版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
臨汾市重點(diǎn)中學(xué)2025屆高三第三次(4月)聯(lián)考數(shù)學(xué)試題文試題注意事項(xiàng):1.答題前,考生先將自己的姓名、準(zhǔn)考證號(hào)碼填寫清楚,將條形碼準(zhǔn)確粘貼在條形碼區(qū)域內(nèi)。2.答題時(shí)請(qǐng)按要求用筆。3.請(qǐng)按照題號(hào)順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無(wú)效;在草稿紙、試卷上答題無(wú)效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.已知邊長(zhǎng)為4的菱形,,為的中點(diǎn),為平面內(nèi)一點(diǎn),若,則()A.16 B.14 C.12 D.82.若(),,則()A.0或2 B.0 C.1或2 D.13.已知m,n是兩條不同的直線,,是兩個(gè)不同的平面,給出四個(gè)命題:①若,,,則;②若,,則;③若,,,則;④若,,,則其中正確的是()A.①② B.③④ C.①④ D.②④4.已知實(shí)數(shù)、滿足不等式組,則的最大值為()A. B. C. D.5.在我國(guó)傳統(tǒng)文化“五行”中,有“金、木、水、火、土”五個(gè)物質(zhì)類別,在五者之間,有一種“相生”的關(guān)系,具體是:金生水、水生木、木生火、火生土、土生金.從五行中任取兩個(gè),這二者具有相生關(guān)系的概率是()A.0.2 B.0.5 C.0.4 D.0.86.已知圓:,圓:,點(diǎn)、分別是圓、圓上的動(dòng)點(diǎn),為軸上的動(dòng)點(diǎn),則的最大值是()A. B.9 C.7 D.7.已知復(fù)數(shù)滿足(是虛數(shù)單位),則=()A. B. C. D.8.已知雙曲線的左焦點(diǎn)為,直線經(jīng)過(guò)點(diǎn)且與雙曲線的一條漸近線垂直,直線與雙曲線的左支交于不同的兩點(diǎn),,若,則該雙曲線的離心率為().A. B. C. D.9.已知是虛數(shù)單位,若,,則實(shí)數(shù)()A.或 B.-1或1 C.1 D.10.已知正三棱錐的所有頂點(diǎn)都在球的球面上,其底面邊長(zhǎng)為4,、、分別為側(cè)棱,,的中點(diǎn).若在三棱錐內(nèi),且三棱錐的體積是三棱錐體積的4倍,則此外接球的體積與三棱錐體積的比值為()A. B. C. D.11.設(shè)復(fù)數(shù)滿足,在復(fù)平面內(nèi)對(duì)應(yīng)的點(diǎn)為,則不可能為()A. B. C. D.12.若不等式對(duì)于一切恒成立,則的最小值是()A.0 B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.若向量與向量垂直,則______.14.已知為拋物線:的焦點(diǎn),過(guò)作兩條互相垂直的直線,,直線與交于、兩點(diǎn),直線與交于、兩點(diǎn),則的最小值為_(kāi)_________.15.若雙曲線的離心率為,則雙曲線的漸近線方程為_(kāi)_____.16.已知數(shù)列的首項(xiàng),函數(shù)在上有唯一零點(diǎn),則數(shù)列|的前項(xiàng)和__________.三、解答題:共70分。解答應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)如圖,三棱柱ABC-A1B1C1中,側(cè)面BCC1B1是菱形,AC=BC=2,∠CBB1=,點(diǎn)A在平面BCC1B1上的投影為棱BB1的中點(diǎn)E.