版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
安徽省合肥市46中學(xué)2024屆中考數(shù)學(xué)五模試卷注意事項:1.答卷前,考生務(wù)必將自己的姓名、準考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應(yīng)位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應(yīng)題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內(nèi)相應(yīng)位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1.下列二次根式中,最簡二次根式是()A. B. C. D.2.觀察下列圖案,是軸對稱而不是中心對稱的是()A. B. C. D.3.如圖,在矩形ABCD中,O為AC中點,EF過O點且EF⊥AC分別交DC于F,交AB于點E,點G是AE中點且∠AOG=30°,則下列結(jié)論正確的個數(shù)為(
)DC=3OG;(2)OG=BC;(3)△OGE是等邊三角形;(4).A.1 B.2 C.3 D.44.如圖,等腰直角三角形位于第一象限,,直角頂點在直線上,其中點的橫坐標為,且兩條直角邊,分別平行于軸、軸,若反比例函數(shù)的圖象與有交點,則的取值范圍是().A. B. C. D.5.下列運算正確的是()A.a(chǎn)﹣3a=2a B.(ab2)0=ab2 C.= D.×=96.如圖,點F是ABCD的邊AD上的三等分點,BF交AC于點E,如果△AEF的面積為2,那么四邊形CDFE的面積等于()A.18 B.22 C.24 D.467.某種電子元件的面積大約為0.00000069平方毫米,將0.00000069這個數(shù)用科學(xué)記數(shù)法表示正確的是()A.0.69×10﹣6 B.6.9×10﹣7 C.69×10﹣8 D.6.9×1078.“趙爽弦圖”巧妙地利用面積關(guān)系證明了勾股定理,是我國古代數(shù)學(xué)的驕傲,如圖所示的“趙爽弦圖”是由四個全等的直角三角形和一個小正方形拼成的一個大正方形,設(shè)直角三角形較長直角邊長為a,較短直角邊長為b,若,大正方形的面積為13,則小正方形的面積為()A.3 B.4 C.5 D.69.2017年,全國參加漢語考試的人數(shù)約為6500000,將6500000用科學(xué)記數(shù)法表示為()A.6.5×105B.6.5×106C.6.5×107D.65×10510.如圖,小明從A處出發(fā)沿北偏東60°方向行走至B處,又沿北偏西20°方向行走至C處,此時需把方向調(diào)整到與出發(fā)時一致,則方向的調(diào)整應(yīng)是()A.右轉(zhuǎn)80° B.左轉(zhuǎn)80° C.右轉(zhuǎn)100° D.左轉(zhuǎn)100°11.下列計算正確的是()A.a(chǎn)3?a3=a9B.(a+b)2=a2+b2C.a(chǎn)2÷a2=0D.(a2)3=a612.安徽省在一次精準扶貧工作中,共投入資金4670000元,將4670000用科學(xué)記數(shù)法表示為()A.4.67×107 B.4.67×106 C.46.7×105 D.0.467×107二、填空題:(本大題共6個小題,每小題4分,共24分.)13.如果把拋物線y=2x2﹣1向左平移1個單位,同時向上平移4個單位,那么得到的新的拋物線是_____.14.如圖所示,輪船在處觀測燈塔位于北偏西方向上,輪船從處以每小時海里的速度沿南偏西方向勻速航行,小時后到達碼頭處,此時,觀測燈塔位于北偏西方向上,則燈塔與碼頭的距離是______海里(結(jié)果精確到個位,參考數(shù)據(jù):,,)15.