廣東省湛江市雷州市市級名校2022年中考數(shù)學模擬預測試卷含解析_第1頁
廣東省湛江市雷州市市級名校2022年中考數(shù)學模擬預測試卷含解析_第2頁
廣東省湛江市雷州市市級名校2022年中考數(shù)學模擬預測試卷含解析_第3頁
廣東省湛江市雷州市市級名校2022年中考數(shù)學模擬預測試卷含解析_第4頁
廣東省湛江市雷州市市級名校2022年中考數(shù)學模擬預測試卷含解析_第5頁
已閱讀5頁,還剩17頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

廣東省湛江市雷州市市級名校2022年中考數(shù)學模擬預測試卷注意事項1.考試結束后,請將本試卷和答題卡一并交回.2.答題前,請務必將自己的姓名、準考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請認真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1.下列二次根式中,為最簡二次根式的是()A. B. C. D.2.下列四個幾何體中,主視圖是三角形的是()A. B. C. D.3.下列汽車標志中,不是軸對稱圖形的是()A. B. C. D.4.的算術平方根為()A. B. C. D.5.在平面直角坐標系中,函數(shù)的圖象經過()A.第一、二、三象限 B.第一、二、四象限C.第一、三、四象限 D.第二、三、四象限6.數(shù)據(jù)3、6、7、1、7、2、9的中位數(shù)和眾數(shù)分別是()A.1和7 B.1和9 C.6和7 D.6和97.若拋物線y=x2﹣3x+c與y軸的交點為(0,2),則下列說法正確的是()A.拋物線開口向下B.拋物線與x軸的交點為(﹣1,0),(3,0)C.當x=1時,y有最大值為0D.拋物線的對稱軸是直線x=8.如圖,△ABC中,∠ACB=90°,∠A=30°,AB=1.點P是斜邊AB上一點.過點P作PQ⊥AB,垂足為P,交邊AC(或邊CB)于點Q,設AP=x,△APQ的面積為y,則y與x之間的函數(shù)圖象大致為()A.B.C.D.9.如圖,一個幾何體由5個大小相同、棱長為1的正方體搭成,則這個幾何體的左視圖的面積為()A.5 B.4 C.3 D.210.如圖是小強用八塊相同的小正方體搭建的一個積木,它的左視圖是()A. B. C. D.二、填空題(共7小題,每小題3分,滿分21分)11.如圖,PA,PB是⊙O是切線,A,B為切點,AC是⊙O的直徑,若∠P=46°,則∠BAC=▲度.12.如圖,在正方形ABCD中,BC=2,E、F分別為射線BC,CD上兩個動點,且滿足BE=CF,設AE,BF交于點G,連接DG,則DG的最小值為_______.13.已知拋物線y=x2-x-1與x軸的一個交點為(m,0),則代數(shù)式m2-m+2017的值為____.14.已知x1、x2是一元二次方程x2﹣2x﹣1=0的兩實數(shù)根,則1215.寫出一個平面直角坐標系中第三象限內點的坐標:(__________)16.如圖,在△ABC中,AB=AC=10cm,F(xiàn)為AB上一點,AF=2,點E從點A出發(fā),沿AC方向以2cm/s的速度勻速運動,同時點D由點B出發(fā),沿BA方向以lcm/s的速度運動,設運動時間為t(s)(0<t<5),連D交CF于點G.若CG=2FG,則t的值為_____.17.含角30°的直角三角板與直線,的位置關系如圖所示,已知,∠1=60°,以下三個結論中正確的是____(只填序號).①AC=2BC②△BCD為正三角形③AD=BD三、解答題(共7小題,滿分69分)18.(10分)如圖,拋物線與x軸交于點A和點B(1,0),與y軸交于點C(0,3),其對稱軸為=–1,P為拋物線上第二象限的一個動點.(1)求拋物線的解析式并寫出其頂點坐標;(2)當點P的縱坐標為2時,求點P的橫坐標;(3)當點P在運動過程中,求四邊形PABC面積最大時的值及此時點P的坐標.19.(5分)如圖,在Rt△ABC中,CD,CE分別是斜邊AB上的高,中線,BC=a,AC=b.若a=3,b=4,求DE的長;直接寫出:CD=(用含a,b的代數(shù)式表示);若b=3,tan∠DCE=,求a的值.20.(8分)如圖,正方形ABCD的邊長為4,點E,F(xiàn)分別在邊AB,AD上,且∠ECF=45°,CF的延長線交BA的延長線于點G,CE的延長線交DA的延長線于點H,連接AC,EF.,GH.(1)填空:∠AHC∠ACG;(填“>”或“<”或“=”)(2)線段AC,AG,AH什么關系?請說明理由;(3)設AE=m,①△AGH的面積S有變化嗎?如果變化.請求出S與m的函數(shù)關系式;如果不變化,請求出定值.②請直接寫出使△CGH是等腰三角形的m值.21.(10分)求不等式組的整數(shù)解.22.(10分)如圖,安徽江淮集團某部門研制了繪圖智能機器人,該機器人由機座、手臂和末端操作器三部分組成,底座直線且,手臂,末端操作器,直線.當機器人運作時,,求末端操作器節(jié)點到地面直線的距離.(結果保留根號)23.(12分)如圖,已知□ABCD的面積為S,點P、Q時是?ABCD對角線BD的三等分點,延長AQ、AP,分別交BC,CD于點E,F(xiàn),連結EF。甲,乙兩位同學對條件進行分析后,甲得到結論①:“E是BC中點”.乙得到結論②:“四邊形QEFP的面積為S”。請判斷甲乙兩位同學的結論是否正確,并說明理由.24.(14分)問題探究(1)如圖1,△ABC和△DEC均為等腰直角三角形,且∠BAC=∠CDE=90°,AB=AC=3,DE=CD=1,連接AD、BE,求的值;(2)如圖2,在Rt△ABC中,∠ACB=90°,∠B=30°,BC=4,過點A作AM⊥AB,點P是射線AM上一動點,連接CP,做CQ⊥CP交線段AB于點Q,連接PQ,求PQ的最小值;(3)李師傅準備加工一個四邊形零件,如圖3,這個零件的示意圖為四邊形ABCD,要求BC=4cm,∠BAD=135°,∠ADC=90°,AD=CD,請你幫李師傅求出這個零件的對角線BD的最大值.圖3

