版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
2025屆山東師大附屬中高二數(shù)學第一學期期末教學質(zhì)量檢測模擬試題請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應(yīng)的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知雙曲線的一條漸近線方程是,它的一個焦點在拋物線的準線上,則雙曲線的方程為()A. B.C. D.2.設(shè)函數(shù)是定義在上的函數(shù)的導函數(shù),有,若,,則,,的大小關(guān)系是()A. B.C. D.3.已知E、F分別為橢圓的左、右焦點,傾斜角為的直線l過點E,且與橢圓交于A,B兩點,則的周長為A.10 B.12C.16 D.204.丹麥數(shù)學家琴生(Jensen)是19世紀對數(shù)學分析作出卓越貢獻的巨人,特別是在函數(shù)的凸凹性與不等式方面留下了很多寶貴的成果.設(shè)函數(shù)在區(qū)間內(nèi)的導函數(shù)為,在區(qū)間內(nèi)的導函數(shù)為,在區(qū)間內(nèi)恒成立,則稱函數(shù)在區(qū)間內(nèi)為“凸函數(shù)”,則下列函數(shù)在其定義域內(nèi)是“凸函數(shù)”的是()A. B.C. D.5.已知,是橢圓的兩焦點,是橢圓上任一點,從引外角平分線的垂線,垂足為,則點的軌跡為()A.圓 B.兩個圓C.橢圓 D.兩個橢圓6.已知橢圓的離心率,為橢圓上的一個動點,若定點,則的最大值為A. B.C. D.7.集合,,則()A. B.C. D.8.如果,那么下列不等式成立的是()A. B.C. D.9.某制藥廠為了檢驗?zāi)撤N疫苗預(yù)防的作用,把名使用疫苗的人與另外名未使用疫苗的人一年中的記錄作比較,提出假設(shè):“這種疫苗不能起到預(yù)防的作用”,利用列聯(lián)表計算得,經(jīng)查對臨界值表知.則下列結(jié)論中,正確的結(jié)論是()A.若某人未使用該疫苗,則他在一年中有的可能性生病B.這種疫苗預(yù)防的有效率為C.在犯錯誤的概率不超過的前提下認為“這種疫苗能起到預(yù)防的作用”D.有的把握認為這種疫苗不能起到預(yù)防生病的作用10.圓關(guān)于直線對稱,則的最小值是()A. B.C. D.11.數(shù)列中,滿足,,設(shè),則()A. B.C. D.12.已知數(shù)列的通項公式為,按項的變化趨勢,該數(shù)列是()A.遞增數(shù)列 B.遞減數(shù)列C.擺動數(shù)列 D.常數(shù)列二、填空題:本題共4小題,每小題5分,共20分。13.雙曲線的漸近線方程為___________.14.已知空間向量,,若,則______15.已知拋物線的焦點為F,過F的直線l交拋物線C于AB兩點,且,則p的值為______16.將車行的30輛大巴車編號為01,02,…,30,采用系統(tǒng)抽樣方法抽取一個容量為3的樣本,且在某組隨機抽得的一個號碼為08,則剩下的兩個號碼依次是__________(按號碼從小到大排列)三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)如圖,在長方體中,,,,M為上一點,且(1)求點到平面的距離;(2)求二面角的余弦值18.(12分)已知等比數(shù)列的前項和為,,.數(shù)列的前項和為,且,(1)分別求數(shù)列和的通項公式;(2)若,為數(shù)列的前項和,是否存在不同的正整數(shù),,(其中,,成等差數(shù)列),使得,,成等比數(shù)列?若存在,求出所有滿足條件的,,的值;若不存在,說明理由19.