版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
2022年山東省濟(jì)寧市達(dá)標(biāo)名校中考數(shù)學(xué)全真模擬試題注意事項(xiàng):1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應(yīng)位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應(yīng)題目選項(xiàng)的答案信息點(diǎn)涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內(nèi)相應(yīng)位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準(zhǔn)使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項(xiàng)中,只有一項(xiàng)是符合題目要求的.)1.一個多邊形內(nèi)角和是外角和的2倍,它是()A.五邊形 B.六邊形 C.七邊形 D.八邊形2.下列計(jì)算正確的是(
).A.(x+y)2=x2+y2 B.(-xy2)3=-x3y6C.x6÷x3=x2 D.=23.上體育課時,小明5次投擲實(shí)心球的成績?nèi)缦卤硭?,則這組數(shù)據(jù)的眾數(shù)與中位數(shù)分別是()12345成績(m)8.28.08.27.57.8A.8.2,8.2 B.8.0,8.2 C.8.2,7.8 D.8.2,8.04.估計(jì)的值在()A.4和5之間 B.5和6之間C.6和7之間 D.7和8之間5.下列圖形中,既是中心對稱圖形又是軸對稱圖形的是()A. B.C. D.6.一枚質(zhì)地均勻的骰子,其六個面上分別標(biāo)有數(shù)字1,2,3,4,5,6,投擲一次,朝上一面的數(shù)字是偶數(shù)的概率為().A. B. C. D.7.如圖,二次函數(shù)y=ax2+bx+c(a≠0)的圖象與x軸的正半軸相交于A,B兩點(diǎn),與y軸相交于點(diǎn)C,對稱軸為直線x=2,且OA=OC.有下列結(jié)論:①abc<0;②3b+4c<0;③c>﹣1;④關(guān)于x的方程ax2+bx+c=0有一個根為﹣,其中正確的結(jié)論個數(shù)是()A.1 B.2 C.3 D.48.為了支援地震災(zāi)區(qū)同學(xué),某校開展捐書活動,九(1)班40名同學(xué)積極參與.現(xiàn)將捐書數(shù)量繪制成頻數(shù)分布直方圖如圖所示,則捐書數(shù)量在5.5~6.5組別的頻率是()A.0.1 B.0.2C.0.3 D.0.49.不解方程,判別方程2x2﹣3x=3的根的情況()A.有兩個相等的實(shí)數(shù)根 B.有兩個不相等的實(shí)數(shù)根C.有一個實(shí)數(shù)根 D.無實(shí)數(shù)根10.如圖,在△ABC中,∠C=90°,將△ABC沿直線MN翻折后,頂點(diǎn)C恰好落在AB邊上的點(diǎn)D處,已知MN∥AB,MC=6,NC=,則四邊形MABN的面積是()A. B. C. D.11.下列各組數(shù)中,互為相反數(shù)的是()A.﹣1與(﹣1)2 B.(﹣1)2與1 C.2與 D.2與|﹣2|12.-4的絕對值是()A.4 B. C.-4 D.二、填空題:(本大題共6個小題,每小題4分,共24分.)13.如圖,在直角坐標(biāo)系中,⊙A的圓心A的坐標(biāo)為(1,0),半徑為1,點(diǎn)P為直線y=x+3上的動點(diǎn),過點(diǎn)P作⊙A的切線,切點(diǎn)為Q,則切線長PQ的最小值是______________.14.若a是方程的解,計(jì)算:=______.15.如圖,在ABC中,AB=AC=6,∠BAC=90°,點(diǎn)D、E為BC邊上的兩點(diǎn),分別沿AD、AE折疊,B、C兩點(diǎn)重合于點(diǎn)F,若DE=5,則AD的長為_____.16.如圖,矩形ABCD中,AB=4,BC=8,P,Q分別是直線BC,AB上的兩個動點(diǎn),AE=2,△AEQ沿EQ翻折形成△FEQ,連接PF,PD,則PF+PD的最小值是____.17.關(guān)于x的方程ax=x+2(a1)的解是________.18.如圖,是由形狀相同的正六邊形和正三角形鑲嵌而成的一組有規(guī)律的圖案,則第n個圖案中陰影小三角形的個數(shù)是.三、解答題:(本大題共9個小題,共78分,解答應(yīng)寫出文字說明、證明過程或演算步驟.19.(6分)如圖,在平面直角坐標(biāo)系中,矩形OABC的頂點(diǎn)A,C分別在x軸,y軸的正半軸上,且OA=4,OC=3,若拋物線經(jīng)過O,A兩點(diǎn),且頂點(diǎn)在BC邊上,對稱軸交AC于點(diǎn)D,動點(diǎn)P在拋物線對稱軸上,動點(diǎn)Q在拋物線上.