如圖,⊙O的半徑OD⊥弦AB于點C,連結(jié)AO并延長交⊙O于點E,連結(jié)EC.若AB=8,CD=2,則EC的長為_______.16.反比例函數(shù)y=的圖象是雙曲線,在每一個象限內(nèi),y隨x的增大而減小,若點A(–3,y1),B(–1,y2),C(2,y3)都在該雙曲線上,則y1、y2、y3的大小關(guān)系為__________.(用“<”連接)17.已知直角三角形的兩邊長分別為3、1.則第三邊長為________.18.如圖,某水庫大壩的橫斷面是梯形,壩頂寬米,壩高是20米,背水坡的坡角為30°,迎水坡的坡度為1∶2,那么壩底的長度等于________米(結(jié)果保留根號)三、解答題:(本大題共9個小題,共78分,解答應(yīng)寫出文字說明、證明過程或演算步驟.19.(6分)列方程解應(yīng)用題:某景區(qū)一景點要限期完成,甲工程隊單獨做可提前一天完成,乙工程隊獨做要誤期6天,現(xiàn)由兩工程隊合做4天后,余下的由乙工程隊獨做,正好如期完成,則工程期限為多少天?20.(6分)在△ABC中,已知AB=AC,∠BAC=90°,E為邊AC上一點,連接BE.(1)如圖1,若∠ABE=15°,O為BE中點,連接AO,且AO=1,求BC的長;(2)如圖2,D為AB上一點,且滿足AE=AD,過點A作AF⊥BE交BC于點F,過點F作FG⊥CD交BE的延長線于點G,交AC于點M,求證:BG=AF+FG.21.(6分)已知:二次函數(shù)C1:y1=ax2+2ax+a﹣1(a≠0)把二次函數(shù)C1的表達式化成y=a(x﹣h)2+b(a≠0)的形式,并寫出頂點坐標;已知二次函數(shù)C1的圖象經(jīng)過點A(﹣3,1).①求a的值;②點B在二次函數(shù)C1的圖象上,點A,B關(guān)于對稱軸對稱,連接AB.二次函數(shù)C2:y2=kx2+kx(k≠0)的圖象,與線段AB只有一個交點,求k的取值范圍.22.(8分)如圖,直線y=﹣x+2與反比例函數(shù)(k≠0)的圖象交于A(a,3),B(3,b)兩點,過點A作AC⊥x軸于點C,過點B作BD⊥x軸于點D.求a,b的值及反比例函數(shù)的解析式;若點P在直線y=﹣x+2上,且S△ACP=S△BDP,請求出此時點P的坐標;在x軸正半軸上是否存在點M,使得△MAB為等腰三角形?若存在,請直接寫出M點的坐標;若不存在,說明理由.23.(8分)如圖,拋物線y=-x2+bx+c的頂點為C,對稱軸為直線x=1,且經(jīng)過點A(3,-1),與y軸交于點B.求拋物線的解析式;判斷△ABC的形狀,并說明理由;經(jīng)過點A的直線交拋物線于點P,交x軸于點Q,若S△OPA=2S△OQA,試求出點P的坐標.24.(10分)作圖題:在∠ABC內(nèi)找一點P,使它到∠ABC的兩邊的距離相等,并且到點A、C的距離也相等.(寫出作法,保留作圖痕跡)25.(10分)如圖,是5×5正方形網(wǎng)格,每個小正方形的邊長為1,請按要求畫出下列圖形,所畫圖形的各個頂點均在所給小正方形的頂點上.(1)在圖(1)中畫出一個等腰△ABE,使其面積為3.5;(2)在圖(2)中畫出一個直角△CDF,使其面積為5,并直接寫出DF的長.26.(12分)計算:(﹣)0﹣|﹣3|+(﹣1)2015+()﹣1.27.(12分)若兩個不重合的二次函數(shù)圖象關(guān)于軸對稱,則稱這兩個二次函數(shù)為“關(guān)于軸對稱的二次函數(shù)”.(1)請寫出兩個“關(guān)于軸對稱的二次函數(shù)”;(2)已知兩個二次函數(shù)和是“關(guān)于軸對稱的二次函數(shù)”,求函數(shù)的頂點坐標(用含的式子表示).