參考答案一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1、B【解析】

最簡二次根式必須滿足以下兩個條件:1.被開方數(shù)的因數(shù)是(整數(shù)),因式是(整式)(分母中不含根號)2.被開方數(shù)中不含能開提盡方的(因數(shù))或(因式).【詳解】A.=3,不是最簡二次根式;B.,最簡二次根式;C.=,不是最簡二次根式;D.=,不是最簡二次根式.故選:B【點睛】本題考核知識點:最簡二次根式.解題關鍵點:理解最簡二次根式條件.2、D【解析】

主視圖是從幾何體的正面看,主視圖是三角形的一定是一個錐體,是長方形的一定是柱體,由此分析可得答案.【詳解】解:主視圖是三角形的一定是一個錐體,只有D是錐體.故選D.【點睛】此題主要考查了幾何體的三視圖,主要考查同學們的空間想象能力.3、C【解析】

根據(jù)軸對稱圖形的概念求解.【詳解】A、是軸對稱圖形,故錯誤;B、是軸對稱圖形,故錯誤;C、不是軸對稱圖形,故正確;D、是軸對稱圖形,故錯誤.故選C.【點睛】本題考查了軸對稱圖形的概念:軸對稱圖形的關鍵是尋找對稱軸,圖形兩部分沿對稱軸折疊后可重合.4、B【解析】分析:先求得的值,再繼續(xù)求所求數(shù)的算術平方根即可.詳解:∵=2,而2的算術平方根是,∴的算術平方根是,故選B.點睛:此題主要考查了算術平方根的定義,解題時應先明確是求哪個數(shù)的算術平方根,否則容易出現(xiàn)選A的錯誤.5、A【解析】【分析】一次函數(shù)y=kx+b的圖象經過第幾象限,取決于k和b.當k>0,b>O時,圖象過一、二、三象限,據(jù)此作答即可.【詳解】∵一次函數(shù)y=3x+1的k=3>0,b=1>0,∴圖象過第一、二、三象限,故選A.【點睛】一次函數(shù)y=kx+b的圖象經過第幾象限,取決于x的系數(shù)和常數(shù)項.6、C【解析】

