2014年重慶市中考數(shù)學(xué)試卷(B卷)及答案_第1頁(yè)
2014年重慶市中考數(shù)學(xué)試卷(B卷)及答案_第2頁(yè)
2014年重慶市中考數(shù)學(xué)試卷(B卷)及答案_第3頁(yè)
2014年重慶市中考數(shù)學(xué)試卷(B卷)及答案_第4頁(yè)
2014年重慶市中考數(shù)學(xué)試卷(B卷)及答案_第5頁(yè)
已閱讀5頁(yè),還剩31頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

重慶市2014年初中畢業(yè)暨高中招生考試數(shù)學(xué)試題(B卷)(滿分:150分時(shí)間:120分鐘)參考公式:拋物線y=ax2+bx+c(a≠0)的頂點(diǎn)坐標(biāo)為,對(duì)稱軸公式為.一、選擇題:(本大題共12個(gè)小題,每小題4分,共48分)1、某地連續(xù)四天每天的平均氣溫分別是:1℃,-1℃,0℃,2℃,則平均氣溫中最低的是()A、-1℃B、0℃C、1℃D、2℃2、計(jì)算的結(jié)果是()A、3B、C、D、3、如圖,△ABC∽△DEF,相似比為1:2,若BC=1,則EF的長(zhǎng)是()A、1B、2C、3D、44、如圖,直線AB∥CD,直線EF分別交AB、CD于點(diǎn)E、F,若∠AEF=50°,則∠EFC的大小是()A、40°B、50°C、120°D、130°5、某校將舉辦一場(chǎng)“中國(guó)漢字聽寫大賽”,要求各班推選一名同學(xué)參加比賽。為此,初三(1)班組織了五輪班級(jí)選拔賽,在這五輪選拔賽中,甲、乙兩位同學(xué)的平均分都是96分,甲的成績(jī)的方差是0.2,乙的成績(jī)的方差是0.8,根據(jù)以上數(shù)據(jù),下列說(shuō)法正確的是()A、甲的成績(jī)比乙的成績(jī)穩(wěn)定B、乙的成績(jī)比甲的成績(jī)穩(wěn)定C、甲、乙兩人的成績(jī)一樣穩(wěn)定D、無(wú)法確定甲、乙的成績(jī)誰(shuí)更穩(wěn)定6、若點(diǎn)(3,1)在一次函數(shù)的圖象上,則k的值是()A、5B、4C、3D、17、分式方程的解是()A、B、C、D、8、如圖,在矩形ABCD中,對(duì)角線AC、BD相交于點(diǎn)O,∠ACB=30°,則∠AOB的大小為()A、30°B、60°C、90°D、120°9、夏天到了,某小區(qū)準(zhǔn)備開放游泳池,物業(yè)管理處安排一名清潔工對(duì)一個(gè)無(wú)水的游泳池進(jìn)行清洗。該工人先只打開一個(gè)進(jìn)水管,蓄了少量水后關(guān)閉進(jìn)水管并立即進(jìn)行清洗,一段時(shí)間后,再同時(shí)打開兩個(gè)出水管將池內(nèi)的水放完,隨后將兩個(gè)出水管關(guān)閉,并同時(shí)打開兩個(gè)進(jìn)水管將水蓄滿。已知每個(gè)進(jìn)水管的進(jìn)水速度與每個(gè)出水管的出水速度相同。從工人最先打開一個(gè)進(jìn)水管開始,所用的時(shí)間為x,游泳池內(nèi)的蓄水量為y,則下列各圖中能夠反映y與x的函數(shù)關(guān)系的大致圖象是()10、下列圖形都是按照一定規(guī)律組成,第一個(gè)圖形中共有2個(gè)三角形,第二個(gè)圖形中共有8個(gè)三角形,第三個(gè)圖形中共有14個(gè)三角形,……,依此規(guī)律,第五個(gè)圖形中三角形的個(gè)數(shù)是()A、22B、24C、26D、2811、如圖,菱形ABCD的對(duì)角線AC、BD相交于點(diǎn)O,AC=8,BD=6,以AB為直徑作一個(gè)半圓,則圖中陰影部分的面積為()A、B、C、D、12、如圖,正方形ABCD的頂點(diǎn)B、C在x軸的正半軸上,反比例函數(shù)在第一象限的圖象經(jīng)過頂點(diǎn)A(m,2)和CD邊上的點(diǎn)E(n,),過點(diǎn)E的直線交x軸于點(diǎn)F,交y軸于點(diǎn)G(0,-2),則點(diǎn)F的坐標(biāo)是()A、B、C、D、二、填空題:(本題共6小題,每小題4分,共24分,)13、實(shí)數(shù)的相反數(shù)是。14、函數(shù)中,自變量x的取值范圍是。15、在2014年重慶市初中畢業(yè)生體能測(cè)試中,某校初三有7名同學(xué)的體能測(cè)試成績(jī)(單位:分)如下:50,48,47,50,48,49,48。這組數(shù)據(jù)的眾數(shù)是。16、如圖,C為⊙O外點(diǎn),CA與⊙O相切,切點(diǎn)為A,AB為⊙O的直徑,連接CB。若⊙O的半徑為2,∠ABC=60°,則BC=。17、在一個(gè)不透明的盒子里裝有4個(gè)分別標(biāo)有數(shù)字1,2,3,4的小球,它們除數(shù)字不同其余完全相同,攪勻后從盒子里隨機(jī)取出1個(gè)小球,將該小球上的數(shù)字作為的值,則使關(guān)于x的不等式組只有一個(gè)整數(shù)解的概率為。18、如圖,在邊長(zhǎng)為的正方形ABCD中,E是AB邊上一點(diǎn),G是AD延長(zhǎng)線上一點(diǎn),BE=DG,連接EG,CF⊥EG于點(diǎn)H,交AD于點(diǎn)F,連接CE、BH。若BH=8,則FG=。三、解答題:(本大題共2個(gè)小題,每小題7分,共14分)19、計(jì)算:20、如圖,在△ABC中,CD⊥AB,垂足為D。若AB=12,CD=6,,求的值。四、解答題:(本大題共個(gè)4小題,每小題10分,共40分)21、先化簡(jiǎn),再求值:,其中x是方程的解。22、重慶市某餐飲文化公司準(zhǔn)備承辦“重慶火鍋美食文化節(jié)”。