參考答案一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、C【解析】
檢查最簡二次根式的兩個條件是否同時滿足,同時滿足的就是最簡二次根式,否則就不是.【詳解】A.被開方數(shù)含能開得盡方的因數(shù)或因式,故A不符合題意,B.被開方數(shù)含能開得盡方的因數(shù)或因式,故B不符合題意,C.被開方數(shù)不含分母;被開方數(shù)不含能開得盡方的因數(shù)或因式,故C符合題意,D.被開方數(shù)含分母,故D不符合題意.故選C.【點睛】本題考查最簡二次根式的定義,最簡二次根式必須滿足兩個條件:被開方數(shù)不含分母;被開方數(shù)不含能開得盡方的因數(shù)或因式.2、A【解析】試題解析:試題解析:根據(jù)軸對稱圖形和中心對稱圖形的概念進行判斷可得:A、是軸對稱圖形,不是中心對稱圖形,故本選項符合題意;B、不是軸對稱圖形,是中心對稱圖形,故本選項不符合題意;C、不是軸對稱圖形,是中心對稱圖形,故本選項不符合題意;D、是軸對稱圖形,也是中心對稱圖形,故本選項不符合題意.故選A.點睛:在同一平面內(nèi),如果把一個圖形繞某一點旋轉(zhuǎn),旋轉(zhuǎn)后的圖形能和原圖形完全重合,那么這個圖形就叫做中心對稱圖形.這個旋轉(zhuǎn)點,就叫做對稱中心.3、C【解析】∵EF⊥AC,點G是AE中點,∴OG=AG=GE=AE,∵∠AOG=30°,∴∠OAG=∠AOG=30°,∠GOE=90°-∠AOG=90°-30°=60°,∴△OGE是等邊三角形,故(3)正確;設(shè)AE=2a,則OE=OG=a,由勾股定理得,AO=,∵O為AC中點,∴AC=2AO=2,∴BC=AC=,在Rt△ABC中,由勾股定理得,AB==3a,∵四邊形ABCD是矩形,∴CD=AB=3a,∴DC=3OG,故(1)正確;∵OG=a,BC=,∴OG≠BC,故(2)錯誤;∵S△AOE=a?=,SABCD=3a?=32,∴S△AOE=SABCD,故(4)正確;綜上所述,結(jié)論正確是(1)(3)(4)共3個,故選C.【點睛】本題考查了矩形的性質(zhì),等邊三角形的判定、勾股定理的應(yīng)用等,正確地識圖,結(jié)合已知找到有用的條件是解答本題的關(guān)鍵.4、D【解析】設(shè)直線y=x與BC交于E點,分別過A、E兩點作x軸的垂線,垂足為D、F,則A(1,1),而AB=AC=2,則B(3,1),△ABC為等腰直角三角形,E為BC的中點,由中點坐標公式求E點坐標,當(dāng)雙曲線與△ABC有唯一交點時,這個交點分別為A、E,由此可求出k的取值范圍.解:∵,..又∵過點,交于點,∴,∴,∴.故選D.5、D【解析】
直接利用合并同類項法則以及二次根式的性質(zhì)、二次根式乘法、零指數(shù)冪的性質(zhì)分別化簡得出答案.【詳解】解:A、a﹣3a=﹣2a,故此選項錯誤;B、(ab2)0=1,故此選項錯誤;C、故此選項錯誤;D、×=9,正確.故選D.【點睛】此題主要考查了合并同類項以及二次根式的性質(zhì)、二次根式乘法、零指數(shù)冪的性質(zhì),正確把握相關(guān)性質(zhì)是解題關(guān)鍵.6、B【解析】
