版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
PAGE15-湖北省武漢六中2024-2025學(xué)年高一數(shù)學(xué)下學(xué)期期中試題(含解析)一、選擇題1.已知向量(2,6),(﹣1,λ),若,則λ=()A.3 B.﹣3 C. D.【答案】B【解析】【分析】依據(jù)題意,由向量平行的坐標(biāo)表示方法可得2λ=﹣6求解.【詳解】依據(jù)題意,向量(2,6),(﹣1,λ),因?yàn)椋?λ=﹣6,解得:λ=﹣3;故選:B.【點(diǎn)睛】本題主要考查平面對量的共線定理,還考查了運(yùn)算求解的實(shí)力,屬于基礎(chǔ)題.2.已知向量,則的充要條件是()A. B. C. D.【答案】D【解析】因?yàn)橄蛄?則,故其充要條件是選D3.已知數(shù)列{an}中,a1=2,an+1=an+2n(n∈N*),則a100的值是()A.9900 B.9902C.9904 D.11000【答案】B【解析】∵a1=2,an+1=an+2n,∴an+1?an=2n,∴an=(an?an?1)+(an?1?an?2)+…+(a2?a1)+a1=2(n?1)+2(n?2)+…+2×1+2=2×+2=n2?n+2.∴a100=1002?100+2=9902.故選B.4.已知數(shù)列{an}中,a1=1,an+1,則這個數(shù)列的第n項(xiàng)an為()A.2n﹣1 B.2n+1 C. D.【答案】C【解析】【分析】取倒數(shù),推出數(shù)列{}是等差數(shù)列,然后求解數(shù)列的通項(xiàng)公式即可.【詳解】數(shù)列{an}中,a1=1,an+1,因?yàn)椋詳?shù)列{}是等差數(shù)列,首項(xiàng)為1,公差為2,所以,所以an,故選:C.【點(diǎn)睛】本題主要考查等差數(shù)列的定義及通項(xiàng)公式,還考查了運(yùn)算求解的實(shí)力,屬于中檔題.5.已知,,且,則向量在方向上的正射影的數(shù)量為A.1 B.C. D.【答案】D【解析】【分析】由與、可得出,向量在方向上的正射影的數(shù)量=【詳解】向量在方向上的正射影的數(shù)量=【點(diǎn)睛】本題考查兩向量垂直,其數(shù)量積等于0.向量在方向上的正射影的數(shù)量=.6.數(shù)列的前n項(xiàng)和為()A. B. C. D.【答案】D【解析】分析】先由等比數(shù)列的求和公式求得,由此利用分組求和法能求出數(shù)列的前n項(xiàng)和.【詳解】設(shè)數(shù)列的前n項(xiàng)的和,
,
,故選D.【點(diǎn)睛】本題考查等比數(shù)列的前n項(xiàng)和的求法,是中檔題,解題時要仔細(xì)審題,留意分組求和法的合理運(yùn)用.7.若,滿意,,則的前10項(xiàng)和為()A. B. C. D.【答案】B【解析】因?yàn)椋瑒t,所以,故選B.8.若在△ABC中,2cosBsinA=sinC,則△ABC的形態(tài)肯定是()A.等腰直角三角形 B.直角三角形C.等腰三角形 D.等邊三角形【答案】C【解析】【分析】依據(jù)2cosBsinA=sinC,由兩角和與差的三角函數(shù)化簡求解.【詳解】∵在△ABC中,2cosBsinA=sinC,∴2cosBsinA=sinC=sin(A+B),∴2cosBsinA=sinAcosB+cosAsinB,∴sinAcosB﹣cosAsinB=0,∴sin(A﹣B)=0,,∴A﹣B=0,即A=B,∴△ABC為等腰三角形,故選:C.【點(diǎn)睛】本題主要考查兩角和與差的三角函數(shù),還考查了運(yùn)算求解的實(shí)力,屬于中檔題.9.三角形ABC中,角A、B、C的對邊分別是a,b,c,且a>b>c,a2<b2+c2,則角A的取值范圍是()A.B.C.D.【答案】C【解析】因?yàn)閍2<b2+c2,所以,又因?yàn)閍>b>c,所以A為銳角且為最大角,所以角A的取值范圍是10.