版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
第5章
新型耦合器件與原理II:器件與結(jié)構(gòu)集成光電子器件及設(shè)計(jì)2Outline
Structures
and
devices
for
coupling
Butt‐coupling;
Vertical
coupling;
Evanescent
coupling;
Mode
coupling/conversion;
31.
Butt‐coupling
Butt‐coupler
between
a
fiber
and
a
SOI
nanowire
Multimode
interference
(MMI)
couplers.
Vertical
direction
(μm)Vertical
direction
(μm)4Horizontal
direction
(μm)標(biāo)準(zhǔn)光纖和波導(dǎo)在端面耦合時(shí)模式失配損耗是插入損耗的主要因素;利用光纖和波導(dǎo)模場的重疊積分可以得到兩者耦合時(shí)的損耗;改變波導(dǎo)的幾何尺寸,從而改變波導(dǎo)的模場分布,可以使波導(dǎo)的模場和光纖的模場達(dá)到較好的耦合。f
(x,=∫∫Er(x,y)
?Enor*y)dxdyf
f
(x,f
(x,
∫∫Er(x,y)
?Enor*y)dxdy∫∫Enor(x,y)
?Enor*y)dxdyc0
=
wco=500nm,
hco=300nm,
hcl=2μm
Horizontal
direction
(μm)wco=6μm,
hco=6μm,Δ≈0.7%1.1
Butt‐coupler
between
a
fiber
and
a
SOI
nanowire
Coupling
coefficient5Butt‐coupling:
mode
converters
Lateral
Tapers;
Vertical
Tapers;
Combined
vertical
&
lateral
taper.
Lots
of
work
has
been
done
for
III‐V
PICs!6Lateral
TapersIEEE
JSTQE,
3(6):
1308‐1320,
19977Vertical
TapersIEEE
JSTQE,
3(6):
1308‐1320,
19978Combined
vertical
&
lateral
taperIEEE
JSTQE,
3(6):
1308‐1320,
19979Taper
fabrication
methods
based
on
dry
etching(c)
Shadow
masked
RIE.(a)
Oxide
shadow
technique.
(b)
Direct
shadow
etching10Mode
converters
in
silicon
photonics
for
the
fiber‐coupling
Dual
grating-assisted
directional
coupler.G.Z.
Masanovic,
et
al.
IEE
Proc.-Optoelectron.,
152(1),
2005.
NTT
Microsystem
Integration
Lab.IEEE
J
Select.
Top.
Qutant.
Electron.
11(1),
2005hLtopLbtwrHwcohcowtpxyzSilicon
NanotaperVilson
R.
Almeida,
Roberto
R.
Panepucci,
and
Michal
Lipson,
"Nanotaper
for
compact
mode
conversion,"
Opt.
Lett.
28,
1112hwSipolymerSiO2
h=250nmw=100nm
h=
350nmw=100nm
h=500nmw=100nmw=50nmw=50nmw=50nmInverse
taperNarrow
tip
is
needed.13Ultra‐low‐loss
inverted
taper
coupler
w=450
nm
<
15
nm
(a
thermal
oxidation
process)IL
of
each
inverted
taper
coupler:(1)
~0.36
dB
(TM);
(2)
~
0.66
dB
(TE)
M.
Pu,
et
al.
Optics
Communications,
283(19):
3678–3682,
2010.
y
(μm)y
(μm)y
(μm)y
(μm)y
(μm)y
(μm)Daoxin
Dai,
et
al.
JLT,
24(6):
2428‐2433,
2006.14x
(μm)z=0x
(μm)z=200μmx
(μm)z=400μmminor
peakx
(μm)z=800μmx
(μm)z=600μmx
(μm)y=–(H–h)hLtopLbtwrHBi‐level
mode
converter
wco
hcowtpxyz151.2.