為了解市發(fā)對(duì)火鍋的喜愛程度,該公司設(shè)計(jì)了一個(gè)調(diào)查問卷,將喜愛程度分為A(非常喜歡)、B(喜歡)、C(不太喜歡)、D(很不喜歡)四種類型,并派業(yè)務(wù)員進(jìn)行市場(chǎng)調(diào)查。其中一個(gè)業(yè)務(wù)員小麗在解放碑步行街對(duì)市民進(jìn)行了隨機(jī)調(diào)查,并根據(jù)調(diào)查結(jié)果制成了如下兩幅不完整的統(tǒng)計(jì)圖。請(qǐng)結(jié)合統(tǒng)計(jì)圖所給信息解答上列問題:(1)在扇形統(tǒng)計(jì)圖中C所占的百分比是;小麗本次抽樣調(diào)查的為數(shù)共有人;請(qǐng)將折線統(tǒng)計(jì)圖補(bǔ)充完整;(2)為了解少數(shù)市民很不喜歡吃火鍋的原因,小麗決定在上述調(diào)查結(jié)果中從“很不喜歡”吃火鍋的市民里隨機(jī)選出兩位進(jìn)行電話回訪,請(qǐng)你用列表法或畫樹狀圖的方法,求所選出的兩位市民恰好都是男性的概率。23、某生態(tài)農(nóng)業(yè)園種植的青椒除了運(yùn)往市區(qū)銷售外,還可以讓市民親自去生態(tài)農(nóng)業(yè)園購(gòu)買。已知今年5月份該青椒在市區(qū)、園區(qū)的銷售價(jià)格分別為6元/千克、4元/千克,今年5月份一共銷售了3000千克,總銷售額為16000元。(1)今年5月份該青椒在市區(qū)、園區(qū)各銷售了多少千克?(2)6月份是青椒產(chǎn)出旺季,為了促銷,生態(tài)農(nóng)業(yè)園決定6月份將該青椒在市區(qū)、園區(qū)的銷售價(jià)格均在今年5月份的基礎(chǔ)上降低,預(yù)計(jì)這種青椒在市區(qū)、園區(qū)的銷量將在今年5月份的基礎(chǔ)上分別增長(zhǎng)30%、20%,要使得6月份該青椒的總銷售額不低于18360元,則的最大值是多少?24、如圖,在△ABC中,∠ACB=90°,AC=BC,E為AC邊的中點(diǎn),過點(diǎn)A作AD⊥AB交BE的延長(zhǎng)線于點(diǎn)D,CG平分∠ACB交BD于點(diǎn)G,F(xiàn)為AB邊上一點(diǎn),連接CF,且∠ACF=∠CBG。求證:(1)AF=CG;(2)CF=2DE五、解答題:(本大題共2個(gè)小題,每小題12分,共24分)25、如圖,已知拋物線與x軸交于A、B兩點(diǎn)(點(diǎn)A在點(diǎn)B的左邊),與y軸交于點(diǎn)C,連接BC。(1)求A、B、C三點(diǎn)的坐標(biāo);(2)若點(diǎn)P為線段BC上的一點(diǎn)(不與B、C重合),PM∥y軸,且PM交拋物線于點(diǎn)M,交x軸于點(diǎn)N,當(dāng)△BCM的面積最大時(shí),求△BPN的周長(zhǎng);(3)在(2)的條件下,當(dāng)BCM的面積最大時(shí),在拋物線的對(duì)稱軸上存在點(diǎn)Q,使得△CNQ為直角三角形,求點(diǎn)Q的坐標(biāo)。26、如圖1,在□ABCD中,AH⊥DC,垂足為H,AB=,AD=7,AH=?,F(xiàn)有兩個(gè)動(dòng)點(diǎn)E、F同時(shí)從點(diǎn)A出發(fā),分別以每秒1個(gè)單位長(zhǎng)度、每秒3個(gè)單位長(zhǎng)度的速度沿射線AC方向勻速運(yùn)動(dòng)。在點(diǎn)E、F運(yùn)動(dòng)過程中,以EF為邊作等邊△EFG,使△EFG與△ABC在射線AC的同側(cè),當(dāng)點(diǎn)E運(yùn)動(dòng)到點(diǎn)C時(shí),E、F兩點(diǎn)同時(shí)停止運(yùn)動(dòng)。設(shè)運(yùn)轉(zhuǎn)時(shí)間為t秒。(1)求線段AC的長(zhǎng);(2)在整個(gè)運(yùn)動(dòng)過程中,設(shè)等邊△EFG與△ABC重疊部分的面積為S,請(qǐng)直接寫出S與t之間的函數(shù)關(guān)系式,并寫出相應(yīng)的自變量t的取值范圍;(3)當(dāng)?shù)冗叀鱁FG的頂點(diǎn)E到達(dá)點(diǎn)C時(shí),如圖2,將△EFG繞著點(diǎn)C旋轉(zhuǎn)一個(gè)角度。在旋轉(zhuǎn)過程中,點(diǎn)E與點(diǎn)C重合,F(xiàn)的對(duì)應(yīng)點(diǎn)為F′,G的對(duì)應(yīng)點(diǎn)為G′。設(shè)直線F′G′與射線DC、射線AC分別相交于M、N兩點(diǎn)。試問:是否存在點(diǎn)M、N,使得△CMN是以∠MCN為底角的等腰三角形?若存在,請(qǐng)求出線段CM的長(zhǎng)度;若不存在,請(qǐng)說(shuō)明理由。2014年重慶中考數(shù)學(xué)(B卷)答案一、選擇題:1-4:ACBD 5-8:ADCB 9-12:CCDC二、填空題:13、__12___ 14、_x≠2__ 15、__48___ 16、__8___ 17、 18、三、解答題:19題 解:原式20題 解:21題 解:原式 解方程得: 當(dāng)時(shí),原式22題 解:(1)22%;50;(2)由圖可知:很不喜歡的共有3人,其中男性2人,女性1人.由圖可知,共有6種等可能情況,其中恰好都是男性(記為事件A)有2種,其概率.23題 解:(1)設(shè)5月份在市區(qū)銷售了x千克,則園區(qū)里銷售了(3000-x)千克.由題意得:解得,則答:5月份在市區(qū)銷售了2000千克,在園區(qū)銷售了1000千克.