在△ABC中,若acos2ccos2b,那么a,b,c的關(guān)系是()A.a+b=c B.a+c=2b C.b+c=2a D.a=b=c【答案】B【解析】【分析】依據(jù)acos2ccos2b,利用二倍角的余弦函數(shù)公式化簡,再利用正弦定理化簡,整理后把sin(A+C)=sinB代入,利用正弦定理化簡即可得到結(jié)果.【詳解】因?yàn)閍cos2ccos2b,所以a(1+cosC)+c(1+cosA)=3b,由正弦定理得:sinA(1+cosC)+sinC(1+cosA)=3sinB,整理得:sinA+sinAcosC+sinC+cosAsinC=3sinB,即sinA+sinC+sin(A+C)=3sinB,∵sin(A+C)=sinB,∴sinA+sinC+sinB=3sinB,即sinA+sinC=2sinB,則由正弦定理化簡得,a+c=2b.故選:B.【點(diǎn)睛】本題主要考查二倍角公式,正弦定理的應(yīng)用,還考查了運(yùn)算求解的實(shí)力,屬于中檔題.11.△ABC中,A:B=1:2,C的平分線CD把三角形面積分成3:2兩部分,則cosA=()A. B. C. D.0【答案】C【解析】【分析】依據(jù)A:B=1:2,得到B=2A,且B大于A,可得出AC大于BC,利用角平分線定理,依據(jù)角平分線CD將三角形分成的面積之比為3:2,得到BC與AC之比,再利用正弦定理得出sinA與sinB之比,將B=2A代入并利用二倍角的正弦函數(shù)公式化簡,即可求出cosA的值.【詳解】如圖所示:∵A:B=1:2,所以B=2A,∴B>A,∴AC>BC,∵角平分線CD把三角形面積分成3:2兩部分,∴由角平分線定理得:BC:AC=BD:AD=2:3,∴由正弦定理得:,整理得:,則cosA.故選:C.【點(diǎn)睛】本題主要考查正弦定理的平面幾何中的應(yīng)用,還考查了運(yùn)算求解的實(shí)力,屬于中檔題.12.在鈍角三角形ABC中,a=1,b=2,則邊c的取值范圍是()A.c<3 B.C.1c或c3 D.或c<3【答案】C【解析】【分析】依據(jù)△ABC是鈍角三角形,沒有指明哪個角是最大角,從而無法確定邊之間的關(guān)系,結(jié)合a=1,b=2,從而可以分兩種狀況進(jìn)行分析,從而確定第三邊c的改變范圍.【詳解】①∵當(dāng)∠C是鈍角時,有∠C>90°,由余弦定理得:,∴c,又a+b>c,可得c<1+2=3,∴可得邊c的取值范圍是(,3);②當(dāng)∠B是鈍角時,有∠B>90°,由余弦定理得:,∴b2>a2+c2,可得4>1+c2,解得c,又c>b﹣a=1,∴1<c,綜上,邊c的取值范圍是1<c或c<3.故選:C.【點(diǎn)睛】本題主要考查余弦定理的平面幾何中的應(yīng)用,還考查了運(yùn)算求解的實(shí)力,屬于中檔題.二、填空題:本小題共4個小題,每小題5分,共20分.13.已知向量與夾角為60°,||=2,||=1,則|+2|=______.【答案】【解析】【詳解】∵平面對量與的夾角為,∴.∴故答案為.點(diǎn)睛:(1)求向量的夾角主要是應(yīng)用向量的數(shù)量積公式.(2)常用來求向量的模.14.已知為單位向量,且=0,若,則___________.【答案】.【解析】【分析】依據(jù)結(jié)合向量夾角公式求出,進(jìn)一步求出結(jié)果.【詳解】因,,所以,,所以,所以.【點(diǎn)睛】本題主要考查平面對量的數(shù)量積、向量的夾角.滲透了數(shù)學(xué)運(yùn)算、直觀想象素養(yǎng).運(yùn)用轉(zhuǎn)化思想得出答案.15.在△ABC中,角A,B,C所對的邊分別為a,b,c.若,b=2,A=60°,則sinB=___________,c=___________.【答案】(1).(2).3【解析】分析:依據(jù)正弦定理得sinB,依據(jù)余弦定理解出c.詳解:由正弦定理得,所以由余弦定理得(負(fù)值舍去).