MMI
couplers
由輸入/輸出波導(dǎo)、多模干涉區(qū)組成;
與方向耦合器、Y分支、星型耦合器等相比,具有結(jié)構(gòu)緊湊、易于制作、損耗小、制作容差性好、偏振相關(guān)性小等優(yōu)點(diǎn);
已經(jīng)在功分器、光開關(guān)、上下路器、波分復(fù)用器件、環(huán)形激光器等器件中得到了廣泛應(yīng)用。z]v(v+2)π
3LπE(x,z)
=∑cν?ν
(x)exp[?
j
νLucas
B.
Soldano
and
Erik
C.
M.
Pennings.
Optical
multi‐mode
interference
devices
based
on
self‐imaging:
principles
and
applications.
J.
Lightwave
Technol.
13(4):
615‐627,
1995
(cited
1171
times).
M.
Bachmann,
P.
A.
Besse,
and
H.
Melchior,
"General
self‐imaging
properties
in
N
×
N
multimode
interference
couplers
16
MMI耦合器‐自成像原理
?
對于輸入場E(x),可將其分解成多模區(qū)所有模場的加權(quán)和(正交完備基
函數(shù))
E(x,0)
=∑cν?ν
(x)
ν加權(quán)系數(shù)
cν
=
2
傳播
常數(shù)
則在多模區(qū)傳輸距離z
后的場可表示為173Lπ
將模場分為兩部分:奇模與偶模
Ei(x)
=
Ee(x)+
Eo(x)(a)
當(dāng)
L=3Lπ時(shí)
各個(gè)模式的相位:
Φ3Lπ
={0,π,0,π,L}E3Lπ
(x)
=
Ee(x)?
Eo(x)
=
Ee(?x)+
Eo(?x)
=
Ein(?x)6LπE6Lπ
(x)
=
Ee(x)+
Eo(x)
=
Ein(x)?
(b)
當(dāng)
L=6Lπ時(shí)
各個(gè)模式的相位:
Φ6Lπ
={0,0,0,0,L}鏡像自成像z]v(v+2)π
3LπE(x,z)
=∑cν?ν
(x)exp[?
j
νE32(x)
=
Ee
o(x)
=Ei(x)e?
j
4π
+
Ei(?x)e
j
4π18{}1
11
2(x)?
jE3/2Lc1×2
splitterMMI耦合器‐Mode
Propagation
Analysis
(MPA)
?
(c)
當(dāng)
L=3/2Lπ時(shí)
?
3
3
?
2
?
2
2
?19Self‐imaging
in
an
MMI
section20
三種輸入方式(a)
一般干涉模式(General
Interference);(b)
限制干涉模式(Restricted
Interference);(c)
對稱干涉模式(Symmetric
Interference);x
=±WMMI
/6x
=0(a)(b)(c)21Summary
for
the
self‐imaging
at
MMI
sections22Tapered
MMI
couplers
2×2
optical
coupler:
for
the
coupling
between
microring
and
the
access
optical
waveguides,
also
for
Mach-Zehnder
Interferometer
(MZI)
filter.zxw1w2L
θGw(z)zxw1LGTapering
the
MMI
section
small
MMI
coupler23How
to
design
of
2×2
tapered
MMI
couplersθzxw1w2LGw(z)To
find
the
exact
MMI
length
L
for
good
self-imaging,
one
usually
hasto
implement
a
series
of
numerical
simulations
(e.g.,
BPM
simulations)in
which
the
length
L
is
scanned.
Time-consumed.The
effective
index?φ(L)w1=1.4μm24Our
design
method
for
Tapered
MMI
coupler
L
Δ?(L)
=?0
??1
=∫{neff0[w(z')]?neff1[w(z')]}k0dz'
0where
n0eff(w)=∑aiwi,
n1eff(w)=∑biwi.02682.33.1
32.92.82.72.62.52.4
4wMMI
(μm)Find
the
solution
of
?φ(L)=?φ0L.e.g.,
?φ0=3π/N
for
a
GI-type
N-fold
selfimaging.
Daoxin
Dai,
Sailing
He.
Appl.
Opt.,
47(1):
38‐44,
2008.