(2)由題意得:解得:則的最大值為10.24題 證明:(1)∵∠ACB=90°,AC=BC,CG平分∠ACB∴∠BCG=∠CAB=45°又∵∠ACF=∠CBG,AC=BC∴△ACF≌△CBG(ASA)∴CF=BG,AF=CG(2)延長(zhǎng)CG交AB于點(diǎn)H.∵AC=BC,CG平分∠ACB∴CH⊥AB,H為AB中點(diǎn)又∵AD⊥AB∴CH∥AD∴G為BD的中點(diǎn)∴BG=DG∠D=∠EGC∵E為AC中點(diǎn)∴AE=EC又∵∠AED=∠CEG∴△AED≌△CEG(AAS)∴DE=EG∴BG=DG=2DE由(1)得CF=BG∴CF=2DE.25題 解:(1)令x=0,解得y=3∴點(diǎn)C的坐標(biāo)為(0,3)令y=0,解得x1=-1,x2=3∴點(diǎn)A的坐標(biāo)為(-1,0)點(diǎn)B的坐標(biāo)為(3,0)(2)由A,B兩點(diǎn)坐標(biāo)求得直線AB的解析式為y=-x+3設(shè)點(diǎn)P的坐標(biāo)為(x,-x+3)(0<x<3)∵PM∥y軸∠PNB=90°,點(diǎn)M的坐標(biāo)為(x,-x2+2x+3)∴PM=(-x2+2x+3)-(-x+3)=-x2+3x∵∴當(dāng)x=時(shí)的面積最大此時(shí),點(diǎn)P的坐標(biāo)為(,)∴PN=,BN=,BP=∴.(3)求得拋物線對(duì)稱軸為x=1設(shè)點(diǎn)Q的坐標(biāo)為(1,)∴當(dāng)∠CNQ=90°時(shí),如圖1所示即解得:∴Q1(1,)當(dāng)∠NCQ=90°時(shí),如圖2所示即解得:∴Q2(1,)當(dāng)∠CQN=90°時(shí),如圖3所示即解得:∴Q3(1,)Q4(1,)2014年重慶市中考數(shù)學(xué)試卷(B卷)參考答案與試題解析一、選擇題(本大題共12小題,每小題4分,共48分)1.(4分)(2014?重慶)某地連續(xù)四天每天的平均氣溫分別是:1℃、﹣1℃、0℃、2℃,則平均氣溫中最低的是()A.﹣1℃B.0℃C.1℃D.2℃專題:應(yīng)用題.分析:根據(jù)正數(shù)大于一切負(fù)數(shù)解答.解答:解:∵1℃、﹣1℃、0℃、2℃中氣溫最低的是﹣1℃,∴平均氣溫中最低的是﹣1℃.故選A.點(diǎn)評(píng):本題考查了有理數(shù)的大小比較,是基礎(chǔ)題,熟記正數(shù)大于一切負(fù)數(shù)是解題的關(guān)鍵.2.(4分)(2014?重慶)計(jì)算5x2﹣2x2的結(jié)果是()A.3B.3xC.3x2D.3x4考點(diǎn):合并同類項(xiàng).分析:根據(jù)合并同類項(xiàng)的法則:把同類項(xiàng)的系數(shù)相加,所得結(jié)果作為系數(shù),字母和字母的指數(shù)不變,進(jìn)行運(yùn)算即可.解答:解:原式=5x2﹣2x2=3x2.故選:C.點(diǎn)評(píng):此題考查了合并同類項(xiàng)的知識(shí),屬于基礎(chǔ)題,解答本題的關(guān)鍵是掌握合并同類項(xiàng)的法則.3.(4分)(2014?重慶)如圖,△ABC∽△DEF,相似比為1:2.若BC=1,則EF的長(zhǎng)是()A.1B.2C.3D.4考點(diǎn):相似三角形的性質(zhì).分析:根據(jù)相似三角形對(duì)應(yīng)邊的比等于相似比即可求解.解答:解:∵△ABC∽△DEF,相似比為1:2,∴=,∴EF=2BC=2.故選B.點(diǎn)評(píng):本題考查了相似三角形的性質(zhì):相似三角形對(duì)應(yīng)邊的比等于相似比.4.(4分)(2014?重慶)如圖,直線AB∥CD,直線EF分別交AB,CD于點(diǎn)E,F(xiàn).若∠AEF=50°,則∠EFC的大小是()A.40°B.50°C.120°D.130°考點(diǎn):平行線的性質(zhì).分析:根據(jù)兩直線平行,同旁內(nèi)角互補(bǔ)列式計(jì)算即可得解.解答:解:∵AB∥CD,∴∠EFC=180°﹣∠AEF=180°﹣50°=130°.故選D.點(diǎn)評(píng):本題考查了平行線的性質(zhì),熟記性質(zhì)是解題的關(guān)鍵.5.(4分)(2014?重慶)某校將舉辦一場(chǎng)“中國(guó)漢字聽寫大賽”,要求各班推選一名同學(xué)參加比賽,為此,初三(1)班組織了五輪班級(jí)選拔賽,在這五輪選拔賽中,甲、乙兩位同學(xué)的平均分都是96分,甲的成績(jī)的方差是0.2,乙的成績(jī)的方差是0.8.根據(jù)以上數(shù)據(jù),下列說(shuō)法正確的是()A.甲的成績(jī)比乙的成績(jī)穩(wěn)定B.乙的成績(jī)比甲的成績(jī)穩(wěn)定C.甲、乙兩人的成績(jī)一樣穩(wěn)定D.無(wú)法確定甲、乙的成績(jī)誰(shuí)更穩(wěn)定考點(diǎn):方差.分析:根據(jù)方差的意義可作出判斷,比較出甲乙的方差大小即可.解答:解:∵甲的成績(jī)的方差是0.2,乙的成績(jī)的方差是0.8,0.2<0.8,∴甲的成績(jī)比乙的成績(jī)穩(wěn)定,故選:A.點(diǎn)評(píng):本題考查方差了的意義.方差是用來(lái)衡量一組數(shù)據(jù)波動(dòng)大小的量,方差越大,表明這組數(shù)據(jù)偏離平均數(shù)越大,即波動(dòng)越大,數(shù)據(jù)越不穩(wěn)定;反之,方差越小,表明這組數(shù)據(jù)分布比較集中,各數(shù)據(jù)偏離平均數(shù)越小,即波動(dòng)越小,數(shù)據(jù)越穩(wěn)定.6.(4分)(2014?重慶)若點(diǎn)(3,1)在一次函數(shù)y=kx﹣2(k≠0)的圖象上,則k的值是()A.5B.4C.3D.1考點(diǎn):一次函數(shù)圖象上點(diǎn)的坐標(biāo)特征.