連接FC,先證明△AEF∽△BEC,得出AE∶EC=1∶3,所以S△EFC=3S△AEF,在根據(jù)點F是□ABCD的邊AD上的三等分點得出S△FCD=2S△AFC,四邊形CDFE的面積=S△FCD+S△EFC,再代入△AEF的面積為2即可求出四邊形CDFE的面積.【詳解】解:∵AD∥BC,∴∠EAF=∠ACB,∠AFE=∠FBC;∵∠AEF=∠BEC,∴△AEF∽△BEC,∴==,∵△AEF與△EFC高相等,∴S△EFC=3S△AEF,∵點F是□ABCD的邊AD上的三等分點,∴S△FCD=2S△AFC,∵△AEF的面積為2,∴四邊形CDFE的面積=S△FCD+S△EFC=16+6=22.故選B.【點睛】本題考查了相似三角形的應(yīng)用與三角形的面積,解題的關(guān)鍵是熟練的掌握相似三角形的應(yīng)用與三角形的面積的相關(guān)知識點.7、B【解析】試題解析:0.00000069=6.9×10-7,故選B.點睛:絕對值小于1的正數(shù)也可以利用科學(xué)記數(shù)法表示,一般形式為a×10-n,與較大數(shù)的科學(xué)記數(shù)法不同的是其所使用的是負指數(shù)冪,指數(shù)由原數(shù)左邊起第一個不為零的數(shù)字前面的0的個數(shù)所決定.8、C【解析】
如圖所示,∵(a+b)2=21∴a2+2ab+b2=21,∵大正方形的面積為13,2ab=21﹣13=8,∴小正方形的面積為13﹣8=1.故選C.考點:勾股定理的證明.9、B【解析】
科學(xué)記數(shù)法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數(shù).確定n的值時,要看把原數(shù)變成a時,小數(shù)點移動了多少位,n的絕對值與小數(shù)點移動的位數(shù)相同.當(dāng)原數(shù)絕對值>10時,n是正數(shù);當(dāng)原數(shù)的絕對值<1時,n是負數(shù).【詳解】將6500000用科學(xué)記數(shù)法表示為:6.5×106.故答案選B.【點睛】本題考查了科學(xué)計數(shù)法,解題的關(guān)鍵是熟練的掌握科學(xué)計數(shù)法的表示形式.10、A【解析】
60°+20°=80°.由北偏西20°轉(zhuǎn)向北偏東60°,需要向右轉(zhuǎn).故選A.11、D.【解析】試題分析:A、原式=a6,不符合題意;B、原式=a2+2ab+b2,不符合題意;C、原式=1,不符合題意;D、原式=a6,符合題意,故選D考點:整式的混合運算12、B【解析】
科學(xué)記數(shù)法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數(shù).確定n的值時,要看把原數(shù)變成a時,小數(shù)點移動了多少位,n的絕對值與小數(shù)點移動的位數(shù)相同.當(dāng)原數(shù)絕對值>1時,n是正數(shù);當(dāng)原數(shù)的絕對值<1時,n是負數(shù).【詳解】將4670000用科學(xué)記數(shù)法表示為4.67×106,故選B.【點睛】本題考查了科學(xué)記數(shù)法—表示較大的數(shù),解題的關(guān)鍵是掌握科學(xué)記數(shù)法的概念進行解答.二、填空題:(本大題共6個小題,每小題4分,共24分.)13、y=2(x+1)2+1.【解析】原拋物線的頂點為(0,-1),向左平移1個單位,同時向上平移4個單位,那么新拋物線的頂點為(-1,1);可設(shè)新拋物線的解析式為y=2(x-h)2+k,代入得:y=2(x+1)2+1.14、1【解析】