4610122
2765438TE
8L
(μm)
w2=1.0μm?φ0=3π/2w2=1.2μm
w2=2.0μmneff0
neff1
Obtained
by
the
FDM
mode‐solver
w20(μm)L
MMI(μm)25Realization
of
polarization‐sensitivity
by
tapering
MMI
sectionDaoxin
Dai,
and
Sailing
He.
IEEE
Photon.
Technol.
Lett.,
20(8):
599‐601,
2008.
zxw1w2L
θGw(z)11.41.82.211.5233.54
2.5w
1(μm)8.59.510.511.5To
make
LMMI_TE=LMMI_TM(a)(b)26MMI應(yīng)用‐功分器1xN
power
splitter2x2
couplerRing
resonatorx(
μ
m)Output
power
from
two
ports
(dB)Output
power
from
two
ports
(dB)x(
μ
m)1310nm1550nmWMMIPort1zxPort21310nmPort31550nm通過選取合適的MMI寬度與長度實(shí)現(xiàn)1310nm與1550nm信道的分離。
LMMI
=
n?Lπ
(1310)
=
(n+1)?Lπ
(1550)MMI應(yīng)用:1310/1550
nm
波分復(fù)用器
結(jié)構(gòu)示意圖0300400-10
-5050100300400
10-10
-50510
200z
(μm)
(c)
LMMITE偏振,
@1310nm
100
200
z
(μm)
(a)TE偏振,
@1550nm1330-30
1290-25-15-20-10-501300
1310
1320
Wavelength
(nm)
(a)1575-30
1525-25-15-20-10-501537
1550
1567
Wavelength
(nm)
(b)
27Port3Port2Port2Port3TETMTETMx
(μm)
x
(μm)28z
(μm)
(b)
TE2000
1000
0
(a)
TMwMMI1
MMI
#1
wMMI2
MMI
#2TE/TMTMTE
MMI應(yīng)用:偏振分束器(PBS)傳統(tǒng)方法:通過選取合適的MMI寬度與長度實(shí)現(xiàn)TE與TM的分離。
新方法:A
compact
design
with
cascaded
MMI
sectionsYuqing
Jiao,
et
al.
IEEE
Photonics
Technology
Letters,
,
21(20):
1538‐1540,
2009.
292.
Vertical
coupling
(with
grating
couplers)W.
Bogaerts,
et
al.
J.
Lightwave
Technol.
23(1),
2005Polarization-dependent,
wavelength-sensitive30Principle
of
grating
couplersBragg
condition31How
to
improve
the
coupling
efficiency?32D.
Vermeulen,
et
al,
"High‐efficiency
fiber‐to‐chip
grating
couplers
realized
using
an
advanced
CMOS‐compatible
Silicon‐On‐Insulator
platform,"
Opt.
Express
18,
18278‐18283
(2010)
Improved
designs
for
grating
couplers
using
a
poly‐silicon
overlay
?1.6dB
and
a
3dB
bandwidth
of
80nmChirped
grating
coupler
higher
efficiencyY.
Tang,
et
al.
Opt.
Lett.,
35(8):1290‐1292,
2010.
3334Directionality
D
~
tbufw=200nm,
t=260nm,
d=90nm,
Λ=629nm,
n1
=
n3
=
1.46,
n2
=
3.4835Reduce
the
mode
matching
loss.
With
Bragg
grating
underneath
to
reduce
the
leakage
to
the
substrate.
Chirp
grating
coupler
+
Bragg
grating36http://www.iph.rwth‐aachen.de/?page_id=40Ultra‐compact
curved
grating
coupler37
2D
grating
coupler
for
coupling,
polarization‐splitting/rotatingW.
Bogaerts,
et
al.
Optics
Express,
15(4):
1567‐1578,
2007.
38Application
of
2D
grating
couplersW.
Bogaerts,
et
al.
Optics
Express,
15(4):
1567‐1578,
2007.
39
High
coupling
efficiency,
short
coupling
length;
Mode
converter;
Q
Li,
et
al.
Opt.
Lett.
35,
3153‐3155
(2010)
3.