(1)求證:四邊形ACC1A1為矩形;(2)求二面角E-B1C-A1的平面角的余弦值.18.(12分)設(shè)函數(shù).(1)解不等式;(2)記的最大值為,若實(shí)數(shù)、、滿足,求證:.19.(12分)追求人類與生存環(huán)境的和諧發(fā)展是中國(guó)特色社會(huì)主義生態(tài)文明的價(jià)值取向.為了改善空氣質(zhì)量,某城市環(huán)保局隨機(jī)抽取了一年內(nèi)100天的空氣質(zhì)量指數(shù)(AQI)的檢測(cè)數(shù)據(jù),結(jié)果統(tǒng)計(jì)如表:AQI空氣質(zhì)量?jī)?yōu)良輕度污染中度污染重度污染重度污染天數(shù)61418272510(1)從空氣質(zhì)量指數(shù)屬于[0,50],(50,100]的天數(shù)中任取3天,求這3天中空氣質(zhì)量至少有2天為優(yōu)的概率;(2)已知某企業(yè)每天因空氣質(zhì)量造成的經(jīng)濟(jì)損失y(單位:元)與空氣質(zhì)量指數(shù)x的關(guān)系式為,假設(shè)該企業(yè)所在地7月與8月每天空氣質(zhì)量為優(yōu)、良、輕度污染、中度污染、重度污染、嚴(yán)重污染的概率分別為.9月每天的空氣質(zhì)量對(duì)應(yīng)的概率以表中100天的空氣質(zhì)量的頻率代替.(i)記該企業(yè)9月每天因空氣質(zhì)量造成的經(jīng)濟(jì)損失為X元,求X的分布列;(ii)試問(wèn)該企業(yè)7月、8月、9月這三個(gè)月因空氣質(zhì)量造成的經(jīng)濟(jì)損失總額的數(shù)學(xué)期望是否會(huì)超過(guò)2.88萬(wàn)元?說(shuō)明你的理由.20.(12分)手工藝是一種生活態(tài)度和對(duì)傳統(tǒng)的堅(jiān)持,在我國(guó)有很多手工藝品制作村落,村民的手工技藝世代相傳,有些村落制造出的手工藝品不僅全國(guó)聞名,還大量遠(yuǎn)銷海外.近年來(lái)某手工藝品村制作的手工藝品在國(guó)外備受歡迎,該村村民成立了手工藝品外銷合作社,為嚴(yán)把質(zhì)量關(guān),合作社對(duì)村民制作的每件手工藝品都請(qǐng)3位行家進(jìn)行質(zhì)量把關(guān),質(zhì)量把關(guān)程序如下:(i)若一件手工藝品3位行家都認(rèn)為質(zhì)量過(guò)關(guān),則該手工藝品質(zhì)量為A級(jí);(ii)若僅有1位行家認(rèn)為質(zhì)量不過(guò)關(guān),再由另外2位行家進(jìn)行第二次質(zhì)量把關(guān),若第二次質(zhì)量把關(guān)這2位行家都認(rèn)為質(zhì)量過(guò)關(guān),則該手工藝品質(zhì)量為B級(jí),若第二次質(zhì)量把關(guān)這2位行家中有1位或2位認(rèn)為質(zhì)量不過(guò)關(guān),則該手工藝品質(zhì)量為C級(jí);(iii)若有2位或3位行家認(rèn)為質(zhì)量不過(guò)關(guān),則該手工藝品質(zhì)量為D級(jí).已知每一次質(zhì)量把關(guān)中一件手工藝品被1位行家認(rèn)為質(zhì)量不過(guò)關(guān)的概率為,且各手工藝品質(zhì)量是否過(guò)關(guān)相互獨(dú)立.(1)求一件手工藝品質(zhì)量為B級(jí)的概率;(2)若一件手工藝品質(zhì)量為A,B,C級(jí)均可外銷,且利潤(rùn)分別為900元,600元,300元,質(zhì)量為D級(jí)不能外銷,利潤(rùn)記為100元.①求10件手工藝品中不能外銷的手工藝品最有可能是多少件;②記1件手工藝品的利潤(rùn)為X元,求X的分布列與期望.21.(12分)已知公比為正數(shù)的等比數(shù)列的前項(xiàng)和為,且,.(1)求數(shù)列的通項(xiàng)公式;(2)設(shè),求數(shù)列的前項(xiàng)和.22.(10分)已知函數(shù)(I)當(dāng)時(shí),解不等式.(II)若不等式恒成立,求實(shí)數(shù)的取值范圍