分析:把點(diǎn)的坐標(biāo)代入函數(shù)解析式計(jì)算即可得解.解答:解:∵點(diǎn)(3,1)在一次函數(shù)y=kx﹣2(k≠0)的圖象上,∴3k﹣2=1,解得k=1.故選D.點(diǎn)評(píng):本題考查了一次函數(shù)圖象上點(diǎn)的坐標(biāo)特征,準(zhǔn)確計(jì)算是解題的關(guān)鍵.7.(4分)(2014?重慶)分式方程=的解是()A.x=1B.x=﹣1C.x=3D.x=﹣3考點(diǎn):解分式方程.專題:計(jì)算題.分析:分式方程去分母轉(zhuǎn)化為整式方程,求出整式方程的解得到x的值,經(jīng)檢驗(yàn)即可得到分式方程的解.解答:解:去分母得:4x=3x+3,解得:x=3,經(jīng)檢驗(yàn)x=3是分式方程的解.故選C點(diǎn)評(píng):此題考查了解分式方程,解分式方程的基本思想是“轉(zhuǎn)化思想”,把分式方程轉(zhuǎn)化為整式方程求解.解分式方程一定注意要驗(yàn)根.8.(4分)(2014?重慶)如圖,在矩形ABCD中,對(duì)角線AC,BD相交于點(diǎn)O,∠ACB=30°,則∠AOB的大小為()A.30°B.60°C.90°D.120°考點(diǎn):矩形的性質(zhì).分析:根據(jù)矩形的對(duì)角線互相平分且相等可得OB=OC,再根據(jù)等邊對(duì)等角可得∠OBC=∠ACB,然后根據(jù)三角形的一個(gè)外角等于與它不相鄰的兩個(gè)內(nèi)角的和列式計(jì)算即可得解.解答:解:∵矩形ABCD的對(duì)角線AC,BD相交于點(diǎn)O,∴OB=OC,∴∠OBC=∠ACB=30°,∴∠AOB=∠OBC+∠ACB=30°+30°=60°.故選B.點(diǎn)評(píng):本題考查了矩形的性質(zhì),等邊對(duì)等角的性質(zhì)以及三角形的一個(gè)外角等于與它不相鄰的兩個(gè)內(nèi)角的和的性質(zhì),熟記各性質(zhì)是解題的關(guān)鍵.9.(4分)(2014?重慶)夏天到了,某小區(qū)準(zhǔn)備開放游泳池,物業(yè)管理處安排一名清潔工對(duì)一個(gè)無(wú)水的游泳池進(jìn)行清洗,該工人先只打開一個(gè)進(jìn)水管,蓄了少量水后關(guān)閉進(jìn)水管并立即進(jìn)行清洗,一段時(shí)間后,再同時(shí)打開兩個(gè)出水管將池內(nèi)的水放完,隨后將兩個(gè)出水管關(guān)閉,并同時(shí)打開兩個(gè)進(jìn)水管將水蓄滿.已知每個(gè)進(jìn)水管的進(jìn)水速度與每個(gè)出水管的出水速度相同,從工人最先打開一個(gè)進(jìn)水管開始,所用時(shí)間為x,游泳池內(nèi)的蓄水量為y,則下列各圖中能夠反映y與x的函數(shù)關(guān)系的大致圖象是()A.B.C.D.考點(diǎn):函數(shù)的圖象.分析:根據(jù)題目中敘述的過程,開始打開一個(gè)進(jìn)水管,游泳池內(nèi)的蓄水量逐漸增多;一段時(shí)間后,再同時(shí)打開兩個(gè)出水管將池內(nèi)的水放完,游泳池內(nèi)的蓄水量逐漸減少直到水量為0,并且時(shí)間比開始用的少;隨后將兩個(gè)出水管關(guān)閉,并同時(shí)打開兩個(gè)進(jìn)水管將水蓄滿,游泳池內(nèi)的蓄水量增多.解答:解:開始打開一個(gè)進(jìn)水管,游泳池內(nèi)的蓄水量逐漸增多;一段時(shí)間后,再同時(shí)打開兩個(gè)出水管將池內(nèi)的水放完,游泳池內(nèi)的蓄水量逐漸減少直到水量為0,并且時(shí)間比開始用的少;隨后將兩個(gè)出水管關(guān)閉,并同時(shí)打開兩個(gè)進(jìn)水管將水蓄滿,游泳池內(nèi)的蓄水量增多,故選:C.點(diǎn)評(píng):此題考查了函數(shù)圖象.關(guān)鍵是能夠根據(jù)敘述來(lái)分析變化過程.10.(4分)(2014?重慶)下列圖形都是按照一定規(guī)律組成,第一個(gè)圖形中共有2個(gè)三角形,第二個(gè)圖形中共有8個(gè)三角形,第三個(gè)圖形中共有14個(gè)三角形,…,依此規(guī)律,第五個(gè)圖形中三角形的個(gè)數(shù)是()A.22B.24C.26D.28考點(diǎn):規(guī)律型:圖形的變化類.分析:仔細(xì)觀察圖形,找到圖形變化的規(guī)律,利用發(fā)現(xiàn)的規(guī)律解題即可.解答:解:第一個(gè)圖形有2+6×0=2個(gè)三角形;第二個(gè)圖形有2+6×1=8個(gè)三角形;第三個(gè)圖形有2+6×2=14個(gè)三角形;…第五個(gè)圖形有2+6×4=26個(gè)三角形;故選C.點(diǎn)評(píng):本題考查了圖形的變化類問題,解題的關(guān)鍵是仔細(xì)觀察圖形,發(fā)現(xiàn)圖形變化的規(guī)律.11.(4分)(2014?重慶)如圖,菱形ABCD的對(duì)角線AC,BD相交于點(diǎn)O,AC=8,BD=6,以AB為直徑作一個(gè)半圓,則圖中陰影部分的面積為()A.25π﹣6B.π﹣6C.π﹣6D.π﹣6考點(diǎn):菱形的性質(zhì);勾股定理.分析:根據(jù)菱形的對(duì)角線互相垂直平分求出OA、OB,再利用勾股定理列式求出AB,然后根據(jù)陰影部分的面積等于半圓的面積減去△AOB的面積,列式計(jì)算即可得解,解答:解:∵菱形ABCD中,AC=8,BD=6,∴AC⊥BD且OA=AC=×8=4,OB=BD=×6=3,由勾股定理得,AB===5,∴陰影部分的面積=?π()2﹣×4×3=π﹣6.故選D.