點(diǎn)睛:解三角形問題,多為邊和角的求值問題,這就須要依據(jù)正、余弦定理結(jié)合已知條件敏捷轉(zhuǎn)化為邊和角之間的關(guān)系,從而達(dá)到解決問題的目的.16.設(shè)數(shù)列{an}的前n項(xiàng)和為Sn.若S2=4,an+1=2Sn+1,n∈N*,則a1=________,S5=________.【答案】(1).1(2).121【解析】試題分析:,再由,又,所以【考點(diǎn)】等比數(shù)列的定義,等比數(shù)列的前項(xiàng)和.【易錯點(diǎn)睛】由轉(zhuǎn)化為的過程中,肯定要檢驗(yàn)當(dāng)時是否滿意,否則很簡單出現(xiàn)錯誤.三、解答題:第17題10分,第18~22題各題12分,共70分.解答應(yīng)寫出文字說明、證明過程或演算步驟.17.已知,,與夾角是.(1)求的值及的值;(2)當(dāng)為何值時,?【答案】(1);(2)【解析】【分析】(1)利用數(shù)量積定義及其向量的運(yùn)算性質(zhì),即可求解;(2)由于,可得,利用向量的數(shù)量積的運(yùn)算公式,即可求解.【詳解】(1)由向量的數(shù)量積的運(yùn)算公式,可得,.(2)因?yàn)?,所以,整理得,解得.即?dāng)值時,.【點(diǎn)睛】本題主要考查了數(shù)量積定義及其運(yùn)算性質(zhì)、向量垂直與數(shù)量積的關(guān)系,其中解答中熟記向量的數(shù)量積的運(yùn)算公式,以及向量垂直的坐標(biāo)運(yùn)算是解答的關(guān)鍵,著重考查了推理實(shí)力與計算實(shí)力,屬于中檔題.18.在中,,,分別是角,,的對邊,,.(1)求的面積;(2)若,求角.【答案】(1)14;(2).【解析】試題分析:(1)先求出的值,再由同角三角函數(shù)基本關(guān)系式求出,從而求出三角形的面積即可;(2)依據(jù)余弦定理即正弦定理計算即可.試題解析:(1)∵,,∴,∵,∴,∴(2),,∴由余弦定理得,∴,由正弦定理:,∴∵且為銳角,∴肯定是銳角,∴19.若數(shù)列{an}的前n項(xiàng)和為Sn,且滿意an+2SnSn-1=0(n≥2),a1=.(1)求證:成等差數(shù)列;(2)求數(shù)列{an}的通項(xiàng)公式.【答案】(1)詳見解析(2)【解析】分析】(1)由已知條件可得:,又,由等差數(shù)列定義即可證明;(2)由等差數(shù)列的通項(xiàng)公式的求法及的關(guān)系即可得解.【詳解】(1)證明:當(dāng)時,由,可得,所以,又,故是首項(xiàng)為2,公差為2的等差數(shù)列.(2)由(1)可得,所以,當(dāng)時,,當(dāng)時,不適合上式,故.【點(diǎn)睛】本題考查了等差數(shù)列及等差數(shù)列通項(xiàng)公式的求法,屬基礎(chǔ)題.20.已知(cosx,2cosx),(2cosx,sinx),f(x)?.(1)把f(x)的圖象向右平移個單位得g(x)的圖象,求g(x)的單調(diào)遞增區(qū)間;(2)當(dāng)與共線時,求f(x)的值.【答案】(1)增區(qū)間;(2).【解析】【分析】(1)利用數(shù)量積運(yùn)算性質(zhì)、倍角公式、和差公式可得:.把f(x)的圖象向右平移個單位得g(x)的圖象:g(x)1.再利用正弦函數(shù)的單調(diào)性即可得出g(x)的增區(qū)間.(2)當(dāng)與共線時,可得tanx=4.于是f(x),即可得出.【詳解】(1)f(x)=2cos2x+2sinxcosx=cos2x+1+sin2x1.∴.把f(x)的圖象向右平移個單位得g(x)的圖象:g(x)11.∴.由2kπ,解得x≤kπ,k∈Z.∴g(x)的增區(qū)間.(2)∵當(dāng)與共線時,∴4cos2x﹣sinxcosx=0,∴tanx=4.∴f(x)=2cos2x+2sinxcosx.