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.B【解析】
取中點(diǎn),可確定;根據(jù)平面向量線性運(yùn)算和數(shù)量積的運(yùn)算法則可求得,利用可求得結(jié)果.【詳解】取中點(diǎn),連接,,,即.,,,則.故選:.本題考查平面向量數(shù)量積的求解問(wèn)題,涉及到平面向量的線性運(yùn)算,關(guān)鍵是能夠?qū)⑺笙蛄窟M(jìn)行拆解,進(jìn)而利用平面向量數(shù)量積的運(yùn)算性質(zhì)進(jìn)行求解.2.A【解析】
利用復(fù)數(shù)的模的運(yùn)算列方程,解方程求得的值.【詳解】由于(),,所以,解得或.故選:A本小題主要考查復(fù)數(shù)模的運(yùn)算,屬于基礎(chǔ)題.3.D【解析】
根據(jù)面面垂直的判定定理可判斷①;根據(jù)空間面面平行的判定定理可判斷②;根據(jù)線面平行的判定定理可判斷③;根據(jù)面面垂直的判定定理可判斷④.【詳解】對(duì)于①,若,,,,兩平面相交,但不一定垂直,故①錯(cuò)誤;對(duì)于②,若,,則,故②正確;對(duì)于③,若,,,當(dāng),則與不平行,故③錯(cuò)誤;對(duì)于④,若,,,則,故④正確;故選:D本題考查了線面平行的判定定理、面面平行的判定定理以及面面垂直的判定定理,屬于基礎(chǔ)題.4.A【解析】
畫出不等式組所表示的平面區(qū)域,結(jié)合圖形確定目標(biāo)函數(shù)的最優(yōu)解,代入即可求解,得到答案.【詳解】畫出不等式組所表示平面區(qū)域,如圖所示,由目標(biāo)函數(shù),化為直線,當(dāng)直線過(guò)點(diǎn)A時(shí),此時(shí)直線在y軸上的截距最大,目標(biāo)函數(shù)取得最大值,又由,解得,所以目標(biāo)函數(shù)的最大值為,故選A.本題主要考查簡(jiǎn)單線性規(guī)劃求解目標(biāo)函數(shù)的最值問(wèn)題.其中解答中正確畫出不等式組表示的可行域,利用“一畫、二移、三求”,確定目標(biāo)函數(shù)的最優(yōu)解是解答的關(guān)鍵,著重考查了數(shù)形結(jié)合思想,及推理與計(jì)算能力,屬于基礎(chǔ)題.5.B【解析】
利用列舉法,結(jié)合古典概型概率計(jì)算公式,計(jì)算出所求概率.【詳解】從五行中任取兩個(gè),所有可能的方法為:金木、金水、金火、金土、木水、木火、木土、水火、水土、火土,共種,其中由相生關(guān)系的有金水、木水、木火、火土、金土,共種,所以所求的概率為.故選:B本小題主要考查古典概型的計(jì)算,屬于基礎(chǔ)題.6.B【解析】試題分析:圓的圓心,半徑為,圓的圓心,半徑是.要使最大,需最大,且最小,最大值為的最小值為,故最大值是;關(guān)于軸的對(duì)稱點(diǎn),,故的最大值為,故選B.考點(diǎn):圓與圓的位置關(guān)系及其判定.【思路點(diǎn)睛】先根據(jù)兩圓的方程求出圓心和半徑,要使最大,需最大,且最小,最大值為的最小值為,故最大值是,再利用對(duì)稱性,求出所求式子的最大值.7.A【解析】
