版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
2025屆山西省晉城市數(shù)學(xué)高二上期末統(tǒng)考試題注意事項1.考生要認(rèn)真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.直線被圓截得的弦長為()A.1 B.C.2 D.32.現(xiàn)有60瓶飲料,編號從1到60,若用系統(tǒng)抽樣的方法從中抽取6瓶進(jìn)行檢驗,則所抽取的編號可能為()A.3,13,23,33,43,53 B.2,14,26,38,40,52C.5,8,31,36,48,54 D.5,10,15,20,25,303.已知橢圓與橢圓,則下列結(jié)論正確的是()A.長軸長相等 B.短軸長相等C.焦距相等 D.離心率相等4.等比數(shù)列的各項均為正數(shù),已知向量,,且,則A.12 B.10C.5 D.5.已知矩形,,,沿對角線將折起,若二面角的余弦值為,則與之間距離為()A. B.C. D.6.雙曲線的左頂點為,右焦點,若直線與該雙曲線交于、兩點,為等腰直角三角形,則該雙曲線離心率為()A. B.C. D.7.下列命題為真命題的是()A.若,則 B.若,則C.若,則 D.若,則8.已知向量,,且,則值是()A. B.C. D.9.已知等差數(shù)列的公差,記該數(shù)列的前項和為,則的最大值為()A.66 B.72C.132 D.19810.已知雙曲線的右焦點為,漸近線為,,過的直線與垂直,且交于點,交于點,若,則雙曲線的離心率為()A. B.C.2 D.11.動點P,Q分別在拋物線和圓上,則的最小值為()A. B.C. D.12.已知,為雙曲線的左,右頂點,點P在雙曲線C上,為等腰三角形,且頂角為,則雙曲線C的離心率為()A. B.C.2 D.二、填空題:本題共4小題,每小題5分,共20分。13.在圓M:中,過點的最長弦和最短弦分別為AC和BD,則四邊形ABCD的面積為___________.14.歐陽修在《賣油翁》中寫道:(翁)乃取一葫蘆置于地,以錢覆其口,徐以杓酌油瀝之,自錢孔入,而錢不濕,可見“行行出狀元”,賣油翁的技藝讓人嘆為觀止.若銅錢是直徑為4cm的圓,中間有邊長為1cm的正方形孔,若你隨機(jī)地向銅錢上滴一滴油,則油(油滴的大小忽略不計)正好落入孔中的概率是_______15.若“”是真命題,則實數(shù)的最小值為_____________.16.正方體,點分別是的中點,則異面直線與所成角的余弦值為___________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知函數(shù).(1)討論的單調(diào)性;(2)當(dāng)a=1時,對于任意的,,都有恒成立,則m的取值范圍.18.(12分)已知函數(shù).(1)求函數(shù)在處的切線方程;(2)設(shè)為的導(dǎo)數(shù),若方程的兩根為,且,當(dāng)時,不等式對任意的恒成立,求正實數(shù)的最小值.19.(12分)已知;對任意的恒成立.(1)若是真命題,求m的取值范圍;(2)若是假命題,是真命題,求m的取值范圍.20.(12分)如圖,四棱錐P-ABCD的底面是矩形,底面ABCD,,M為BC中點,且.(1)求BC;(2)求二面角A-PM-B的正弦值.21.(12分)已知函數(shù).(1)當(dāng)時,求曲線在點處的切線方程;(2)當(dāng)時,設(shè),求函數(shù)的單調(diào)區(qū)間.22.(10分)在等差數(shù)列中,(1)求數(shù)列的通項公式;(2)設(shè),求
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、C【解析】利用直線和圓相交所得的弦長公式直接計算即可.【詳解】由題意可得圓的圓心為,半徑,則圓心到直線的距離,所以由直線和圓相交所得的弦長公式可得弦長為:.故選:C.2、A【解析】求得組距,由此確定正確選項.【詳解】,即組距為,A選項符合,其它選項不符合.故選:A3、C【解析】利用,可得且,即可得出結(jié)論【詳解】∵,且,橢圓與橢圓的關(guān)系是有相等的焦距故選:C4、C【解析】利用數(shù)量積運算性質(zhì)、等比數(shù)列的性質(zhì)及其對數(shù)運算性質(zhì)即可得出【詳解】向量=(,),=(,),且?=4,∴+=4,由等比數(shù)列的性質(zhì)可得:=……===2,則log2(?)