作BD⊥AC于點D,在直角△ABD中,利用三角函數(shù)求得BD的長,然后在直角△BCD中,利用三角函數(shù)即可求得BC的長.【詳解】∠CBA=25°+50°=75°,作BD⊥AC于點D,則∠CAB=(90°﹣70°)+(90°﹣50°)=20°+40°=60°,∠ABD=30°,∴∠CBD=75°﹣30°=45°,在直角△ABD中,BD=AB?sin∠CAB=20×sin60°=20×=10,在直角△BCD中,∠CBD=45°,則BC=BD=10×=10≈10×2.4=1(海里),故答案是:1.【點睛】本題考查了解直角三角形的應(yīng)用——方向角問題,正確求得∠CBD以及∠CAB的度數(shù)是解決本題的關(guān)鍵.15、【解析】
設(shè)⊙O半徑為r,根據(jù)勾股定理列方程求出半徑r,由勾股定理依次求BE和EC的長.【詳解】連接BE,設(shè)⊙O半徑為r,則OA=OD=r,OC=r-2,
∵OD⊥AB,
∴∠ACO=90°,
AC=BC=AB=4,
在Rt△ACO中,由勾股定理得:r2=42+(r-2)2,
r=5,
∴AE=2r=10,
∵AE為⊙O的直徑,
∴∠ABE=90°,
由勾股定理得:BE=6,
在Rt△ECB中,EC=.故答案是:.【點睛】考查的是垂徑定理及勾股定理,根據(jù)題意作出輔助線,構(gòu)造出直角三角形,利用勾股定理求解是解答此題的關(guān)鍵.16、y2<y1<y1.【解析】
先根據(jù)反比例函數(shù)的增減性判斷出2-m的符號,再根據(jù)反比例函數(shù)的性質(zhì)判斷出此函數(shù)圖象所在的象限,由各點橫坐標的值進行判斷即可.【詳解】∵反比例函數(shù)y=的圖象是雙曲線,在每一個象限內(nèi),y隨x的增大而減小,∴2?m>0,∴此函數(shù)的圖象在一、三象限,∵?1<?1<0,∴0>y1>y2,∵2>0,∴y1>0,∴y2<y1<y1.故答案為y2<y1<y1.【點睛】本題考查的知識點是反比例函數(shù)圖像上點的坐標特征,解題的關(guān)鍵是熟練的掌握列反比例函數(shù)圖像上點的坐標特征.17、4或【解析】試題分析:已知直角三角形兩邊的長,但沒有明確是直角邊還是斜邊,因此分兩種情況討論:①長為3的邊是直角邊,長為3的邊是斜邊時:第三邊的長為:;②長為3、3的邊都是直角邊時:第三邊的長為:;∴第三邊的長為:或4.考點:3.勾股定理;4.分類思想的應(yīng)用.18、【解析】
過梯形上底的兩個頂點向下底引垂線、,得到兩個直角三角形和一個矩形,分別解、求得線段、的長,然后與相加即可求得的長.【詳解】如圖,作,,垂足分別為點E,F(xiàn),則四邊形是矩形.由題意得,米,米,,斜坡的坡度為1∶2,在中,∵,∴米.在Rt△DCF中,∵斜坡的坡度為1∶2,∴,∴米,∴(米).∴壩底的長度等于米.故答案為.【點睛】此題考查了解直角三角形的應(yīng)用﹣坡度坡角問題,難度適中,解答本題的關(guān)鍵是構(gòu)造直角三角形和矩形,注意理解坡度與坡角的定義.三、解答題:(本大題共9個小題,共78分,解答應(yīng)寫出文字說明、證明過程或演算步驟.19、15天【解析】試題分析:首先設(shè)規(guī)定的工期是x天,則甲工程隊單獨做需(x-1)天,乙工程隊單獨做需(x+6)天,根據(jù)題意可得等量關(guān)系:乙工程隊干x天的工作量+甲工程隊干4天的工作量=1,根據(jù)等量關(guān)系列出方程,解方程即可.試題解析:設(shè)工程期限為x天.根據(jù)題意得,解得:x=15.經(jīng)檢驗x=15是原分式方程的解.答:工程期限為15天.20、(1)3+【解析】
(1)如圖1中,在AB上取一點M,使得BM=ME,連接ME.,設(shè)AE=x,則ME=BM=2x,AM=3x,根據(jù)AB2+AE2=BE2,可得方程(2x+3x)2+x2=22,解方程即可解決問題.