(1)求拋物線的解析式;(2)當(dāng)PO+PC的值最小時,求點(diǎn)P的坐標(biāo);(3)是否存在以A,C,P,Q為頂點(diǎn)的四邊形是平行四邊形?若存在,請直接寫出P,Q的坐標(biāo);若不存在,請說明理由.20.(6分)解不等式組:21.(6分)如圖,我們把一個半圓和拋物線的一部分圍成的封閉圖形稱為“果圓”,已知分別為“果圓”與坐標(biāo)軸的交點(diǎn),直線與“果圓”中的拋物線交于兩點(diǎn)(1)求“果圓”中拋物線的解析式,并直接寫出“果圓”被軸截得的線段的長;(2)如圖,為直線下方“果圓”上一點(diǎn),連接,設(shè)與交于,的面積記為,的面積即為,求的最小值(3)“果圓”上是否存在點(diǎn),使,如果存在,直接寫出點(diǎn)坐標(biāo),如果不存在,請說明理由22.(8分)如圖,已知二次函數(shù)的圖象與軸交于,兩點(diǎn)在左側(cè)),與軸交于點(diǎn),頂點(diǎn)為.(1)當(dāng)時,求四邊形的面積;(2)在(1)的條件下,在第二象限拋物線對稱軸左側(cè)上存在一點(diǎn),使,求點(diǎn)的坐標(biāo);(3)如圖2,將(1)中拋物線沿直線向斜上方向平移個單位時,點(diǎn)為線段上一動點(diǎn),軸交新拋物線于點(diǎn),延長至,且,若的外角平分線交點(diǎn)在新拋物線上,求點(diǎn)坐標(biāo).23.(8分)有這樣一個問題:探究函數(shù)y=﹣2x的圖象與性質(zhì).小東根據(jù)學(xué)習(xí)函數(shù)的經(jīng)驗(yàn),對函數(shù)y=﹣2x的圖象與性質(zhì)進(jìn)行了探究.下面是小東的探究過程,請補(bǔ)充完整:(1)函數(shù)y=﹣2x的自變量x的取值范圍是_______;(2)如表是y與x的幾組對應(yīng)值x…﹣4﹣3.5﹣3﹣2﹣101233.54…y…﹣﹣0﹣﹣m…則m的值為_______;(3)如圖,在平面直角坐標(biāo)系中,描出了以上表中各對對應(yīng)值為坐標(biāo)的點(diǎn).根據(jù)描出的點(diǎn),畫出該函數(shù)的圖象;(4)觀察圖象,寫出該函數(shù)的兩條性質(zhì)________.24.(10分)如圖是某貨站傳送貨物的平面示意圖.為了提高傳送過程的安全性,工人師傅欲減小傳送帶與地面的夾角,使其由45°改為30°.已知原傳送帶AB長為4米.(1)求新傳送帶AC的長度;(2)如果需要在貨物著地點(diǎn)C的左側(cè)留出2米的通道,試判斷距離B點(diǎn)4米的貨物MNQP是否需要挪走,并說明理由.(說明:⑴⑵的計(jì)算結(jié)果精確到0.1米,參考數(shù)據(jù):≈1.41,≈1.73,≈2.24,≈2.45)25.(10分)“低碳生活,綠色出行”是我們倡導(dǎo)的一種生活方式,有關(guān)部門抽樣調(diào)查了某單位員工上下班的交通方式,繪制了兩幅統(tǒng)計(jì)圖:(1)樣本中的總?cè)藬?shù)為人;扇形統(tǒng)計(jì)十圖中“騎自行車”所在扇形的圓心角為度;(2)補(bǔ)全條形統(tǒng)計(jì)圖;(3)該單位共有1000人,積極踐行這種生活方式,越來越多的人上下班由開私家車改為騎自行車.若步行,坐公交車上下班的人數(shù)保持不變,問原來開私家車的人中至少有多少人改為騎自行車,才能使騎自行車的人數(shù)不低于開私家車的人數(shù)?26.(12分)如圖1,在平面直角坐標(biāo)系中,O為坐標(biāo)原點(diǎn),拋物線y=ax2+bx+3交x軸于B、C兩點(diǎn)(點(diǎn)B在左,點(diǎn)C在右),交y軸于點(diǎn)A,且OA=OC,B(﹣1,0).(1)求此拋物線的解析式;(2)如圖2,點(diǎn)D為拋物線的頂點(diǎn),連接CD,點(diǎn)P是拋物線上一動點(diǎn),且在C、D兩點(diǎn)之間運(yùn)動,過點(diǎn)P作PE∥y軸交線段CD于點(diǎn)E,設(shè)點(diǎn)P的橫坐標(biāo)為t,線段PE長為d,寫出d與t的關(guān)系式(不要求寫出自變量t的取值范圍);(3)如圖3,在(2)的條件下,連接BD,在BD上有一動點(diǎn)Q,且DQ=CE,連接EQ,當(dāng)∠BQE+∠DEQ=90°時,求此時點(diǎn)P的坐標(biāo).27.(12分)拋物線y=ax2+bx+3(a≠0)經(jīng)過點(diǎn)A(﹣1,0),B(,0),且與y軸相交于點(diǎn)C.(1)求這條拋物線的表達(dá)式;(2)求∠ACB的度數(shù);(3)點(diǎn)D是拋物線上的一動點(diǎn),是否存在點(diǎn)D,使得tan∠DCB=tan∠ACO.若存在,請求出點(diǎn)D的坐標(biāo),若不存在,說明理由.