如果一組數(shù)據(jù)有奇數(shù)個,那么把這組數(shù)據(jù)從小到大排列后,排在中間位置的數(shù)是這組數(shù)據(jù)的中位數(shù);如果一組數(shù)據(jù)有偶數(shù)個,那么把這組數(shù)據(jù)從小到大排列后,排在中間位置的兩個數(shù)的平均數(shù)是這組數(shù)據(jù)的中位數(shù).一組數(shù)據(jù)中出現(xiàn)次數(shù)最多的數(shù)據(jù)叫做眾數(shù).【詳解】解:∵7出現(xiàn)了2次,出現(xiàn)的次數(shù)最多,∴眾數(shù)是7;∵從小到大排列后是:1,2,3,6,7,7,9,排在中間的數(shù)是6,∴中位數(shù)是6故選C.【點睛】本題考查了中位數(shù)和眾數(shù)的求法,解答本題的關鍵是熟練掌握中位數(shù)和眾數(shù)的定義.7、D【解析】

A、由a=1>0,可得出拋物線開口向上,A選項錯誤;B、由拋物線與y軸的交點坐標可得出c值,進而可得出拋物線的解析式,令y=0求出x值,由此可得出拋物線與x軸的交點為(1,0)、(1,0),B選項錯誤;C、由拋物線開口向上,可得出y無最大值,C選項錯誤;D、由拋物線的解析式利用二次函數(shù)的性質,即可求出拋物線的對稱軸為直線x=-,D選項正確.綜上即可得出結論.【詳解】解:A、∵a=1>0,∴拋物線開口向上,A選項錯誤;B、∵拋物線y=x1-3x+c與y軸的交點為(0,1),∴c=1,∴拋物線的解析式為y=x1-3x+1.當y=0時,有x1-3x+1=0,解得:x1=1,x1=1,∴拋物線與x軸的交點為(1,0)、(1,0),B選項錯誤;C、∵拋物線開口向上,∴y無最大值,C選項錯誤;D、∵拋物線的解析式為y=x1-3x+1,∴拋物線的對稱軸為直線x=-=-=,D選項正確.故選D.【點睛】本題考查了拋物線與x軸的交點、二次函數(shù)的性質、二次函數(shù)的最值以及二次函數(shù)圖象上點的坐標特征,利用二次函數(shù)的性質及二次函數(shù)圖象上點的坐標特征逐一分析四個選項的正誤是解題的關鍵.8、D【解析】解:當點Q在AC上時,∵∠A=30°,AP=x,∴PQ=xtan30°=33x,∴y=12×AP×PQ=12×x×33當點Q在BC上時,如下圖所示:∵AP=x,AB=1,∠A=30°,∴BP=1﹣x,∠B=60°,∴PQ=BP?tan60°=3(1﹣x),∴SΔAPQ=12AP?PQ=12點睛:本題考查動點問題的函數(shù)圖象,有一定難度,解題關鍵是注意點Q在BC上這種情況.9、C【解析】

根據(jù)左視圖是從左面看到的圖形求解即可.【詳解】從左面看,可以看到3個正方形,面積為3,故選:C.【點睛】本題考查三視圖的知識,解決此類圖的關鍵是由三視圖得到相應的平面圖形.從正面看到的圖是正視圖,從上面看到的圖形是俯視圖,從左面看到的圖形是左視圖.10、D【解析】

左視圖從左往右,2列正方形的個數(shù)依次為2,1,依此得出圖形D正確.故選D.【詳解】請在此輸入詳解!二、填空題(共7小題,每小題3分,滿分21分)11、1.【解析】