(12分)已知數(shù)列滿足,,,.從①,②這兩個條件中任選一個填在橫線上,并完成下面問題.(1)寫出、,并求數(shù)列的通項公式;(2)求數(shù)列的前項和.20.(12分)已知拋物線的焦點為,點為拋物線上一點,且.(1)求拋物線方程;(2)直線與拋物線相交于兩個不同的點,為坐標原點,若,求實數(shù)的值;21.(12分)在下面兩個條件中任選一個條件,補充在后面問題中的橫線上,并完成解答.條件①:展開式前三項的二項式系數(shù)的和等于37;條件②:第3項與第7項的二項式系數(shù)相等;問題:在二項式的展開式中,已知__________.(1)求展開式中二項式系數(shù)最大的項;(2)設(shè),求的值;(3)求的展開式中的系數(shù).22.(10分)已知圓心在直線上,且過點、(1)求的標準方程;(2)已知過點的直線被所截得的弦長為4,求直線的方程
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、A【解析】根據(jù)雙曲線漸近線方程得a和b的關(guān)系,根據(jù)焦點在拋物線準線上得c的值,結(jié)合a、b、c關(guān)系即可求解.【詳解】∵雙曲線的一條漸近線方程是,∴,∵準線方程是,∴,∵,∴,,∴雙曲線標準方程為:.故選:A.2、C【解析】設(shè),求導分析的單調(diào)性,又,,,即可得出答案【詳解】解:設(shè),則,又因為,所以,所以在上單調(diào)遞增,又,,,因為,所以,所以.故選:C3、D【解析】利用橢圓的定義即可得到結(jié)果【詳解】橢圓,可得,三角形的周長,,所以:周長,由橢圓的第一定義,,所以,周長故選D【點睛】本題考查橢圓簡單性質(zhì)的應(yīng)用,橢圓的定義的應(yīng)用,三角形的周長的求法,屬于基本知識的考查4、B【解析】根據(jù)基本初等函數(shù)的導函數(shù)公式求各函數(shù)二階導函數(shù),判斷其在定義域上是否恒有,即可知正確選項.【詳解】A:,則,顯然定義域內(nèi)有正有負,故不是“凸函數(shù)”;B:,則,故是“凸函數(shù)”;C:,則,故不是“凸函數(shù)”;D:,則,顯然定義域內(nèi)有正有負,故不是“凸函數(shù)”;故選:B5、A【解析】設(shè)的延長線交的延長線于點,由橢圓性質(zhì)推導出,由題意知是△的中位線,從而得到點的軌跡是以為圓心,以為半徑的圓【詳解】是焦點為、的橢圓上一點為的外角平分線,,設(shè)的延長線交的延長線于點,如圖,,,,由題意知是△的中位線,,點的軌跡是以為圓心,以為半徑的圓故選:A6、C【解析】首先求得橢圓方程,然后確定的最大值即可.【詳解】由題意可得:,據(jù)此可得:,橢圓方程為,設(shè)橢圓上點的坐標為,則,故:,當時,.本題選擇C選項.【點睛】本題主要考查橢圓方程問題,橢圓中的最值問題等知識,意在考查學生的轉(zhuǎn)化能力和計算求解能力.7、A【解析】先解不等式求得集合再求交集.【詳解】解不等式得:,則有,解不等式,解得或,則有或,所以為.故選:A.8、D【解析】利用不等式的性質(zhì)分析判斷每個選項.【詳解】由不等式的性質(zhì)可知,因為,所以,,故A錯誤,D正確;由,可得,,故B,C錯誤.故選:D9、C【解析】根據(jù)的值與臨界值的大小關(guān)系進行判斷.【詳解】∵,,∴在犯錯誤的概率不超過的前提下認為“這種疫苗能起到預(yù)防的作用”,C對,由已知數(shù)據(jù)不能確定若某人未使用該疫苗,則他在一年中有的可能性生病,A錯,由已知數(shù)據(jù)不能判斷這種疫苗預(yù)防的有效率為,B錯,由已知數(shù)據(jù)沒有的把握認為這種疫苗不能起到預(yù)防生病的作用,D錯,故選:C.10、C【解析】先求出圓的圓心坐標,根據(jù)條件可得直線過圓心,從而可得,然后由,展開利用均值不等式可得答案.