點(diǎn)評(píng):本題考查了菱形的性質(zhì),勾股定理,主要利用了菱形的對(duì)角線互相垂直平分的性質(zhì),熟記性質(zhì)并觀察出陰影部分的面積的表示是解題的關(guān)鍵.12.(4分)(2014?重慶)如圖,正方形ABCD的頂點(diǎn)B,C在x軸的正半軸上,反比例函數(shù)y=(k≠0)在第一象限的圖象經(jīng)過頂點(diǎn)A(m,2)和CD邊上的點(diǎn)E(n,),過點(diǎn)E的直線l交x軸于點(diǎn)F,交y軸于點(diǎn)G(0,﹣2),則點(diǎn)F的坐標(biāo)是()A.(,0)B.(,0)C.(,0)D.(,0)考點(diǎn):反比例函數(shù)與一次函數(shù)的交點(diǎn)問題.專題:計(jì)算題.分析:由A(m,2)得到正方形的邊長(zhǎng)為2,則BC=2,所以n=2+m,根據(jù)反比例函數(shù)圖象上點(diǎn)的坐標(biāo)特征得到k=2?m=(2+m),解得m=1,則E點(diǎn)坐標(biāo)為(3,),然后利用待定系數(shù)法確定直線GF的解析式為y=x﹣2,再求y=0時(shí)對(duì)應(yīng)自變量的值,從而得到點(diǎn)F的坐標(biāo).解答:解:∵正方形的頂點(diǎn)A(m,2),∴正方形的邊長(zhǎng)為2,∴BC=2,而點(diǎn)E(n,),∴n=2+m,即E點(diǎn)坐標(biāo)為(2+m,),∴k=2?m=(2+m),解得m=1,∴E點(diǎn)坐標(biāo)為(3,),設(shè)直線GF的解析式為y=ax+b,把E(3,),G(0,﹣2)代入得,解得,∴直線GF的解析式為y=x﹣2,當(dāng)y=0時(shí),x﹣2=0,解得x=,∴點(diǎn)F的坐標(biāo)為(,0).故選:C.點(diǎn)評(píng):本題考查了反比例函數(shù)與一次函數(shù)的交點(diǎn)問題:反比例函數(shù)與一次函數(shù)圖象的交點(diǎn)坐標(biāo)滿足兩函數(shù)解析式.也考查了待定系數(shù)法求函數(shù)解析式.二、填空題(本大題共6小題,每小題4分,共24分)13.(4分)(2014?重慶)實(shí)數(shù)﹣12的相反數(shù)是12.考點(diǎn):實(shí)數(shù)的性質(zhì).分析:根據(jù)只有符號(hào)不同的兩數(shù)叫做互為相反數(shù)解答.解答:解:實(shí)數(shù)﹣12的相反數(shù)是12.故答案為:12.點(diǎn)評(píng):本題考查了實(shí)數(shù)的性質(zhì),熟記相反數(shù)的定義是解題的關(guān)鍵.14.(4分)(2014?撫順)函數(shù)y=中,自變量x的取值范圍是x≠2.考點(diǎn):函數(shù)自變量的取值范圍;分式有意義的條件.專題:計(jì)算題.分析:求函數(shù)自變量的取值范圍,就是求函數(shù)解析式有意義的條件,分式有意義的條件是:分母不為0.解答:解:要使分式有意義,即:x﹣2≠0,解得:x≠2.故答案為:x≠2.點(diǎn)評(píng):本題主要考查函數(shù)自變量的取值范圍,考查的知識(shí)點(diǎn)為:分式有意義,分母不為0.15.(4分)(2014?重慶)在2014年重慶市初中畢業(yè)生體能測(cè)試中,某校初三有7名同學(xué)的體能測(cè)試成績(jī)(單位:分)如下:50,48,47,50,48,49,48.這組數(shù)據(jù)的眾數(shù)是48.考點(diǎn):眾數(shù).分析:利用眾數(shù)的定義求解.找出數(shù)據(jù)中出現(xiàn)次數(shù)最多的數(shù)即可.解答:解:數(shù)據(jù)48出現(xiàn)了三次最多為眾數(shù).故答案為48.點(diǎn)評(píng):考查了眾數(shù)的定義,一組數(shù)據(jù)中出現(xiàn)次數(shù)最多的數(shù)據(jù)叫做眾數(shù).它反映了一組數(shù)據(jù)的多數(shù)水平,一組數(shù)據(jù)的眾數(shù)可能不是唯一的.16.(4分)(2014?重慶)如圖,C為⊙O外一點(diǎn),CA與⊙O相切,切點(diǎn)為A,AB為⊙O的直徑,連接CB.若⊙O的半徑為2,∠ABC=60°,則BC=8.考點(diǎn):切線的性質(zhì);含30度角的直角三角形.分析:由CA與⊙O相切知∠BAC=90°,運(yùn)用在RT△BAC中,30°的角對(duì)的直角過是斜邊的一半求解.解答:解:∵CA與⊙O相切,切點(diǎn)為A,AB為⊙O的直徑,∴∠BAC=90°,∵∠ABC=60°,⊙O的半徑為2,∴在RT△BAC中,∠C=30°,AB=4,∴BC=2AB=2×4=8.故答案為:8.點(diǎn)評(píng):本題考查了切線的性質(zhì)及含30°角的直角三角形的知識(shí),解題的關(guān)鍵是利用切線的性質(zhì)得出△BAC是直角三角形.17.(4分)(2014?重慶)在一個(gè)不透明的盒子里裝著4個(gè)分別標(biāo)有數(shù)字1,2,3,4的小球,它們除數(shù)字不同外其余完全相同,攪勻后從盒子里隨機(jī)取出1個(gè)小球,將小球上的數(shù)字作為a的值,則使關(guān)于x的不等式組只有一個(gè)整數(shù)解的概率為.考點(diǎn):概率公式;一元一次不等式組的整數(shù)解.分析:根據(jù)不等式組只有一個(gè)整數(shù)解可知較大的數(shù)比較小的數(shù)大1,列出方程求出a的值,再根據(jù)概率公式列式計(jì)算即可得解.解答:解:∵不等式組只有一個(gè)整數(shù)解,∴(a+2)﹣(2a﹣1)=1,解得a=2,∴P=.故答案為:.