【點(diǎn)睛】本題主要考查三角函數(shù)的圖象變換,三角函數(shù)的性質(zhì),三角恒等變換以及同角三角函數(shù)基本關(guān)系式,還考查了運(yùn)算求解的實(shí)力,屬于中檔題.21.在中,AC=6,(1)求AB的長;(2)求的值.【答案】(1)(2)【解析】試題分析:(1)利用同角三角函數(shù)的基本關(guān)系求再利用正弦定理求AB的長;(2)利用誘導(dǎo)公式及兩角和與差正余弦公式分別求,然后求試題解析:解(1)因?yàn)椋?,所以由正弦定理知,所以?)在中,,所以,于是又故因?yàn)?,所以因此【考點(diǎn)】同角三角函數(shù)的基本關(guān)系、正余弦定理、兩角和與差的正余弦公式【名師點(diǎn)睛】三角函數(shù)是以角為自變量的函數(shù),因此解三角函數(shù)題,首先應(yīng)從角進(jìn)行分析,擅長用已知角表示所求角,即留意角的變換.角的變換涉及誘導(dǎo)公式、同角三角函數(shù)的基本關(guān)系、兩角和與差的三角公式、二倍角公式、配角公式等,選用恰當(dāng)?shù)墓绞墙鉀Q三角問題的關(guān)鍵,同時應(yīng)明確角的范圍、開方時正負(fù)的取舍等.22.(1)數(shù)列{an}的前n項(xiàng)和為Sn=10n﹣n2,求數(shù)列{|an|}的前n項(xiàng)和.(2)已知等差數(shù)列{an}滿意a2=0,a6+a8=﹣10.求數(shù)列{}的前n項(xiàng)和.【答案】(1)Tn;(2)Hn.【解析】【分析】(1)依據(jù)Sn=10n﹣n2,利用通項(xiàng)與前n項(xiàng)和的關(guān)系,n≥2時,an=Sn﹣Sn﹣1,(n=1時也成立)求得an.令an≥0,解得n≤5.可得n≤5時,{|an|}的前n項(xiàng)和Tn=a1+a2+……+an=Sn.n≥6時,{|an|}的前n項(xiàng)和Tn=a1+a2+……a5﹣a6+……﹣an=2S5﹣Sn.即可得出Tn.(2)設(shè)等差數(shù)列{an}的公差為d,由a2=0,a6+a8=﹣10.可得a1+d=0,2a1+12d=﹣10,聯(lián)立解得:a1,d,可得an.于是.利用錯位相減法即可得出.【詳解】(1)∵Sn=10n﹣n2,∴n≥2時,an=Sn﹣Sn﹣1=10n﹣n2﹣[10(n﹣1)﹣(n﹣1)2]=11﹣2n,當(dāng)n=1時,滿意上式,故an=11﹣2n.令an≥0,解得n≤5.∴n≤5時,{|an|}的前n項(xiàng)和Tn
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 二零二五年度山砂項(xiàng)目砂石資源采購合同6篇
- 2025年房產(chǎn)買賣居間服務(wù)合同規(guī)范樣本
- 動漫教育發(fā)展:2025年《動漫欣賞課》課件展示2篇
- 2025年度個人汽車交易合同范本2篇
- 2025年度納稅擔(dān)保期限與稅務(wù)合規(guī)合同
- 2025年度個人與公司間的借款逾期罰息合同3篇
- 二零二五年度生態(tài)餐飲原物料綠色配送服務(wù)合同3篇
- 2025年度個人房屋租賃合同范本(含租金支付方式)2篇
- 2025年度新型電梯銷售及居間服務(wù)合同協(xié)議書范本3篇
- 2025年度門面租賃合同租賃雙方權(quán)利義務(wù)協(xié)議4篇
- 冷庫制冷負(fù)荷計算表
- 肩袖損傷護(hù)理查房
- 設(shè)備運(yùn)維管理安全規(guī)范標(biāo)準(zhǔn)
- 辦文辦會辦事實(shí)務(wù)課件
- 大學(xué)宿舍人際關(guān)系
- 2023光明小升初(語文)試卷
- GB/T 14600-2009電子工業(yè)用氣體氧化亞氮
- GB/T 13234-2018用能單位節(jié)能量計算方法
- 申請使用物業(yè)專項(xiàng)維修資金征求業(yè)主意見表
- 房屋買賣合同簡單范本 房屋買賣合同簡易范本
- 無抽搐電休克治療規(guī)范
評論
0/150
提交評論