(2)如圖2中,作CQ⊥AC,交AF的延長線于Q,首先證明EG=MG,再證明FM=FQ即可解決問題.【詳解】解:如圖1中,在AB上取一點M,使得BM=ME,連接ME.在Rt△ABE中,∵OB=OE,∴BE=2OA=2,∵MB=ME,∴∠MBE=∠MEB=15°,∴∠AME=∠MBE+∠MEB=30°,設(shè)AE=x,則ME=BM=2x,AM=3x,∵AB2+AE2=BE2,∴2x+3∴x=6-∴AB=AC=(2+3)?6-∴BC=2AB=3+1.作CQ⊥AC,交AF的延長線于Q,∵AD=AE,AB=AC,∠BAE=∠CAD,∴△ABE≌△ACD(SAS),∴∠ABE=∠ACD,∵∠BAC=90°,F(xiàn)G⊥CD,∴∠AEB=∠CMF,∴∠GEM=∠GME,∴EG=MG,∵∠ABE=∠CAQ,AB=AC,∠BAE=∠ACQ=90°,∴△ABE≌△CAQ(ASA),∴BE=AQ,∠AEB=∠Q,∴∠CMF=∠Q,∵∠MCF=∠QCF=45°,CF=CF,∴△CMF≌△CQF(AAS),∴FM=FQ,∴BE=AQ=AF+FQ=AF=FM,∵EG=MG,∴BG=BE+EG=AF+FM+MG=AF+FG.【點睛】本題考查全等三角形的判定和性質(zhì)、直角三角形斜邊中線定理,等腰直角三角形的性質(zhì)等知識,解題的關(guān)鍵是學(xué)會添加常用輔助線,構(gòu)造全等三角形解決問題.21、(1)y1=a(x+1)2﹣1,頂點為(﹣1,﹣1);(2)①;②k的取值范圍是≤k≤或k=﹣1.【解析】
(1)化成頂點式即可求得;(2)①把點A(﹣3,1)代入二次函數(shù)C1:y1=ax2+2ax+a﹣1即可求得a的值;②根據(jù)對稱的性質(zhì)得出B的坐標,然后分兩種情況討論即可求得;【詳解】(1)y1=ax2+2ax+a﹣1=a(x+1)2﹣1,∴頂點為(﹣1,﹣1);(2)①∵二次函數(shù)C1的圖象經(jīng)過點A(﹣3,1),∴a(﹣3+1)2﹣1=1,∴a=;②∵A(﹣3,1),對稱軸為直線x=﹣1,∴B(1,1),當(dāng)k>0時,二次函數(shù)C2:y2=kx2+kx(k≠0)的圖象經(jīng)過A(﹣3,1)時,1=9k﹣3k,解得k=,二次函數(shù)C2:y2=kx2+kx(k≠0)的圖象經(jīng)過B(1,1)時,1=k+k,解得k=,∴≤k≤,當(dāng)k<0時,∵二次函數(shù)C2:y2=kx2+kx=k(x+)2﹣k,∴﹣k=1,∴k=﹣1,綜上,二次函數(shù)C2:y2=kx2+kx(k≠0)的圖象,與線段AB只有一個交點,k的取值范圍是≤k≤或k=﹣1.【點睛】本題考查了二次函數(shù)和系數(shù)的關(guān)系,二次函數(shù)的最值問題,軸對稱的性質(zhì)等,分類討論是解題的關(guān)鍵.22、(1)y=;(2)P(0,2)或(-3,5);(3)M(,0)或(,0).【解析】
(1)利用點在直線上,將點的坐標代入直線解析式中求解即可求出a,b,最后用待定系數(shù)法求出反比例函數(shù)解析式;(2)設(shè)出點P坐標,用三角形的面積公式求出S△ACP=×3×|n+1|,S△BDP=×1×|3?n|,進而建立方程求解即可得出結(jié)論;(3)設(shè)出點M坐標,表示出MA2=(m+1)2+9,MB2=(m?3)2+1,AB2=32,再三種情況建立方程求解即可得出結(jié)論.