=故選C【點睛】本題考查數(shù)量積運算性質(zhì)、等比數(shù)列的性質(zhì)及其對數(shù)運算性質(zhì),考查推理能力與計算能力,屬于中檔題5、C【解析】過點在平面內(nèi)作,過點在平面內(nèi)作,以、為鄰邊作平行四邊形,連接,分析可知二面角的平面角為,利用余弦定理求出,證明出,再利用勾股定理可求得的長.【詳解】過點在平面內(nèi)作,過點在平面內(nèi)作,以、為鄰邊作平行四邊形,連接,因為,,,則,因為,由等面積法可得,同理可得,由勾股定理可得,同理可得,,因為四邊形為平行四邊形,且,故四邊形為矩形,所以,,因為,所以,二面角的平面角為,在中,,,由余弦定理可得,,,,則,,因為,平面,平面,則,,由勾股定理可得.故選:C.6、A【解析】求出,分析可得,可得出關(guān)于、、的齊次等式,由此可求得該雙曲線的離心率的值.【詳解】聯(lián)立,可得,則,易知點、關(guān)于軸對稱,且為線段的中點,則,又因為為等腰直角三角形,所以,,即,即,所以,,可得,因此,該雙曲線的離心率為.故選:A.7、D【解析】通過舉反列即可得ABC錯誤,利用不等式性質(zhì)可判斷D【詳解】A.當(dāng)時,,但,故A錯;B.當(dāng)時,,故B錯;C.當(dāng)時,,但,故C錯;D.若,則,D正確故選:D8、A【解析】求出向量,的坐標(biāo),利用向量數(shù)量積坐標(biāo)表示即可求解.【詳解】因為向量,,所以,,因為,所以,解得:,故選:A.9、A【解析】根據(jù)等差數(shù)列的公差,求得其通項公式求解.【詳解】因為等差數(shù)列的公差,所以,則,所以,由,得,所以或12時,該數(shù)列的前項和取得最大值,最大值為,故選:A10、C【解析】由題設(shè)易知是的中垂線,進(jìn)而可得,結(jié)合雙曲線參數(shù)關(guān)系及離心率公式求雙曲線的離心率即可.【詳解】由題意,是的中垂線,故,由對稱性得,則,故,∴.故選:C.11、B【解析】設(shè),根據(jù)兩點間距離公式,先求得P到圓心的最小距離,根據(jù)圓的幾何性質(zhì),即可得答案.【詳解】設(shè),圓化簡為,即圓心為(0,4),半徑為,所以點P到圓心的距離,令,則,令,,為開口向上,對稱軸為的拋物線,所以的最小值為,所以,所以的最小值為.故選:B12、A【解析】根據(jù)給定條件求出點P的坐標(biāo),再代入雙曲線方程計算作答.【詳解】由雙曲線對稱性不妨令點P在第一象限,過P作軸于B,如圖,因為等腰三角形,且頂角為,則有,,有,于是得,即點,因此,,解得,所以雙曲線C的離心率為.故選:A二、填空題:本題共4小題,每小題5分,共20分。13、【解析】首先將圓的方程配成標(biāo)準(zhǔn)式,即可得到圓心坐標(biāo)與半徑,從而可得點在圓內(nèi),即可得到過點的最長弦、最短弦弦長,即可求出四邊形的面積;【詳解】解:圓M:,即,圓心,半徑,點,則,所以點在圓內(nèi),所以過點的最長弦,又,所以最短弦,所以故答案為:14、【解析】分別求出圓和正方形的面積,結(jié)合幾何概型的面積型計算公式進(jìn)行求解即可.【詳解】因為銅錢的面積為,正方形孔的面積為,所以隨機(jī)地向銅錢上滴一滴油,則油(油滴的大小忽略不計)正好落入孔中的概率是.故答案為:【點睛】本題考查了幾何概型計算公式,考查了數(shù)學(xué)運算能力,屬于基礎(chǔ)題.15、1【解析】若“”是真命題,則大于或等于函數(shù)在的最大值因為函數(shù)在上為增函數(shù),所以,函數(shù)在上的最大值為1,所以,,即實數(shù)的最小值為1.所以答案應(yīng)填:1.考點:1、命題;2、正切函數(shù)的性質(zhì).16、【解析】以為坐標(biāo)原點建立空間直角坐標(biāo)系,根據(jù)異面直線所成角的向量求法可求得結(jié)果.【詳解】以為坐標(biāo)原點,為軸可建立如圖所示空間直角坐標(biāo)系,設(shè)正方體棱長為,則,,,,,,,即異面直線與所成角的余弦值為.故答案為:.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)答案見解析;(2).【解析】(1)由題可得,利用導(dǎo)數(shù)與單調(diào)性關(guān)系分類討論即得;(2)由題可得,利用函數(shù)的單調(diào)性及極值求函數(shù)最值即得.