Evanescent
coupling:
asymmetrical
directional
coupler
Efficient
coupling
between
different
types
of
optical
waveguides
SHP
waveguides
and
SOI
nanowires40Evanescent
coupling:
directional
coupler
Symmetrical
directional
coupler;
Asymmetrical
directional
coupler;
Input
Section
Output
Section
1234A0A
Coupling
region
BB0sD
Input
Section
Output
Section
1234A0A
Coupling
region
BB0sD
Phase
matching
condition!41w1hco1wgw2WG
IWG
IIhco2TM0Input
Asymmetricalcoupling
systemThruCrossTE0SiO2
TE0,TM0APBS3.1
Application
of
asymmetrical
couplers
II
PBSs:
one
polarization
is
coupled
while
the
other
one
does
not.
42TETM
Lcupl=2*Lπ_TE=1*Lπ_TMDrawback:
Small
fabrication
tolerance,
Might
be
pretty
long.
Basic
principle
for
DC‐based
PBSLcupl=p*LπTE=q*LπTM,
where
p,
q
are
integers,
and
p=q+k,
k=±1,
3,
5,
…
Improved
design:
Idea
coupling
system
for
PBS:TMpolarizationhasstrongcoupling,whilenocouplingforTE.Lcupl=1*Lπ_TM
≈0*Lπ_TE!
PBS
based
on
an
asymmetrical
DC.neff431.451.701.952.702.452.202.950.30.60.91.21.5
Waveguide
width
(μm)Daoxin
Dai,
JLT,
30(20):
3281‐3287
(2012).
TE0
TE1w2w1hco=220nmTM0TM1TE3w1wgw2TE0TM1TE0TM0TM1
PBS
based
on
an
asymmetrical
DC(a).
Asymmetrical
DC
consisting
of
two
WGs
with
different
widths.
Principle
TM0TMTE44w2w1
wgLc1
Lc2L0Lz1Lx1Lz2Lx2Daoxin
Dai,
Journal
of
Lightwave
Technology,
30(20):
3281‐3287
(2012).
PBS
based
on
a
three‐waveguides
coupling
system
StructureTM/TETETMTransmission
(dBm)Power
(dBm)1.53μm1.58μmTransmission
(dBm)Power
(dBm)0
1.45Wavelength
(nm)-25-10-15-20
0-51.65Thru
port(a)
Input:
TM0
1.5
1.55
Wavelength
(μm)‐35‐45‐15
‐25Thru
TM
input
(a)Results15101590
45
1530
1550
1570
Wavelength
(nm)
1590Thru
Cross
‐55‐15
1510
1530
1550
1570
TE
input
‐25‐35‐45‐55-30
-10
-20
-30
-40
-501.451.51.61.65
1.55Wavelength
(μm)
Cross
port
1.6Thru
portCross
port(b)
Input:
TE0SimulationMeasurement
CrossR2=20μm,R1=R2–0.7μmWG#22mismatchWG#1w1(b)TER2=20μm,R1=R2–0.7μmWG#2w2w1WG#1(a)TMOPLOPL46(b).
Asymmetrical
DC:
a
bending
coupler.
Due
to
the
birefringence,
the
phase‐matching
condition
is
satisfied
for
only
one
polarization
(e.g.,
TM)
in
this
structure.
Therefore,
TM
polarization
will
be
coupled
from
one
waveguide
R1R2w1wgw2
148
146
144
142
140
138
136
1340.440.460.580.60.48
0.5
0.52
0.54
0.56
Waveguide
width
(μm)0.440.460.580.60.48
0.5
0.52
0.54
0.56
Waveguide
width
(μm)
to
the
other
one
while
TE
polarization
won’t.
Then
these
two
polarizations
are
separated.
Because
the
TM
polarization
has
very
strong
coupling,
an
ultra‐compact
PBS
is
expected.
The
phase
matching
condition:
OPL≡β2R2θ=
β1R1θ.