【詳解】(1)∵直線y=-x+2與反比例函數(shù)y=(k≠0)的圖象交于A(a,3),B(3,b)兩點,∴-a+2=3,-3+2=b,∴a=-1,b=-1,∴A(-1,3),B(3,-1),∵點A(-1,3)在反比例函數(shù)y=上,∴k=-1×3=-3,∴反比例函數(shù)解析式為y=;(2)設(shè)點P(n,-n+2),∵A(-1,3),∴C(-1,0),∵B(3,-1),∴D(3,0),∴S△ACP=AC×|xP?xA|=×3×|n+1|,S△BDP=BD×|xB?xP|=×1×|3?n|,∵S△ACP=S△BDP,∴×3×|n+1|=×1×|3?n|,∴n=0或n=?3,∴P(0,2)或(?3,5);(3)設(shè)M(m,0)(m>0),∵A(?1,3),B(3,?1),∴MA2=(m+1)2+9,MB2=(m?3)2+1,AB2=(3+1)2+(?1?3)2=32,∵△MAB是等腰三角形,∴①當(dāng)MA=MB時,∴(m+1)2+9=(m?3)2+1,∴m=0,(舍)②當(dāng)MA=AB時,∴(m+1)2+9=32,∴m=?1+或m=?1?(舍),∴M(?1+,0)③當(dāng)MB=AB時,(m?3)2+1=32,∴m=3+或m=3?(舍),∴M(3+,0)即:滿足條件的M(?1+,0)或(3+,0).【點睛】此題是反比例函數(shù)綜合題,主要考查了待定系數(shù)法,三角形的面積的求法,等腰三角形的性質(zhì),用方程的思想解決問題是解本題的關(guān)鍵.23、(1)y=-x2+2x+2;(2)詳見解析;(3)點P的坐標為(1+,1)、(1-,1)、(1+,-3)或(1-,-3).【解析】
(1)根據(jù)題意得出方程組,求出b、c的值,即可求出答案;(2)求出B、C的坐標,根據(jù)點的坐標求出AB、BC、AC的值,根據(jù)勾股定理的逆定理求出即可;(3)分為兩種情況,畫出圖形,根據(jù)相似三角形的判定和性質(zhì)求出PE的長,即可得出答案.【詳解】解:(1)由題意得:,解得:,∴拋物線的解析式為y=-x2+2x+2;(2)∵由y=-x2+2x+2得:當(dāng)x=0時,y=2,∴B(0,2),由y=-(x-1)2+3得:C(1,3),∵A(3,-1),∴AB=3,BC=,AC=2,∴AB2+BC2=AC2,∴∠ABC=90°,∴△ABC是直角三角形;(3)①如圖,當(dāng)點Q在線段AP上時,過點P作PE⊥x軸于點E,AD⊥x軸于點D∵S△OPA=2S△OQA,∴PA=2AQ,∴PQ=AQ∵PE∥AD,∴△PQE∽△AQD,∴==1,∴PE=AD=1∵由-x2+2x+2=1得:x=1,∴P(1+,1)或(1-,1),②如圖,當(dāng)點Q在PA延長線上時,過點P作PE⊥x軸于點E,AD⊥x軸于點D∵S△OPA=2S△OQA,∴PA=2AQ,∴PQ=3AQ∵PE∥AD,∴△PQ
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 商業(yè)團體保險合同
- 二零二五年度房產(chǎn)代銷合作糾紛解決協(xié)議3篇
- 《小學(xué)食品安全》課件
- 二零二五年度城市更新項目監(jiān)理合同延期補充協(xié)議參考范本3篇
- 二零二五年度家具產(chǎn)業(yè)鏈承包經(jīng)營協(xié)議3篇
- 二零二五年度供應(yīng)鏈管理合同標的延期及服務(wù)范圍調(diào)整3篇
- 連續(xù)進位加法課件
- 2025年度社區(qū)花卉種植與銷售服務(wù)合作協(xié)議3篇
- 2025年度電信基站場地租賃及網(wǎng)絡(luò)優(yōu)化服務(wù)合同3篇
- 2024年外研版七年級科學(xué)上冊月考試卷
- 電力行業(yè)安全風(fēng)險管理措施
- 小學(xué)一年級數(shù)學(xué)20以內(nèi)的口算題(可直接打印A4)
- 腫瘤放射治療體位固定技術(shù)
- 監(jiān)理報告范本
- 店鋪交割合同范例
- 新生兒心臟病護理查房
- 規(guī)劃設(shè)計行業(yè)數(shù)字化轉(zhuǎn)型趨勢
- 物業(yè)年終總結(jié)匯報工作
- 金色簡約蛇年年終總結(jié)匯報模板
- 醫(yī)院住院病歷質(zhì)量檢查評分表(評分標準)
- 12.1 擁有積極的人生態(tài)度(教學(xué)設(shè)計)2024七年級道德與法治上冊
評論
0/150
提交評論