由PA、PB是圓O的切線,根據(jù)切線長定理得到PA=PB,即三角形APB為等腰三角形,由頂角的度數(shù),利用三角形的內角和定理求出底角的度數(shù),再由AP為圓O的切線,得到OA與AP垂直,根據(jù)垂直的定義得到∠OAP為直角,再由∠OAP-∠PAB即可求出∠BAC的度數(shù)【詳解】∵PA,PB是⊙O是切線,∴PA=PB.又∵∠P=46°,∴∠PAB=∠PBA=.又∵PA是⊙O是切線,AO為半徑,∴OA⊥AP.∴∠OAP=90°.∴∠BAC=∠OAP﹣∠PAB=90°﹣67°=1°.故答案為:1【點睛】此題考查了切線的性質,切線長定理,等腰三角形的性質,以及三角形的內角和定理,熟練掌握定理及性質是解本題的關鍵.12、﹣1【解析】

先由圖形確定:當O、G、D共線時,DG最??;根據(jù)正方形的性質證明△ABE≌△BCF(SAS),可得∠AGB=90°,利用勾股定理可得OD的長,從而得DG的最小值.【詳解】在正方形ABCD中,AB=BC,∠ABC=∠BCD,在△ABE和△BCF中,,∴△ABE≌△BCF(SAS),∴∠BAE=∠CBF,∵∠CBF+∠ABF=90°∴∠BAE+∠ABF=90°∴∠AGB=90°∴點G在以AB為直徑的圓上,由圖形可知:當O、G、D在同一直線上時,DG有最小值,如圖所示:∵正方形ABCD,BC=2,∴AO=1=OG∴OD=,∴DG=?1,故答案為?1.【點睛】本題考查了正方形的性質與全等三角形的判定與性質,解題的關鍵是熟練的掌握正方形的性質與全等三角形的判定與性質.13、1【解析】

把點(m,0)代入y=x2﹣x﹣1,求出m2﹣m=1,代入即可求出答案.【詳解】∵二次函數(shù)y=x2﹣x﹣1的圖象與x軸的一個交點為(m,0),∴m2﹣m﹣1=0,∴m2﹣m=1,∴m2﹣m+2017=1+2017=1.故答案為:1.【點睛】本題考查了拋物線與x軸的交點問題,求代數(shù)式的值的應用,解答此題的關鍵是求出m2﹣m=1,難度適中.14、6【解析】

已知x1,x2是一元二次方程x2﹣2x﹣1=0的兩實數(shù)根,根據(jù)方程解的定義及根與系數(shù)的關系可得x12﹣2x1﹣1=0,x22﹣2x2﹣1=0,x1+x2=2,x1·x2=-1,即x12=2x1+1,x22=2x2+1,代入所給的代數(shù)式,再利用完全平方公式變形,整體代入求值即可.【詳解】∵x1,x2是一元二次方程x2﹣2x﹣1=0的兩實數(shù)根,∴x12﹣2x1﹣1=0,x22﹣2x2﹣1=0,x1+x2=2,x1·x2=-1,即x12=2x1+1,x22=2x2+1,∴12x1故答案為6.【點睛】本題考查了一元二次方程解的定義及根與系數(shù)的關系,會熟練運用整體思想是解決本題的關鍵.15、答案不唯一,如:(﹣1,﹣1),橫坐標和縱坐標都是負數(shù)即可.【解析】

讓橫坐標、縱坐標為負數(shù)即可.【詳解】在第三象限內點的坐標為:(﹣1,﹣1)(答案不唯一).故答案為答案不唯一,如:(﹣1,﹣1),橫坐標和縱坐標都是負數(shù)即可.16、1【解析】

過點C作CH∥AB交DE的延長線于點H,則,證明,可求出CH,再證明,由比例線段可求出t的值.【詳解】如下圖,過點C作CH∥AB交DE的延長線于點H,則,∵DF∥CH,∴,∴,∴,同理,∴,∴,解得t=1,t=(舍去),故答案為:1.【點睛】本題主要考查了三角形中的動點問題,熟練掌握三角形相似的相關方法是解決本題的關鍵.17、②③【解析】