208
204
200
196
192
188
184
18047Phase‐matching
conditionw1opt=0.55um;
w1
wg
w2R2=20um,
R1=R2-0.7um,
w2=0.46umR1R248TMTESiO2TE/TMw1hcowgw2SiSiTMTETE/TMw1w2wgapR3LxLzR=20μmS-bendL<10umTMTESiO2
~0.983~0.97~0.02<0.001The
PBS
design
SiPower
(dB)Power
(dB)Extinction
ratio
(dB)495020151025145016501500
1550
1600
Wavelength
(nm)
TE
TM(c)
Calculated
‐20‐25
‐5‐10/p>
1550
1600
Wavelength
(nm)CrossThru(b)
TM
inputCalculated
The
fabricated
PBS
and
the
characterization
TE
TMTM
TE‐20‐25
‐5‐10/p>
14501500
1550
1600
Wavelength
(nm)ThruCrossCalculated(a)
TE
inputneff50(c)
Asymmetrical
DC
with
two
different
types
of
WGsTETMSiO2SiTE/TMwcohcwg
wS
wslotSiO2SiSiSiAirUse
the
coupling
betweenSOI
nanowire
and
nano-slot
waveguide.Daoxin
Dai,
Zhi
Wang,
and
John
E
Bowers,
Optics
Letters,
36(13),
2590-2592
(2011).
Lcupl=1*Lπ_TM
=0*Lπ_TE!Phase-matching
for
TM
only.1.61.52.12.01.91.81.72.32.22.52.40.10.150.20.40.450.50.25
0.3
0.35
wSi,
wco
(μm)TEwcoTETMNano-slot
WG
wSi
wslot
Airhco
Si
SiO2
Nanowire
TM
Si
Air
Si
SiO2wslot=60nmwslot=80nmwslot=100nmhco=250nmTE
(Ex)
TE
(Ex)TM
(Ey)TM
(Ey)nano-slotwaveguideSOI
nanowire
(b)51Light
propagation
Length
<9
μ
m,
and
simple
structure;Daoxin
Dai,
Zhi
Wang,
and
John
E
Bowers,
Optics
Letters,
36(13),
2590-2592
(2011).Lc(a)
TE(b)
TM0.4μm0.4μm52Experimental
demonstrationShiyun
Lin,
et
al.
Appl.
Phys.
Lett.
98,
151101
2011Normalized
Power
(dB)P
(h
)P
(h
)1.451.5TE
Input1.65F.
Lou,
D.
Dai,
and
L.
Wosinski,
Opt.
Lett.
37,
3372
(2012)
531.551.6-15-20
-5-1001.551.61.65
-15
-20
1.45
1.5Wavelength
(μm)
-5-1002
d3
dTM
Input
Au
SiO2
SiSiO2w
=100nm
AgAir
SiSiO201.32×109D.
Dai,
et
al.
Opt.
Express,
17:
16646,
2009
(d)
Asymmetrical
DC
with
two
different
types
of
WGsUsing
the
coupling
between
an
SOI
nanowire
and
a
hybrid
plasmonics
waveguideneffTransmission
(dB)Transmission
(dB)LC
=
2.2
μm
1.3μmC54w2w1mismatchingEx(TE0@HPW)Ey(TM0@HPW)Ex(TE0@NW)Ey
(TM0@NW)TM0@HPWTE0@HPWTM0@NWTE0@NWBLcTE/TMRTMTE
BOXSi
substrateThruCrosshmhSiO2w1
wgap
w2hSiBOXThruCross1
0-1
width
(nm)Cross
Thru
TE
TMInput
Input
Length~3.7
μm
Total
Total
Cross
Cross
Thru
Thru
(a)
TE
(b)
TM
wavelength
(μm)
wavelength
(μm)X.
Guan,
et
al.
Opt.
Lett.
(to
be
published)(e)
Asymmetrical
DC
with
two
different
types
of
WGs
Using
the
coupling
between
an
SOI
nanowireand
a
hybrid
plasmonics
waveguide55Advanced
multiplexing
plays
an
important
role.Application
of
asymmetrical
couplers
II
to
realize
the
multi‐channel
mode
multiplexing
technology.