點(diǎn)評(píng):本題阿空出來(lái)概率公式,一元一次不等式組的正整數(shù)解,理解整數(shù)(a+2)比(2a﹣1)大1列出方程是解題的關(guān)鍵.18.(4分)(2014?重慶)如圖,在邊長(zhǎng)為6的正方形ABCD中,E是AB邊上一點(diǎn),G是AD延長(zhǎng)線上一點(diǎn),BE=DG,連接EG,CF⊥EG交EG于點(diǎn)H,交AD于點(diǎn)F,連接CE,BH.若BH=8,則FG=5.考點(diǎn):全等三角形的判定與性質(zhì);等腰直角三角形;正方形的性質(zhì);相似三角形的判定與性質(zhì).分析:如解答圖,連接CG,首先證明△CGD≌△CEB,得到△GCE是等腰直角三角形;過點(diǎn)H作AB、BC的垂線,垂足分別為點(diǎn)M、N,進(jìn)而證明△HEM≌△HCN,得到四邊形MBNH為正方形,由此求出CH、HN、CN的長(zhǎng)度;最后利用相似三角形Rt△HCN∽R(shí)t△GFH,求出FG的長(zhǎng)度.解答:解:如右圖所示,連接CG.在△CGD與△CEB中∴△CGD≌△CEB(SAS),∴CG=CE,∠GCD=∠ECB,∴∠GCE=90°,即△GCE是等腰直角三角形.又∵CH⊥GE,∴CH=EH=GH.過點(diǎn)H作AB、BC的垂線,垂足分別為點(diǎn)M、N,則∠MHN=90°,又∵∠EHC=90°,∴∠1=∠2,∴∠HEM=∠HCN.在△HEM與△HCN中,∴△HEM≌△HCN(ASA).∴HM=HN,∴四邊形MBNH為正方形.∵AH=8,∴BN=HN=4,∴CN=BC﹣BN=6﹣4=2.在Rt△HCN中,由勾股定理得:CH=2.∴GH=CH=2.∵HM∥AG,∴∠1=∠3,∴∠2=∠3.又∵∠HNC=∠GHF=90°,∴Rt△HCN∽R(shí)t△GFH.∴,即,∴FG=5.故答案為:5.點(diǎn)評(píng):本題是幾何綜合題,考查了全等三角形、相似三角形、正方形、等腰直角三角形、勾股定理等重要知識(shí)點(diǎn),難度較大.作出輔助線構(gòu)造全等三角形與相似三角形,是解決本題的關(guān)鍵.三、解答題(本大題共2小題,每小題7分,共14分)19.(7分)(2014?重慶)計(jì)算:(﹣3)2+|﹣2|﹣20140﹣+()﹣1.考點(diǎn):實(shí)數(shù)的運(yùn)算;零指數(shù)冪;負(fù)整數(shù)指數(shù)冪.分析:分別根據(jù)0指數(shù)冪及負(fù)整數(shù)指數(shù)冪的運(yùn)算法則、數(shù)的乘方法則及絕對(duì)值的性質(zhì)計(jì)算出各數(shù),再根據(jù)實(shí)數(shù)混合運(yùn)算的法則進(jìn)行計(jì)算即可.解答:解:原式=9+2﹣1﹣3+2=9.點(diǎn)評(píng):本題考查的是實(shí)數(shù)的運(yùn)算,熟知0指數(shù)冪及負(fù)整數(shù)指數(shù)冪的運(yùn)算法則、數(shù)的乘方法則及絕對(duì)值的性質(zhì)是解答此題的關(guān)鍵.20.(7分)(2014?重慶)如圖,在△ABC中,CD⊥AB,垂足為D.若AB=12,CD=6,tanA=,求sinB+cosB的值.考點(diǎn):解直角三角形;勾股定理.分析:先在Rt△ACD中,由正切函數(shù)的定義得tanA==,求出AD=4,則BD=AB﹣AD=8,再解Rt△BCD,由勾股定理得BC==10,sinB==,cosB==,由此求出sinB+cosB=.解答:解:在Rt△ACD中,∵∠ADC=90°,∴tanA===,∴AD=4,∴BD=AB﹣AD=12﹣4=8.在Rt△BCD中,∵∠BDC=90°,BD=8,CD=6,∴BC==10,∴sinB==,cosB==,∴sinB+cosB=+=.點(diǎn)評(píng):本題考查了解直角三角形,銳角三角函數(shù)的定義,勾股定理,難度適中.四、解答題(本大題共4小題,每小題10,共40分)21.(10分)(2014?重慶)先化簡(jiǎn),再求值:(x﹣1﹣)÷,其中x是方程﹣=0的解.考點(diǎn):分式的化簡(jiǎn)求值;解一元一次方程.專題:計(jì)算題.分析:原式括號(hào)中兩項(xiàng)通分并利用同分母分式的減法法則計(jì)算,同時(shí)利用除法法則變形,約分得到最簡(jiǎn)結(jié)果,求出已知方程的解得到x的值,代入計(jì)算即可求出值.解答:解:原式=÷=?=,方程去分母得:5x﹣5﹣2x+4=0,解得:x=,當(dāng)x=時(shí),原式==﹣.點(diǎn)評(píng):此題考查了分式的化簡(jiǎn)求值,以及解一元一次方程,熟練掌握運(yùn)算法則是解本題的關(guān)鍵.22.(10分)(2014?重慶)重慶市某餐飲文化公司準(zhǔn)備承辦“重慶火鍋美食文化節(jié)”,為了解市民對(duì)火鍋的喜愛程度,該公司設(shè)計(jì)了一個(gè)調(diào)查問卷,將喜愛程度分為A(非常喜歡)、B(喜歡)、C(不太喜歡)、D(很不喜歡)四種類型,并派業(yè)務(wù)員進(jìn)行市場(chǎng)調(diào)查,其中一個(gè)業(yè)務(wù)員小麗在解放碑步行街對(duì)市民進(jìn)行了隨機(jī)調(diào)查,并根據(jù)調(diào)查結(jié)果制成了如下兩幅不完整的統(tǒng)計(jì)圖,請(qǐng)結(jié)合統(tǒng)計(jì)圖所給信息解答下列問題:(1)在扇形統(tǒng)計(jì)圖中C所占的百分比是22%;小麗本次抽樣調(diào)查的人數(shù)共有50人;請(qǐng)將折線統(tǒng)計(jì)圖補(bǔ)充完整;(2)為了解少數(shù)市民很不喜歡吃火鍋的原因,小麗決定在上述調(diào)查結(jié)果中從“很不喜歡”吃火鍋的市民里隨機(jī)選出兩位進(jìn)行電話回訪,請(qǐng)你用列表法或畫樹狀圖的方法,求所選出的兩位市民恰好都是男性的概率.