根據(jù)平行線的性質以及等邊三角形的性質即可求出答案.【詳解】由題意可知:∠A=30°,∴AB=2BC,故①錯誤;∵l1∥l2,∴∠CDB=∠1=60°.∵∠CBD=60°,∴△BCD是等邊三角形,故②正確;∵△BCD是等邊三角形,∴∠BCD=60°,∴∠ACD=∠A=30°,∴AD=CD=BD,故③正確.故答案為②③.【點睛】本題考查了平行的性質以及等邊三角形的性質,解題的關鍵是熟練運用平行線的性質,等邊三角形的性質,含30度角的直角三角形的性質,本題屬于中等題型.三、解答題(共7小題,滿分69分)18、(1)二次函數(shù)的解析式為,頂點坐標為(–1,4);(2)點P橫坐標為––1;(3)當時,四邊形PABC的面積有最大值,點P().【解析】試題分析:(1)已知拋物線與軸交于點A和點B(1,0),與y軸交于點C(0,3),其對稱軸為=﹣1,由此列出方程組,解方程組求得a、b、c的值,即可得拋物線的解析式,把解析式化為頂點式,直接寫出頂點坐標即可;(2)把y=2代入解析式,解方程求得x的值,即可得點P的橫坐標,從而求得點P的坐標;(3)設點P(,),則,根據(jù)得出四邊形PABC與x之間的函數(shù)關系式,利用二次函數(shù)的性質求得x的值,即可求得點P的坐標.試題解析:(1)∵拋物線與軸交于點A和點B(1,0),與y軸交于點C(0,3),其對稱軸為=﹣1,∴,解得:,∴二次函數(shù)的解析式為=,∴頂點坐標為(﹣1,4)(2)設點P(,2),即=2,解得=﹣1(舍去)或=﹣﹣1,∴點P(﹣﹣1,2).(3)設點P(,),則,,∴=∴當時,四邊形PABC的面積有最大值.所以點P().點睛:本題是二次函數(shù)綜合題,主要考查學生對二次函數(shù)解決動點問題綜合運用能力,動點問題為中考??碱}型,注意培養(yǎng)數(shù)形結合思想,培養(yǎng)綜合分析歸納能力,解決這類問題要會建立二次函數(shù)模型,利用二次函數(shù)的性質解決問題.19、(1);(2);(3).【解析】

(1)求出BE,BD即可解決問題.(2)利用勾股定理,面積法求高CD即可.(3)根據(jù)CD=3DE,構建方程即可解決問題.【詳解】解:(1)在Rt△ABC中,∵∠ACB=91°,a=3,b=4,∴.∵CD,CE是斜邊AB上的高,中線,∴∠BDC=91°,.∴在Rt△BCD中,(2)在Rt△ABC中,∵∠ACB=91°,BC=a,AC=b,故答案為:.(3)在Rt△BCD中,,∴,又,∴CD=3DE,即.∵b=3,∴2a=9﹣a2,即a2+2a﹣9=1.由求根公式得(負值舍去),即所求a的值是.【點睛】本題考查解直角三角形的應用,直角三角形斜邊中線的性質,勾股定理等知識,解題的關鍵是熟練掌握基本知識,屬于中考??碱}型.20、(1)=;(2)結論:AC2=AG?AH.理由見解析;(3)①△AGH的面積不變.②m的值為或2或8﹣4..【解析】