Any
multiplexing?56Space‐division‐multiplexing
(SDM)
Space‐division‐multiplexing:
Multiple
fibers
/
Multi‐core
fiber;Multimode/polarization
mode
multiplexing:
Mode
handling
(conversion
&
coupling)
is
difficult
to
control
for
optical
fibers,
It
is
convenient
for
planar
optical
circuits
(which
will
be
shown
below);
Photonic
network‐on‐chip
with
the
mode‐multiplexing
technology.
Active:
Laser
diode;
Optical
modulators;
Photodetectors;Passive:
Power
splitter;
Polarization
handling
devices;
Mode
(de)multiplexer.57
Optical
modulator
array
for
TE
LD1×2
Powersplitter
1×N
Powersplitter
1×NPowersplitter
Polarization
rotatorAdvantages:
Only
one
laser
source
is
needed
(convenient
to
use
an
off‐chip
laser);
All
the
optical
modulators
are
identical
(easy
chip
design).
Easy
management;
Low
cost;
Monolithical
integration
is
possible
with
the
Ge‐on‐Si
platform.
Mode
MUXer
ModeMUXer
ModedeMUXer
Mode
deMUXerPhotodetector
array
Multimode
waveguide
PolarizationPolarization
°°°°
Splitter
combiner
Multimode
waveguide58Mode
(de)multiplexer:
structure
and
designDesign
the
widths
(w1,
w2,
…
)
and
lengths
(Lc1,
Lc2,
…
)
for
the
coupling
region.°°°°
Mode
demultiplexer
Multiode
waveguide(a)
w1w2
w3Lc1
Lc2
Mode
multiplexerLc34‐channel10z
(μm)00010?10?10?1059?2?112
0x
(μm)?3
?2
?112
0x
(μm)1
23?3
?2
?1
0
x
(μm)01w3=2.35μm
Cw2=1.68μm
Bw1=1.02μm
A
Accesswaveguide
Accesswaveguide
AccesswaveguideI4
Configuration
of
the
proposed
mode
MUXersLc3I2
and
deMUXersawith
4
channels
60°°°Mode
deMUXer
Multiode
waveguide
w2w3The
designed
and
fabricated
MUXer/deMUXer
with
four
channels.
c1
Lc2Mode
MUXer
I1
I3
O1
O3
O4
O2
w1
wg
°°°MUXerdeMUXerI4
I2
I1
I3
O4
O2
O1
O3
Power
(dBm)Power
(dBm)Power
(dBm)Power
(dBm)61°°°I4
I2
I1
I3
O4
O2
O1
O3
O125dBO224dB
Wavelength
(nm)MUXer
O4
O2
O3
From
I1Wavelength
(nm)
O3
28.3dB
O2
O4
O1
From
I3Wavelength
(nm)
deMUXer
O3
O4
O1
From
I2Wavelength
(nm)
O4
23dB
O1
O3
O2
From
I4
AC
BDWDMPDMMultimode
SDMMulti‐core
SMDNch4~10022~81~10MUXerHybrid
multiplexing
technologyLDOptical
modulator
array1×2N
PSPR°°°°Mode
MUXerPhotodetector
ArrayPR
ModedeMUXerPS:
Power
SplitterPR:
Polarization
Rotator~1Terabit/s
using
a
single‐wavelength
carrier
(with
PDM
+
multimode
SDM);
~
100
Terabit/s
using
many
wavelengths
(with
WDM);
~
1Petabit/s
using
multiple
cores
(with
multi‐core
SDM);
Need
novel
PICs!
6263Devices
for
hybrid
multiplexing:
polarization
+
mode
MUXersTE
(4‐channels)
+
TM
(4‐channels)A
PBS
for
TE0
&
TM064Possibility
of
Tera‐bit/s
with
only
a
single
wavelength
carrier
[
8
ch
(TE)
+
8
ch
(TM)
]
*
70Gbps
>
1Tbps.
Y.
Tang,
J.
D.
Peters,
and
J.
E.
Bowers.
Optics
Express,20:11529
(2012)
65Nature
Photonics
1,
52
(2007)Opt.