考點(diǎn):折線統(tǒng)計(jì)圖;扇形統(tǒng)計(jì)圖;列表法與樹狀圖法.分析:(1)用整體1減去A、B、D所占的百分比,剩下的就是圖中C所占的百分比;用非常喜歡吃火鍋的人數(shù)除以所占的百分比,求出本次抽樣調(diào)查的總?cè)藬?shù),再分別求出不喜歡吃火鍋的男生和很不喜歡吃火鍋的男生,從而補(bǔ)全統(tǒng)計(jì)圖;(2)先根據(jù)題意畫出樹狀圖,再根據(jù)概率公式即可求出答案.解答:解:(1)在扇形統(tǒng)計(jì)圖中C所占的百分比是:1﹣20%﹣52%﹣6%=22%;小麗本次抽樣調(diào)查的共有人數(shù)是:=50(人);不喜歡吃火鍋的男生有:50×22%﹣5=6(人),很不喜歡吃火鍋的男生有:50×6%﹣1=2(人),補(bǔ)圖如下:故答案為:22%,50;(2)根據(jù)題意畫圖如下:共有6中情況,選出的兩位市民恰好都是男性的概率是=.點(diǎn)評(píng):此題考查了折線統(tǒng)計(jì)圖和扇形統(tǒng)計(jì)圖以及概率的求法,讀懂統(tǒng)計(jì)圖,從不同的統(tǒng)計(jì)圖中得到必要的信息是解決問題的關(guān)鍵.用到的知識(shí)點(diǎn)為:概率=所求情況數(shù)與總情況數(shù)之比.23.(10分)(2014?重慶)某生態(tài)農(nóng)業(yè)園種植的青椒除了運(yùn)往市區(qū)銷售外,還可以讓市民親自去生態(tài)農(nóng)業(yè)園購(gòu)買.已知今年5月份該青椒在市區(qū)、園區(qū)的銷售價(jià)格分別為6元/千克、4元/千克,今年5月份一共銷售了3000千克,總銷售額為16000元.(1)今年5月份該青椒在市區(qū)、園區(qū)各銷售了多少千克?(2)6月份是青椒產(chǎn)出旺季.為了促銷,生態(tài)農(nóng)業(yè)園決定6月份將該青椒在市區(qū)、園區(qū)的銷售價(jià)格均在今年5月份的基礎(chǔ)上降低a%,預(yù)計(jì)這種青椒在市區(qū)、園區(qū)的銷售將在今年5月份的基礎(chǔ)上分別增長(zhǎng)30%、20%,要使6月份該青椒的總銷售額不低于18360元,則a的最大值是多少?考點(diǎn):一元一次不等式的應(yīng)用;一元一次方程的應(yīng)用.分析:(1)設(shè)在市區(qū)銷售了x千克,則在園區(qū)銷售了(3000﹣x)千克,根據(jù)等量關(guān)系:總銷售額為16000元列出方程求解即可;(2)題目中的不等關(guān)系是:6月份該青椒的總銷售額不低于18360元列出不等式求解即可.解答:解:(1)設(shè)在市區(qū)銷售了x千克,則在園區(qū)銷售了(3000﹣x)千克,則6x+4(3000﹣x)=16000,解得x=2000,3000﹣x=1000.故今年5月份該青椒在市區(qū)銷售了2000千克,在園區(qū)銷售了1000千克.(2)依題意有6(1﹣a%)×2000(1+30%)+4(1﹣a%)×1000(1+20%)≥18360,20400(1﹣a%)≥18360,1﹣a%≥0.9,a≤10.故a的最大值是10.點(diǎn)評(píng):考查了一元一次方程的應(yīng)用和一元一次不等式的應(yīng)用.解決問題的關(guān)鍵是讀懂題意,找到關(guān)鍵描述語(yǔ),找到所求的量的等量關(guān)系.24.(10分)(2014?重慶)如圖,在△ABC中,∠ACB=90°,AC=BC,E為AC邊的中點(diǎn),過點(diǎn)A作AD⊥AB交BE的延長(zhǎng)線于點(diǎn)D,CG平分∠ACB交BD于點(diǎn)G,F(xiàn)為AB邊上一點(diǎn),連接CF,且∠ACF=∠CBG.求證:(1)AF=CG;(2)CF=2DE.考點(diǎn):全等三角形的判定與性質(zhì);等腰直角三角形.專題:證明題.分析:(1)要證AF=CG,只需證明△AFC≌△CBG即可.(2)延長(zhǎng)CG交AB于H,則CH⊥AB,H平分AB,繼而證得CH∥AD,得出DG=BG和△ADE與△CGE全等,從而證得CF=2DE.解答:證明:(1)∵∠ACB=90°,CG平分∠ACB,∴∠ACG=∠BCG=45°,又∵∠ACB=90°,AC=BC,∴∠CAF=∠CBF=45°,∴∠CAF=∠BCG,在△AFC與△CGB中,,∴△AFC≌△CBG(AAS),∴AF=CG;(2)延長(zhǎng)CG交AB于H,∵CG平分∠ACB,AC=BC,∴CH⊥AB,CH平分AB,∵AD⊥AB,∴AD∥CG,在△ADE與△CGE中,,∴△ADE≌△CGE(AAS),∴DE=GE,即DG=2DE,∵AD∥CG,AH平分AB,∴DG=BG,∵△AFC≌△CBG,∴CF=BG,∴CF=2DE.點(diǎn)評(píng):本題考查了三角形全等的判定和性質(zhì)、等腰三角形的性質(zhì)、平行線的判定及性質(zhì),三角形全等是解本題的關(guān)鍵.五、解答題(本大題共2小題,每小題12分,共24分)25.(12分)(2014?重慶)如圖,已知拋物線y=﹣x2+2x+3與x軸交于A,B兩點(diǎn)(點(diǎn)A在點(diǎn)B的左邊),與y軸交于點(diǎn)C,連接BC.(1)求A,B,C三點(diǎn)的坐標(biāo);(2)若點(diǎn)P為線段BC上一點(diǎn)(不與B,C重合),PM∥y軸,且PM交拋物線于點(diǎn)M,交x軸于點(diǎn)N,當(dāng)△BCM的面積最大時(shí),求△BPN的周長(zhǎng);(3)在(2)的條件下,當(dāng)△BCM的面積最大時(shí),在拋物線的對(duì)稱軸上存在一點(diǎn)Q,使得△CNQ為直角三角形,求點(diǎn)Q的坐標(biāo).