把已知等式變形,再由復(fù)數(shù)代數(shù)形式的乘除運(yùn)算化簡(jiǎn)得答案.【詳解】解:由,得,.故選.本題考查復(fù)數(shù)代數(shù)形式的乘除運(yùn)算,考查復(fù)數(shù)的基本概念,是基礎(chǔ)題.8.A【解析】
直線的方程為,令和雙曲線方程聯(lián)立,再由得到兩交點(diǎn)坐標(biāo)縱坐標(biāo)關(guān)系進(jìn)行求解即可.【詳解】由題意可知直線的方程為,不妨設(shè).則,且將代入雙曲線方程中,得到設(shè)則由,可得,故則,解得則所以雙曲線離心率故選:A此題考查雙曲線和直線相交問(wèn)題,聯(lián)立直線和雙曲線方程得到兩交點(diǎn)坐標(biāo)關(guān)系和已知條件即可求解,屬于一般性題目.9.B【解析】
由題意得,,然后求解即可【詳解】∵,∴.又∵,∴,∴.本題考查復(fù)數(shù)的運(yùn)算,屬于基礎(chǔ)題10.D【解析】
如圖,平面截球所得截面的圖形為圓面,計(jì)算,由勾股定理解得,此外接球的體積為,三棱錐體積為,得到答案.【詳解】如圖,平面截球所得截面的圖形為圓面.正三棱錐中,過(guò)作底面的垂線,垂足為,與平面交點(diǎn)記為,連接、.依題意,所以,設(shè)球的半徑為,在中,,,,由勾股定理:,解得,此外接球的體積為,由于平面平面,所以平面,球心到平面的距離為,則,所以三棱錐體積為,所以此外接球的體積與三棱錐體積比值為.故選:D.本題考查了三棱錐的外接球問(wèn)題,三棱錐體積,球體積,意在考查學(xué)生的計(jì)算能力和空間想象能力.11.D【解析】
依題意,設(shè),由,得,再一一驗(yàn)證.【詳解】設(shè),因?yàn)?,所以,?jīng)驗(yàn)證不滿足,故選:D.本題主要考查了復(fù)數(shù)的概念、復(fù)數(shù)的幾何意義,還考查了推理論證能力,屬于基礎(chǔ)題.12.C【解析】
試題分析:將參數(shù)a與變量x分離,將不等式恒成立問(wèn)題轉(zhuǎn)化為求函數(shù)最值問(wèn)題,即可得到結(jié)論.解:不等式x2+ax+1≥0對(duì)一切x∈(0,]成立,等價(jià)于a≥-x-對(duì)于一切成立,∵y=-x-在區(qū)間上是增函數(shù)∴∴a≥-∴a的最小值為-故答案為C.考點(diǎn):不等式的應(yīng)用點(diǎn)評(píng):本題綜合考查了不等式的應(yīng)用、不等式的解法等基礎(chǔ)知識(shí),考查運(yùn)算求解能力,考查化歸與轉(zhuǎn)化思想,屬于中檔題二、填空題:本題共4小題,每小題5分,共20分。13.0【解析】
直接根據(jù)向量垂直計(jì)算得到答案.【詳解】向量與向量垂直,則,故.故答案為:.本題考查了根據(jù)向量垂直求參數(shù),意在考查學(xué)生的計(jì)算能力.14.16.【解析】由題意可知拋物線的焦點(diǎn),準(zhǔn)線為設(shè)直線的解析式為∵直線互相垂直∴的斜率為與拋物線的方程聯(lián)立,消去得設(shè)點(diǎn)由跟與系數(shù)的關(guān)系得,同理∵根據(jù)拋物線的性質(zhì),拋物線上的點(diǎn)到焦點(diǎn)的距離等于到準(zhǔn)線的距離∴,同理∴,當(dāng)且僅當(dāng)時(shí)取等號(hào).故答案為16點(diǎn)睛:(1)與拋物線有關(guān)的最值問(wèn)題,一般情況下都與拋物線的定義有關(guān).利用定義可將拋物線上的點(diǎn)到焦點(diǎn)的距離轉(zhuǎn)化為到準(zhǔn)線的距離,可以使運(yùn)算化繁為簡(jiǎn).“看到準(zhǔn)線想焦點(diǎn),看到焦點(diǎn)想準(zhǔn)線”,這是解決拋物線焦點(diǎn)弦有關(guān)問(wèn)題的重要途徑;(2)圓錐曲線中的最值問(wèn)題,可利用基本不等式求解,但要注意不等式成立的條件.15.【解析】