參考答案一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項(xiàng)中,只有一項(xiàng)是符合題目要求的.)1、B【解析】
多邊形的外角和是310°,則內(nèi)角和是2×310=720°.設(shè)這個多邊形是n邊形,內(nèi)角和是(n﹣2)?180°,這樣就得到一個關(guān)于n的方程,從而求出邊數(shù)n的值.【詳解】設(shè)這個多邊形是n邊形,根據(jù)題意得:(n﹣2)×180°=2×310°解得:n=1.故選B.【點(diǎn)睛】本題考查了多邊形的內(nèi)角與外角,熟記內(nèi)角和公式和外角和定理并列出方程是解題的關(guān)鍵.根據(jù)多邊形的內(nèi)角和定理,求邊數(shù)的問題就可以轉(zhuǎn)化為解方程的問題來解決.2、D【解析】分析:根據(jù)完全平方公式、積的乘方法則、同底數(shù)冪的除法法則和算術(shù)平方根的定義計(jì)算,判斷即可.詳解:(x+y)2=x2+2xy+y2,A錯誤;(-xy2)3=-x3y6,B錯誤;x6÷x3=x3,C錯誤;==2,D正確;故選D.點(diǎn)睛:本題考查的是完全平方公式、積的乘方、同底數(shù)冪的除法以及算術(shù)平方根的計(jì)算,掌握完全平方公式、積的乘方法則、同底數(shù)冪的除法法則和算術(shù)平方根的定義是解題的關(guān)鍵.3、D【解析】
解:按從小到大的順序排列小明5次投球的成績:7.5,7.8,8.2,8.1,8.1.其中8.1出現(xiàn)1次,出現(xiàn)次數(shù)最多,8.2排在第三,∴這組數(shù)據(jù)的眾數(shù)與中位數(shù)分別是:8.1,8.2.故選D.【點(diǎn)睛】本題考查眾數(shù);中位數(shù).4、C【解析】
根據(jù),可以估算出位于哪兩個整數(shù)之間,從而可以解答本題.【詳解】解:∵即
故選:C.【點(diǎn)睛】本題考查估算無理數(shù)的大小,解題的關(guān)鍵是明確估算無理數(shù)大小的方法.5、D【解析】
根據(jù)中心對稱圖形的定義旋轉(zhuǎn)180°后能夠與原圖形完全重合即是中心對稱圖形,以及軸對稱圖形的定義即可判斷出.【詳解】解:A.∵此圖形旋轉(zhuǎn)180°后不能與原圖形重合,∴此圖形不是中心對稱圖形,是軸對稱圖形,故此選項(xiàng)錯誤;B.∵此圖形旋轉(zhuǎn)180°后能與原圖形重合,∴此圖形是中心對稱圖形,不是軸對稱圖形,故此選項(xiàng)錯誤;C.∵此圖形旋轉(zhuǎn)180°后不能與原圖形重合,∴此圖形不是中心對稱圖形,是軸對稱圖形,故此選項(xiàng)錯誤;D.∵此圖形旋轉(zhuǎn)180°后能與原圖形重合,∴此圖形是中心對稱圖形,也是軸對稱圖形,故此選項(xiàng)正確.故選:D.【點(diǎn)睛】本題考查了中心對稱圖形與軸對稱圖形的定義,解題的關(guān)鍵是熟練的掌握中心對稱圖形與軸對稱圖形的定義.6、B【解析】
朝上的數(shù)字為偶數(shù)的有3種可能,再根據(jù)概率公式即可計(jì)算.【詳解】依題意得P(朝上一面的數(shù)字是偶數(shù))=故選B.【點(diǎn)睛】此題主要考查概率的計(jì)算,解題的關(guān)鍵是熟知概率公式進(jìn)行求解.7、B【解析】