考點(diǎn):二次函數(shù)綜合題.分析:(1)依據(jù)拋物線的解析式直接求得C的坐標(biāo),令y=0解方程即可求得A、B點(diǎn)的坐標(biāo);(2)求出△BCM面積的表達(dá)式,這是一個(gè)二次函數(shù),求出其取最大值的條件;然后利用勾股定理求出△BPN的周長(zhǎng);(3)如解答圖,△CNQ為直角三角形,分三種情況:①點(diǎn)Q為直角頂點(diǎn),作Rt△CNO的外接圓,由圓周角定理可知,其與對(duì)稱軸的兩個(gè)交點(diǎn)即為所求;②點(diǎn)N為直角頂點(diǎn);③點(diǎn)C為直角頂點(diǎn).解答:解:(1)由拋物線的解析式y(tǒng)=﹣x2+2x+3,∴C(0,3),令y=0,﹣x2+2x+3=0,解得x=3或x=﹣1;∴A(﹣1,0),B(3,0).(2)設(shè)直線BC的解析式為:y=kx+b,則有:,解得,∴直線BC的解析式為:y=﹣x+3.設(shè)P(x,﹣x+3),則M(x,﹣x2+2x+3),∴PM=(﹣x2+2x+3)﹣(﹣x+3)=﹣x2+3x.∴S△BCM=S△PMC+S△PMB=PM?(xP﹣xC)+PM?(xB﹣xP)=PM?(xB﹣xC)=PM.∴S△BCM=(﹣x2+3x)=﹣(x﹣)2+.∴當(dāng)x=時(shí),△BCM的面積最大.此時(shí)P(,),∴PN=ON=,∴BN=OB﹣ON=3﹣=.在Rt△BPN中,由勾股定理得:PB=.C△BCN=BN+PN+PB=3+.∴當(dāng)△BCM的面積最大時(shí),△BPN的周長(zhǎng)為3+.(3)∵y=﹣x2+2x+3=﹣(x﹣1)2+4∴拋物線的對(duì)稱軸為直線x=1.在Rt△CNO中,OC=3,ON=,由勾股定理得:CN=.設(shè)點(diǎn)D為CN中點(diǎn),則D(,),CD=ND=.如解答圖,△CNQ為直角三角形,①若點(diǎn)Q為直角頂點(diǎn).作Rt△CNO的外接圓⊙D,與對(duì)稱軸交于Q1、Q2兩點(diǎn),由圓周角定理可知,Q1、Q2兩點(diǎn)符合題意.連接Q1D,則Q1D=CD=ND=.過點(diǎn)D(,)作對(duì)稱軸的垂線,垂足為E,則E(1,),Q1E=Q2E,DE=1﹣=.在Rt△Q1DE中,由勾股定理得:Q1E==.∴Q1(1,),Q2(1,);②若點(diǎn)N為直角頂點(diǎn).過點(diǎn)N作NF⊥CN,交對(duì)稱軸于點(diǎn)Q3,交y軸于點(diǎn)F.易證Rt△NFO∽R(shí)t△CNO,則=,即,解得OF=.∴F(0,﹣),又∵N(,0),∴可求得直線FN的解析式為:y=x﹣.當(dāng)x=1時(shí),y=﹣,∴Q3(1,﹣);③當(dāng)點(diǎn)C為直角頂點(diǎn)時(shí).過點(diǎn)C作Q4C⊥CN,交對(duì)稱軸于點(diǎn)Q4.∵Q4C∥FN,∴可設(shè)直線Q4C的解析式為:y=x+b,∵點(diǎn)C(0,3)在該直線上,∴b=3.∴直線Q4C的解析式為:y=x+3,當(dāng)x=1時(shí),y=,∴Q4(1,).綜上所述,滿足條件的點(diǎn)Q有4個(gè),其坐標(biāo)分別為:Q1(1,),Q2(1,),Q3(1,﹣),Q4(1,).點(diǎn)評(píng):本題是二次函數(shù)綜合題,難度較大.解題過程中有若干解題技巧需要認(rèn)真掌握:①第(2)問中求△BCM面積表達(dá)式的方法;②第(3)問中確定點(diǎn)Q的方法;③第(3)問中求點(diǎn)Q坐標(biāo)的方法.26.(12分)(2014?重慶)如圖1,在?ABCD中,AH⊥DC,垂足為H,AB=4,AD=7,AH=.現(xiàn)有兩個(gè)動(dòng)點(diǎn)E,F(xiàn)同時(shí)從點(diǎn)A出發(fā),分別以每秒1個(gè)單位長(zhǎng)度、每秒3個(gè)單位長(zhǎng)度的速度沿射線AC方向勻速運(yùn)動(dòng),在點(diǎn)E,F(xiàn)的運(yùn)動(dòng)過程中,以EF為邊作等邊△EFG,使△EFG與△ABC在射線AC的同側(cè),當(dāng)點(diǎn)E運(yùn)動(dòng)到點(diǎn)C時(shí),E,F(xiàn)兩點(diǎn)同時(shí)停止運(yùn)動(dòng),設(shè)運(yùn)動(dòng)時(shí)間為t秒.(1)求線段AC的長(zhǎng);(2)在整個(gè)運(yùn)動(dòng)過程中,設(shè)等邊△EFG與△ABC重疊部分的面積為S,請(qǐng)直接寫出S與t之間的函數(shù)關(guān)系式,并寫出相應(yīng)的自變量t的取值范圍;(3)當(dāng)?shù)冗叀鱁FG的頂點(diǎn)E到達(dá)點(diǎn)C時(shí),如圖2,將△EFG繞著點(diǎn)C旋轉(zhuǎn)一個(gè)角度α(0°<α<360°),在旋轉(zhuǎn)過程中,點(diǎn)E與點(diǎn)C重合,F(xiàn)的對(duì)應(yīng)點(diǎn)為F′,G的對(duì)應(yīng)點(diǎn)為G′,設(shè)直線F′G′與射線DC、射線AC分別相交于M,N兩點(diǎn).試問:是否存在點(diǎn)M,N,使得△CMN是以∠MCN為底角的等腰三角形?若存在,請(qǐng)求出CM的長(zhǎng)度;若不存在,請(qǐng)說(shuō)明理由.考點(diǎn):幾何變換綜合題.分析:(1)利用平行四邊形性質(zhì)

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論