利用,得到的關(guān)系式,然后代入雙曲線的漸近線方程即可求解.【詳解】因?yàn)殡p曲線的離心率為,所以,即,因?yàn)殡p曲線的漸近線方程為,所以雙曲線的漸近線方程為.故答案為:本題考查雙曲線的幾何性質(zhì);考查運(yùn)算求解能力;熟練掌握雙曲線的幾何性質(zhì)是求解本題的關(guān)鍵;屬于基礎(chǔ)題.16.【解析】
由函數(shù)為偶函數(shù),可得唯一零點(diǎn)為,代入可得數(shù)列的遞推關(guān)系式,再進(jìn)行配湊轉(zhuǎn)換為等比數(shù)列,最后運(yùn)用分部求和可得答案.【詳解】因?yàn)闉榕己瘮?shù),在上有唯一零點(diǎn),所以,∴,∴,∴為首項(xiàng)為2,公比為2的等比數(shù)列.所以,.故答案為:本題主要考查了函數(shù)的奇偶性和函數(shù)的零點(diǎn),同時(shí)也考查了由遞推關(guān)系式求數(shù)列的通項(xiàng),考查了數(shù)列的分部求和,屬于中檔題.三、解答題:共70分。解答應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。17.(1)見(jiàn)解析(2)【解析】
(1)通過(guò)勾股定理得出,又,進(jìn)而可得平面,則可得到,問(wèn)題得證;(2)如圖,以為原點(diǎn),,,所在直線分別為軸,軸,軸,求出平面的法向量和平面的法向量,利用空間向量的夾角公式可得答案.【詳解】(1)因?yàn)槠矫?,所以,又因?yàn)?,,,所以,因此,所以,因此平面,所以,從而,又四邊形為平行四邊形,則四邊形為矩形;(2)如圖,以為原點(diǎn),,,所在直線分別為軸,軸,軸,所以,平面的法向量,設(shè)平面的法向量,由,由,令,即,所以,,所以,所求二面角的余弦值是.本題考查空間垂直關(guān)系的證明,考查向量法求二面角的大小,考查學(xué)生計(jì)算能力,是中檔題.18.(1)(2)證明見(jiàn)解析【解析】
(1)采用零點(diǎn)分段法:、、,由此求解出不等式的解集;(2)先根據(jù)絕對(duì)值不等式的幾何意義求解出的值,然后利用基本不等式及其變形完成證明.【詳解】(1)當(dāng)時(shí),不等式為,解得當(dāng)時(shí),不等式為,解得當(dāng)時(shí),不等式為,解得∴原不等式的解集為(2)當(dāng)且僅當(dāng)即時(shí)取等號(hào),∴,∴∵,∴,∴(當(dāng)且僅當(dāng)時(shí)取“”)同理可得,∴∴(當(dāng)且僅當(dāng)時(shí)取“”)本題考查絕對(duì)值不等式的解法以及利用基本不等式證明不等式,難度一般.(1)常見(jiàn)的絕對(duì)值不等式解法:零點(diǎn)分段法、圖象法、幾何意義法;(2)利用基本不等式完成證明時(shí),注意說(shuō)明取等號(hào)的條件.19.(1);(2)(i)詳見(jiàn)解析;(ii)會(huì)超過(guò);詳見(jiàn)解析【解析】