【小問1詳解】由題可得的定義域為,若,恒有,當(dāng)時,,當(dāng)時,,∴在上單調(diào)遞增,在上單調(diào)遞減,若,令,得,若,恒有在上單調(diào)遞增,若,當(dāng)時,;當(dāng)時,,故在和上單調(diào)遞增,在上單調(diào)遞減,若,當(dāng)時,;當(dāng)時,,故在和上單調(diào)遞增,在上單調(diào)遞減;綜上所述,當(dāng),在上單調(diào)遞增,在上單調(diào)遞減,當(dāng),在和上單調(diào)遞增,在上單調(diào)遞減,當(dāng),在上單調(diào)遞增,當(dāng),在和上單調(diào)遞增,在上單調(diào)遞減;【小問2詳解】由(1)知,時,在和上單調(diào)遞增,在上單調(diào)遞減;當(dāng)a=1時,,,,∴.又,,∴.由題意得,,∴.18、(1)(2)1【解析】(1)先求導(dǎo)數(shù),根據(jù)導(dǎo)數(shù)的幾何意義可求得切線方程;(2)將已知方程結(jié)合其兩根,進(jìn)行變式,求得,利用該式再將不等式變形,然后將不等式的恒成立問題變?yōu)楹瘮?shù)的最值問題求解.【小問1詳解】由題意可得,所以切點為,則切線方程為:.【小問2詳解】由題意有:,則,因為分別是方程的兩個根,即.兩式相減,則,則不等式,可變?yōu)?,兩邊同時除以得,,令,則在上恒成立.整理可得,在上恒成立,令,則,①當(dāng),即時,在上恒成立,則在上單調(diào)遞增,又,則在上恒成立;②當(dāng),即時,當(dāng)時,,則在上單調(diào)遞減,則,不符合題意.綜上:,所以的最小值為1.19、(1)(2)【解析】(1)為真命題,則都為真命題,求出為真命題時的m的取值范圍,并求交集,即為結(jié)果;(2)若是假命題,是真命題,則一真一假,分兩種情況進(jìn)行求解,最后求并集即為結(jié)果.【小問1詳解】由題意得:為真命題,則要滿足,解得:,對任意的恒成立,結(jié)合開口向上,所以要滿足:,解得:,要保證是真命題,則與取交集,結(jié)果為【小問2詳解】是假命題,是真命題,則一真一假,結(jié)合(1)中所求,當(dāng)真假時,與取交集,結(jié)果為;當(dāng)假真時,與取交集,結(jié)果為,綜上:m的取值范圍是.20、(1);(2).【解析】(1)根據(jù)給定條件推導(dǎo)證得,再借助直角三角形中銳角的正切列式求解作答.(2)由給定條件建立空間直角坐標(biāo)系,借助空間向量求解面面角作答【小問1詳解】連結(jié)BD,如圖,因底面ABCD,且平面ABCD,則,又,,平面PBD,于是得平面PBD,又平面PBD,則,有,又,則有,有,則,解得,所以.【小問2詳解】依題意,DA,DC,DP兩兩垂直,以點D為坐標(biāo)原點建立如圖所示的空間直角坐標(biāo)系,由(1)知,,,,,,,,設(shè)平面AMP的法向量為,則,令,得,設(shè)平面BMP的法向量為,則,令,得,設(shè)二面角A-PM-B的平面角為,則,因此,,所以二面角A-PM-B的正弦值為.21、(1);(2)增區(qū)間為,減區(qū)間為.【解析】(1)根據(jù)導(dǎo)數(shù)的幾何意義即可求解;(2)求g(x)導(dǎo)數(shù),導(dǎo)數(shù)同分分解因式,討論
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 二手房出租合同范文2024年
- 業(yè)務(wù)委托合同協(xié)議書樣本
- 2024年集裝箱出租合同書
- 講師與教育平臺合作合同
- 買賣房屋定金協(xié)議書
- 房屋租賃合同的違約責(zé)任解析
- 中小學(xué)信息技術(shù)教師應(yīng)具備哪些能力與素質(zhì)
- 簡單卷閘門合同書樣本2024年
- 2024年國際快遞合作協(xié)議書
- 客戶服務(wù)協(xié)議書
- 液態(tài)硅膠材料與LIM工藝介紹課件
- 心理韌性:如何培養(yǎng)內(nèi)心強(qiáng)大的孩子
- 大氣環(huán)境監(jiān)測實驗報告
- 【灌溉系統(tǒng)】-經(jīng)濟(jì)作物灌溉制度
- 【典型案例】黃河流域河南的歷史發(fā)展:人民群眾是社會精神財富的創(chuàng)造者
- 化學(xué)檢驗員考試試題含答案
- 潛在失效模式(FMEA)
- 設(shè)備運行分析報告(模板01)
- 中移建設(shè)有限公司招聘試題
- 公司科技創(chuàng)新管理辦法
- 浙江某體育館模板高支撐施工方案
評論
0/150
提交評論