【詳解】由圓可得標準方程為,因為圓關(guān)于直線對稱,該直線經(jīng)過圓心,即,,,當且僅當,即時取等號,故選:C.11、C【解析】由遞推公式可歸納得,由此可以求出的值【詳解】因為,,所以,,,因此故選C【點睛】本題主要考查利用數(shù)列的遞推式求值和歸納推理思想的應(yīng)用,意在考查學生合情推理的意識和數(shù)學建模能力12、B【解析】分析的單調(diào)性,即可判斷和選擇.【詳解】因為,顯然隨著的增大,是遞增的,故是遞減的,則數(shù)列是遞減數(shù)列.故選:B.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】將雙曲線化為標準方程后求解【詳解】,化簡得,其漸近線方程故答案為:14、7【解析】根據(jù)題意,結(jié)合空間向量的坐標運算,即可求解.【詳解】根據(jù)題意,易知,因為,所以,即,解得故答案為:715、3【解析】根據(jù)拋物線焦點弦性質(zhì)求解,或聯(lián)立l與拋物線方程,表示出,求其最值即可.【詳解】已知,設(shè),,,則,∵,所以,,∴,當且僅當m=0時,取..故答案為:3.16、18,28【解析】根據(jù)等距抽樣的性質(zhì)確定剩下的兩個號碼即可.【詳解】由于從30輛大巴車中抽取3輛車,故分組間距為10,又第一組的號碼為08,所以其它兩個號碼依次是18,28故答案為:18,28.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)(2)【解析】(1)以A為原點,以AB、AD、所在直線分別為x軸、y軸、z軸,建立如圖所示的空間直角坐標系,利用空間向量求解,(2)求出和的法向量,利用空間向量求解【小問1詳解】以A為原點,以AB、AD、所在直線分別為x軸、y軸、z軸,建立如圖所示的空間直角坐標系由,,,,所以,,,因此,,,設(shè)平面的法向量,則,,所以,取,則,,于是,所以點到平面的距離【小問2詳解】由,,設(shè)平面的法向量,則,,所以,取,則,,于是,由(1)知平面的法向量為,記二面角的平面角為,則,由圖可知二面角為銳角,所以所求二面角的余弦值為18、(1),;(2)不存在,理由見解析.【解析】(1)利用數(shù)列為等比數(shù)列,將已知的等式利用首項和公比表示,得到一個方程組,求解即可得到首項和公比,結(jié)合等比數(shù)列的通項公式即可求出;將已知的等式變形,得到數(shù)列為等差數(shù)列,利用等差數(shù)列通項公式求出,再結(jié)合數(shù)列的第項與前項和之間的關(guān)系進行求解,即可得到;(2)先利用等比數(shù)列求和公式求出,從而得到的表達式,然后利用裂項相消求和法求出,假設(shè)存在不同的正整數(shù),,(其中,,成等差數(shù)列),使得,,成等比數(shù)列,利用等比中項、等差中項以及進行化簡變形,得到假設(shè)不成立,故可得到答案【詳解】(1)因為數(shù)列為等比數(shù)列,設(shè)首項為,公比為,由題意可知,所以,所以,由②可得,即,所以或2,因為,所以,所以,所以,由,可得,所以數(shù)列為等差數(shù)列,首項為,公差為1,故,則,當時,,當時,也適合上式,故(2)由,可得,所以,所以,假設(shè)存在不同的正整數(shù),,(其中,,成等差數(shù)列),使得,,成等比數(shù)列,則有,所以,則,即,因為,所以,即,所以,所以,則,所以,則,所以,即,所以,這與已知的,,互不相等矛盾,故不存在不同的正整數(shù),,(其中,,成等差數(shù)列),使得,,成等比數(shù)列【點睛】裂項相消法是