(1)利用組合進(jìn)行計(jì)算以及概率表示,可得結(jié)果.(2)(i)寫出X所有可能取值,并計(jì)算相對(duì)應(yīng)的概率,列出表格可得結(jié)果.(ii)由(i)的條件結(jié)合7月與8月空氣質(zhì)量所對(duì)應(yīng)的概率,可得7月與8月經(jīng)濟(jì)損失的期望和,最后7月、8月、9月經(jīng)濟(jì)損失總額的數(shù)學(xué)期望與2.88萬(wàn)元比較,可得結(jié)果.【詳解】(1)設(shè)ξ為選取的3天中空氣質(zhì)量為優(yōu)的天數(shù),則P(ξ=2),P(ξ=3),則這3天中空氣質(zhì)量至少有2天為優(yōu)的概率為;(2)(i),,,X的分布列如下:X02201480P(ii)由(i)可得:E(X)=02201480302(元),故該企業(yè)9月的經(jīng)濟(jì)損失的數(shù)學(xué)期望為30E(X),即30E(X)=9060元,設(shè)7月、8月每天因空氣質(zhì)量造成的經(jīng)濟(jì)損失為Y元,可得:,,,E(Y)=02201480320(元),所以該企業(yè)7月、8月這兩個(gè)月因空氣質(zhì)量造成經(jīng)濟(jì)損失總額的數(shù)學(xué)期望為320×(31+31)=19840(元),由19840+9060=28900>28800,即7月、8月、9月這三個(gè)月因空氣質(zhì)量造成經(jīng)濟(jì)損失總額的數(shù)學(xué)期望會(huì)超過(guò)2.88萬(wàn)元.本題考查概率中的分布列以及數(shù)學(xué)期望,屬基礎(chǔ)題。20.(1);(2)①可能是2件;②詳見(jiàn)解析【解析】
(1)由一件手工藝品質(zhì)量為B級(jí)的情形,并結(jié)合相互獨(dú)立事件的概率公式,列式計(jì)算即可;(2)①先求得一件手工藝品質(zhì)量為D級(jí)的概率為,設(shè)10件手工藝品中不能外銷的手工藝品可能是件,可知,分別令、、,可求出使得最大的整數(shù),進(jìn)而可求出10件手工藝品中不能外銷的手工藝品的最有可能件數(shù);②分別求出一件手工藝品質(zhì)量為A、B、C、D級(jí)的概率,進(jìn)而可列出X的分布列,求出期望即可.【詳解】(1)一件手工藝品質(zhì)量為B級(jí)的概率為.(2)①由
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 新時(shí)代教育政策創(chuàng)新-洞察分析
- 腕關(guān)節(jié)骨性結(jié)構(gòu)疲勞損傷預(yù)測(cè)-洞察分析
- 移動(dòng)支付安全風(fēng)險(xiǎn)評(píng)估-第1篇-洞察分析
- 藥店特許經(jīng)營(yíng)模式創(chuàng)新-洞察分析
- 云游戲跨域協(xié)作機(jī)制-洞察分析
- 藥酒治療風(fēng)濕病療效-洞察分析
- 漁業(yè)生態(tài)保護(hù)與修復(fù)-第2篇-洞察分析
- 元宇宙企業(yè)品牌塑造-洞察分析
- 醫(yī)療器械出口市場(chǎng)拓展-洞察分析
- 水電安裝行業(yè)市場(chǎng)壁壘-洞察分析
- 營(yíng)銷管理智慧樹(shù)知到期末考試答案2024年
- 【課件】丹納赫DBS-問(wèn)題解決培訓(xùn)
- 現(xiàn)代食品加工技術(shù)(食品加工新技術(shù))智慧樹(shù)知到期末考試答案2024年
- 2023全國(guó)職業(yè)院校技能大賽(網(wǎng)絡(luò)建設(shè)與運(yùn)維賽項(xiàng))備考試題庫(kù)
- “牢固樹(shù)立法紀(jì)意識(shí),強(qiáng)化責(zé)任擔(dān)當(dāng)”心得體會(huì)(2篇)
- 列車車門故障應(yīng)急處理方案
- 2024年度-Pitstop教程去水印
- 2024年02月天津市口腔醫(yī)院派遣制人員招考聘用40人筆試歷年(2016-2023年)真題薈萃帶答案解析
- 聲明書:個(gè)人婚姻狀況聲明
- 幼兒園年檢整改專項(xiàng)方案
- 新管徑流速流量對(duì)照表
評(píng)論
0/150
提交評(píng)論