Express
16,
4872‐4880
(2008)
4
Polarization
mode
conversion/rotationMotivation:
to
realize
the
polarization
diversity,
which
is
a
general
solution
for
polarization‐dependence
issue
Polarization
transparent
PICs.
Key
devices:
PS,
PR.
66An
approach
for
realizing
polarization
rotatorsExEySiTM(a)TEHSiO2:
n1=1.445
W
He
WeSi:
n2=3.48x
y
(b)Mode
hybridizationMode
#2:
neff=2.7086
ExEyMode
#1:
neff=2.6016
ExEy
(c)
Length
~8μm;
Simple
structure;
Easy
design
and
fabrication;Z.
Wang,
and
D.
Dai.
JOSA
B.
25(5):
747‐753,
2008
8μm67Experimental
demonstrationVermeulen,
et
al.
PTL,
2011.68Daoxin
Dai,
and
John
E.
Bowers,
Opt.Express,
19(11):
10940-10949
(2011).SiO2TM
SiTEPolarization
splitter
rotator
(PSR)
Structure
and
principle
TE
TETE0TE1TM0TM0TE2w=0.TE176μmSiNSiSiO2TE0TE1TE2TM0TM1SiO2SiSiO2TE0TE2TE1w0TM0AirTM0TE1SiSiO2The
effective
index
neffThe
effective
index
neffThe
effective
index
neffy
(μm)69Daoxin
Dai,
Yongbo
Tang,
and
John
E
Bowers,
Opt.
Express
20(12):
13425‐13439
(2012).
1.452.702.452.201.951.700.31.5
0.6
0.9
1.2The
waveguide
width
wco
(μm)1.45Principle:
Mode
conversion
(TM0
2.95
2.70
2.45
2.20
1.95
1.700.31.5
0.6
0.9
1.2The
waveguide
width
wco
(μm)2.12.0TE1)
in
a
taper
structure
2.9
2.8
2.7
2.6
2.5
2.4
2.3
2.20.31.5
0.5
0.7
0.9
1.1
1.3The
waveguide
width
wco
(μm)x
(μm)x
(μm)(a)
neff=2.25295(b)
neff=2.19855ExEyExEyMode
hybridizationLtp1=15,10,5,4,3,2,1μmTM0TE1TM0TM0Ltp1=15,10,5,4,3,2,1μmTE0TE1TM0TM0TE2w=0.76μmSSiiNTE1SiO2The
mode
conversion
efficiency
ηThe
effective
index
neff-1.5-1.5-1.0-0.50.00.50.50.0-0.5-1.0x/umx/um1.01.07005101520253035404550556065
z/um05101520253035404550556065
z/umDaoxin
Dai,
Yongbo
Tang,
and
John
E
Bowers,
Opt.
Express
20(12):
13425‐13439
(2012).
Principle:
Mode
conversion
(TM0
2.9
2.8
2.7
2.6
2.5
2.4
2.3
2.2
2.1
2.00.31.5
0.5
0.7
0.9
1.1
1.3The
waveguide
width
wco
(μm)TM0TE1
(~100%)TE0TE00%
TE1)
in
a
taper
structure100%
90%
80%
70%
60%
50%
40%
30%
20%
10%0204060100120140160
80Ltp2
(μm)71TE0(a)
TE
inputTE0TE0(b)TaperCoupling(b)
TM
inputTM0TE1TE0Ltot=71μmLtp1Ltp2Ltp3LdcLtpoutw3w0w4woutwoutw2Daoxin
Dai,
and
John
E.
Bowers,
Opt.Express,
19(11):
10940-10949
(2011).
Adiabatic
taper?
Easy
to
fabricate.
No
additional
steps
needed.?
Standard
waveguide
geometry.
