàn)解析【解析】(1)由題意可得,從而可證.(2)由題意可得平面,從而可得,由根據(jù)條件可得,從而可得平面,從而可得證.【小問(wèn)1詳解】由分別為線段的中點(diǎn).由中位線定理知,又平面,且平面,所以直線平面【小問(wèn)2詳解】?jī)蓛纱怪?,?且所以平面,又平面,所以由,且分別為線段的中點(diǎn),所以,因此根據(jù)線面垂直判定定理得平面,且平面所以平面平面.21、(1)或(2)或(3)且【解析】(1)根據(jù)直線一般式平行的條件列式計(jì)算;(2)根據(jù)直線一般式垂直的條件列式計(jì)算;(3)根據(jù)相交和平行的關(guān)系可得答案.【小問(wèn)1詳解】,,解得或又時(shí),直線,,兩直線不重合;時(shí),直線,,兩直線不重合;故或;【小問(wèn)2詳解】,,解得或;【小問(wèn)3詳解】與相交故由(1)得且.22、(1)證明見(jiàn)解析(2)【解析】(1)取的中點(diǎn)為,連接,可證,從而
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年P(guān)2P網(wǎng)絡(luò)貸款合同電子簽章技術(shù)規(guī)范范本3篇
- 2025版出租車充電樁建設(shè)與維護(hù)服務(wù)合同3篇
- 專業(yè)化弱電維修保障服務(wù)協(xié)議(2024年版)版B版
- 2024版買賣意向協(xié)議書(shū)范本
- 2024年鋼結(jié)構(gòu)裝修合同樣本
- 2024版專業(yè)餐飲管理承包協(xié)議樣本版
- 2024庚辛雙方關(guān)于基礎(chǔ)設(shè)施建設(shè)施工合同
- 2024新能源研發(fā)團(tuán)隊(duì)人員股權(quán)激勵(lì)合同
- 2024年甲乙雙方關(guān)于城市燃?xì)夤艿烙盟芰瞎懿墓?yīng)合同
- 2024青島購(gòu)房合同范文
- 江蘇省徐州市2023-2024學(xué)年六年級(jí)上學(xué)期期末科學(xué)試卷(含答案)2
- 五年級(jí)數(shù)學(xué)上冊(cè)七大重點(diǎn)類型應(yīng)用題
- 2023上海高考英語(yǔ)詞匯手冊(cè)單詞背誦默寫(xiě)表格(復(fù)習(xí)必背)
- 1離子反應(yīng)課件2024-2025學(xué)年人教版高一化學(xué)
- 期末 (試題) -2024-2025學(xué)年人教PEP版英語(yǔ)五年級(jí)上冊(cè)
- 人民軍隊(duì)歷史與優(yōu)良傳統(tǒng)(2024)學(xué)習(xí)通超星期末考試答案章節(jié)答案2024年
- 富血小板血漿(PRP)臨床實(shí)踐與病例分享課件
- 新教材邏輯的力量-高二語(yǔ)文選擇性必修上冊(cè)部編版課件演講教學(xué)
- DB11T 641-2018 住宅工程質(zhì)量保修規(guī)程
- 幼兒園幼兒營(yíng)養(yǎng)食譜手冊(cè)
- 《護(hù)理科研》課件
評(píng)論
0/150
提交評(píng)論