(1)證明∠DAC=∠AHC+∠ACH=43°,∠ACH+∠ACG=43°,即可推出∠AHC=∠ACG;(2)結論:AC2=AG?AH.只要證明△AHC∽△ACG即可解決問題;(3)①△AGH的面積不變.理由三角形的面積公式計算即可;②分三種情形分別求解即可解決問題.【詳解】(1)∵四邊形ABCD是正方形,∴AB=CB=CD=DA=4,∠D=∠DAB=90°∠DAC=∠BAC=43°,∴AC=,∵∠DAC=∠AHC+∠ACH=43°,∠ACH+∠ACG=43°,∴∠AHC=∠ACG.故答案為=.(2)結論:AC2=AG?AH.理由:∵∠AHC=∠ACG,∠CAH=∠CAG=133°,∴△AHC∽△ACG,∴,∴AC2=AG?AH.(3)①△AGH的面積不變.理由:∵S△AGH=?AH?AG=AC2=×(4)2=1.∴△AGH的面積為1.②如圖1中,當GC=GH時,易證△AHG≌△BGC,可得AG=BC=4,AH=BG=8,∵BC∥AH,∴,∴AE=AB=.如圖2中,當CH=HG時,易證AH=BC=4,∵BC∥AH,∴=1,∴AE=BE=2.如圖3中,當CG=CH時,易證∠ECB=∠DCF=22.3.在BC上取一點M,使得BM=BE,∴∠BME=∠BEM=43°,∵∠BME=∠MCE+∠MEC,∴∠MCE=∠MEC=22.3°,∴CM=EM,設BM=BE=m,則CM=EMm,∴m+m=4,∴m=4(﹣1),∴AE=4﹣4(﹣1)=8﹣4,綜上所述,滿足條件的m的值為或2或8﹣4.【點睛】本題屬于四邊形綜合題,考查了正方形的性質,全等三角形的判定和性質,相似三角形的判定和性質等知識,解題的關鍵是靈活運用所學知識解決問題.21、-1,-1,0,1,1【解析】分析:先求出不等式組的解集,然后求出整數(shù)解.詳解:,由不等式①,得:x≥﹣1,由不等式②,得:x<3,故原不等式組的解集是﹣1≤x<3,∴不等式組的整數(shù)解是:﹣1、﹣1、0、1、1.點睛:本題考查了解一元一次不等式的整數(shù)解,解答本題的關鍵是明確解一元一次不等式組的方法.22、()cm.【解析】

作BG⊥CD,垂足為G,BH⊥AF,垂足為H,解和,分別求出CG和BH的長,根據(jù)D到L的距離求解即可.【詳解】如圖,作BG⊥CD,垂足為G,BH⊥AF,垂足為H,在中,∠BCD=60°,BC=60cm,∴,在中,∠BAF=45°,AB=60cm,∴,∴D到L的距離.【點睛】本題考查解直角三角形,解題的關鍵是構造出適當輔助線,從而利用銳角三角函數(shù)的定義求出相關線段.23、①結論一正確,理由見解析;②結論二正確,S四QEFP=S【解析】試題分析:(1)由已知條件易得△BEQ∽△DAQ,結合點Q是BD的三等分點可得BE:AD=BQ:DQ=1:2,再結合AD=BC即可得到BE:BC=1:2,從而可得點E是BC的中點,由此即可說明甲同學的結論①成立;(2)同(1)易證點F是CD的中點,由此可得EF∥BD,EF=BD,從而可得△CEF∽△CBD,則可得得到S△CEF=S△CBD=S平行四邊形ABCD=S,結合S四邊形AECF=S可得S△AEF=S,由QP=BD,EF=BD可得QP:EF=2:3,結合△AQP∽△AEF可得S△AQP=S△AEF=,由此可得S四邊形QEFP=S△AEF-S△AQP=S,從而說明乙的結論②正確;試題解析:甲和乙的結論都成立,理由如下:(1)∵在平行四邊形ABCD中,AD∥BC,∴△BEQ∽△DAQ,又∵點P、Q是線段BD的三等分點,∴BE:AD=BQ:DQ=1:2,∵AD=BC,∴BE:BC=1:2,∴點E是BC的中點,即結論①正確;(2)和(1)同理可得點F是CD的中點,∴EF∥BD,EF=BD,∴△CEF∽△CBD,∴S△CEF=S△CBD=S平行四邊形ABCD=S,∵S四邊形AECF=S△ACE+S△ACF=S平行四邊形ABCD=S,∴S△AEF=S四邊形

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論