最難把握的求和方法之一,其原因是有時很難找到裂項的方向,突破這一難點的方法是根據(jù)式子的結(jié)構(gòu)特點,常見的裂項技巧:(1);(2);(3);(4);此外,需注意裂項之后相消的過程中容易出現(xiàn)丟項或多項的問題,導致計算結(jié)果錯誤.19、(1)條件選擇見解析,,,(2)【解析】(1)選①,推導出數(shù)列為等比數(shù)列,確定該數(shù)列的首項和公比,可求得,并可求得、;選②,推導出數(shù)列是等比數(shù)列,確定該數(shù)列的首項和公比,可求得,可求得,由此可得出、;(2)求得,,分為偶數(shù)、奇數(shù)兩種情況討論,結(jié)合并項求和法以及等比數(shù)列求和公式可求得.【小問1詳解】解:若選①,,且,故數(shù)列是首項為,公比為的等比數(shù)列,,故;若選②,,所以,,且,故數(shù)列是以為首項,以為公比的等比數(shù)列,所以,,故,所以,,故,.【小問2詳解】解:由(1)可知,則,所以,.當為偶數(shù)時,;當為奇數(shù)時,.綜上所述,.20、(1)(2)【解析】(1)根據(jù)拋物線過點,且,利用拋物線的定義求解;(2)設(shè),聯(lián)立,根據(jù),由,結(jié)合韋達定理求解.【小問1詳解】解:由拋物線過點,且,得所以拋物線方程為;【小問2詳解】設(shè),聯(lián)立得,,,,則,,即,解得或,又當時,直線與拋物線的交點中有一點與原點重合,不符合題意,故舍去;所以實數(shù)的值為.21、(1)答案見解析(2)0(3)560【解析】(1)選擇①,由,得,選擇②,由,得;(2)利用賦值法可求解;(3)分兩個部分求解后再求和即可.【小問1詳解】選擇①,因為,解得,所以展開式中二項式系數(shù)最大的項為選擇②,因為,解得,所以展開式中二項式系數(shù)最大的項為【小問2詳解】令,則,令,則,所以,【小問3詳解】因為所以的展開式中含
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024版城市道路排水設(shè)施承包合同:城市道路排水設(shè)施維護承包合同3篇
- 2024年度危險化學品廢棄物處理合同3篇
- 2024年度綠色節(jié)能住宅房地產(chǎn)定向開發(fā)合同3篇
- 2024版商鋪使用權(quán)轉(zhuǎn)讓合同樣本3篇
- 2024年度石料行業(yè)信用體系建設(shè)與合作合同3篇
- 2024年度區(qū)塊鏈應(yīng)用開發(fā)與維護合同8篇
- 2024年度危險物品銷售與售后服務(wù)保障合同3篇
- 2024年度新能源發(fā)電項目電力施工勞務(wù)合作合同范本2篇
- 2024版定制門窗設(shè)計與施工綠色建材合同2篇
- 2024年環(huán)保型二手房產(chǎn)買賣合同(含綠色裝修及環(huán)保認證)3篇
- 機床操作說明書
- 義務(wù)教育物理課程標準(2022年版)測試卷(含答案)
- NY/T 396-2000農(nóng)用水源環(huán)境質(zhì)量監(jiān)測技術(shù)規(guī)范
- GB/T 39901-2021乘用車自動緊急制動系統(tǒng)(AEBS)性能要求及試驗方法
- GB/T 36652-2018TFT混合液晶材料規(guī)范
- 國際商務(wù)談判 袁其剛課件 第四章-國際商務(wù)談判的結(jié)構(gòu)和過程
- 國際商法教案(20092新版)
- 江蘇開放大學漢語作為第二語言教學概論期末復(fù)習題
- 工作簡化方法改善與流程分析課件
- 國家開放大學《管理學基礎(chǔ)》形考任務(wù)1-4參考答案
- 道德與法治《健康看電視》優(yōu)秀課件
評論
0/150
提交評論