SOI
with
any
top
silicon
thickness.TMSiO2SiTEWith
the
help
of
an
asymmetrical
coupler:
TE1
TE
TEw1Polarization
splitter‐rotator
(PSR)
Ltot=71μm50μm72Shorter
taper
section
shorter
PSR17μmLtp1Ltp3LdcLtpoutw3w0w4woutwoutw1w2
Ltp2Adiabatic
taper73For
SOI
strip
waveguides,
one
can
introduce
a
SiO2
upper‐cladding
make
the
waveguide
symmetrical
in
the
vertical
direction
so
that
the
mode
conversion
can
be
depressed
when
needed.
However,
for
SOI
ridge
waveguides,
which
is
often
used,
what
happens?het
HCladding
wco
Core
Buffernclnco
nbf(b)It
is
still
asymmetrical
in
the
vertical
direction
even
with
the
same
material
for
the
upper‐
and
under‐cladding.74Mode
conversion
in
a
sub‐micron
SOI
ridge
waveguide
tapers
w2Regular
taper
Ltp
w1(a)Bufferhet
HCladding
wco
Corenclnconbf(b)het
HCladding
wco
Core
Buffer
wsidenconclnbf(b)Bi‐level
taper
(a)Daoxin
Dai,
Y.
Tang,
and
J.
E
Bowers,
Opt.
Express
20(12):
13425‐13439
(2012).
(a)het=0.4HTE0TE2TE1TE3TM0TM0CladdingwcoTE1nclhHetncoCoreTM0nbfBuffer(b)het=0.5HTE0TE1TE2TE3TM0TM0CladdingwconclhHetncoCoreTM0nbfBufferTE1(c)het=0.6HTE0TE1TE2TM0TM0TE3wcoTM0nclncoCoreCladdinghetHTE1nbfBufferThe
effective
index
neffThe
effective
index
neffThe
effective
index
neffy(μm)y(μm)y(μm)y(μm)752.83.02.93.23.10.531
1.5
2
2.5
The
waveguide
width
wco
(μm)2.83.02.90.531
1.5
2
2.5
The
waveguide
width
wco
(μm)2.72.83.02.93.23.10.531
1.5
2
2.5The
waveguide
width
wco
(μm)Mode
hybridization
in
SOI
ridge
waveguides
3.2
3.1
CoreBufferhet
HCladding
wconclnconbf(b)x
(μm)(a)
mode
#1:
neff=2.908029wco=1.0μmExEyx
(μm)(b)
mode
#2:
neff=2.877179wco=1.0μmExEyx
(μm)(a)
mode
#1:
neff=2.942011wco=2.45μmExEyx
(μm)(b)
mode
#2:
neff=2.947892wco=2.45μmExEyDaoxin
Dai,
Y.
Tang,
and
J.
E
Bowers,
Opt.
Expres
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 金融知識普及內(nèi)容
- 青春期艾滋病教育方案
- 幼師實(shí)習(xí)自我鑒定(集合15篇)
- 老師個(gè)人工作總結(jié)怎么寫
- 競聘安全演講稿匯編八篇
- 藥廠實(shí)習(xí)報(bào)告15篇
- 防溺水安全知識主題教育138
- 2021年普通員工個(gè)人年終總結(jié)5篇
- 母親節(jié)活動總結(jié)(15篇)
- 物流類實(shí)習(xí)報(bào)告模板錦集5篇
- 網(wǎng)絡(luò)與信息安全管理員-互聯(lián)網(wǎng)信息審核員理論考試題庫(新版)
- 臨床醫(yī)學(xué)檢驗(yàn):體液腫瘤標(biāo)志物考試題庫(三)
- 養(yǎng)殖水環(huán)境化學(xué)全套教學(xué)課件
- 《大慶精神-鐵人精神》課件wanzheng
- 危險(xiǎn)廢物管理臺賬(空白表4張)
- 飼養(yǎng)寵物兔子知識培訓(xùn)課件
- 道路鏟雪除冰合同
- 慢性胰腺炎診治指南
- 機(jī)械設(shè)備租賃報(bào)價(jià)單
- 自動化生產(chǎn)線安裝與調(diào)試實(shí)訓(xùn)報(bào)告
- 科研誠信教育專項(xiàng)培訓(xùn)
評論
0/150
提交評論