由二次函數(shù)圖象的開口方向、對稱軸及與y軸的交點(diǎn)可分別判斷出a、b、c的符號,從而可判斷①;由對稱軸=2可知a=,由圖象可知當(dāng)x=1時,y>0,可判斷②;由OA=OC,且OA<1,可判斷③;把-代入方程整理可得ac2-bc+c=0,結(jié)合③可判斷④;從而可得出答案.【詳解】解:∵圖象開口向下,∴a<0,∵對稱軸為直線x=2,∴>0,∴b>0,∵與y軸的交點(diǎn)在x軸的下方,∴c<0,∴abc>0,故①錯誤.∵對稱軸為直線x=2,∴=2,∴a=,∵由圖象可知當(dāng)x=1時,y>0,∴a+b+c>0,∴4a+4b+4c>0,∴4()+4b+4c>0,∴3b+4c>0,故②錯誤.∵由圖象可知OA<1,且OA=OC,∴OC<1,即-c<1,∴c>-1,故③正確.∵假設(shè)方程的一個根為x=-,把x=-代入方程可得+c=0,整理可得ac-b+1=0,兩邊同時乘c可得ac2-bc+c=0,∴方程有一個根為x=-c,由③可知-c=OA,而當(dāng)x=OA是方程的根,∴x=-c是方程的根,即假設(shè)成立,故④正確.綜上可知正確的結(jié)論有三個:③④.故選B.【點(diǎn)睛】本題主要考查二次函數(shù)的圖象和性質(zhì).熟練掌握圖象與系數(shù)的關(guān)系以及二次函數(shù)與方程、不等式的關(guān)系是解題的關(guān)鍵.特別是利用好題目中的OA=OC,是解題的關(guān)鍵.8、B【解析】∵在5.5~6.5組別的頻數(shù)是8,總數(shù)是40,∴=0.1.故選B.9、B【解析】一元二次方程的根的情況與根的判別式有關(guān),,方程有兩個不相等的實(shí)數(shù)根,故選B10、C【解析】連接CD,交MN于E,∵將△ABC沿直線MN翻折后,頂點(diǎn)C恰好落在AB邊上的點(diǎn)D處,∴MN⊥CD,且CE=DE.∴CD=2CE.∵M(jìn)N∥AB,∴CD⊥AB.∴△CMN∽△CAB.∴.∵在△CMN中,∠C=90°,MC=6,NC=,∴∴.∴.故選C.11、A【解析】
根據(jù)相反數(shù)的定義,對每個選項(xiàng)進(jìn)行判斷即可.【詳解】解:A、(﹣1)2=1,1與﹣1互為相反數(shù),正確;B、(﹣1)2=1,故錯誤;C、2與互為倒數(shù),故錯誤;D、2=|﹣2|,故錯誤;故選:A.【點(diǎn)睛】本題考查了相反數(shù)的定義,解題的關(guān)鍵是掌握相反數(shù)的定義.12、A【解析】
根據(jù)絕對值的概念計(jì)算即可.(絕對值是指一個數(shù)在坐標(biāo)軸上所對應(yīng)點(diǎn)到原點(diǎn)的距離叫做這個數(shù)的絕對值.)【詳解】根據(jù)絕對值的概念可得-4的絕對值為4.【點(diǎn)睛】錯因分析:容易題.選錯的原因是對實(shí)數(shù)的相關(guān)概念沒有掌握,與倒數(shù)、相反數(shù)的概念混淆.二、填空題:(本大題共6個小題,每小題4分,共24分.)13、2【解析】分析:因?yàn)锽P=,AB的長不變,當(dāng)PA最小時切線長PB最小,所以點(diǎn)P是過點(diǎn)A向直線l所作垂線的垂足,利用△APC≌△DOC求出AP的長即可求解.詳解:如圖,作AP⊥直線y=x+3,垂足為P,此時切線長PB最小,設(shè)直線與x軸,y軸分別交于D,C.∵A的坐標(biāo)為(1,0),∴D(0,3),C(﹣4,0),∴OD=3,AC=5,∴DC==5,∴AC=DC,在△APC與△DOC中,∠APC=∠COD=90°,∠ACP=∠DCO,AC=DC,∴△APC≌△DOC,∴AP=OD=3,∴PB==2.故答案為2.點(diǎn)睛:本題考查了切線的性質(zhì),全等三角形的判定性質(zhì),勾股定理及垂線段最短,因?yàn)橹苯侨切沃械娜呴L滿足勾股定理,所以當(dāng)其中的一邊的長不變時,即可根據(jù)另一邊的取值情況確定第三邊的最大值或最小值.14、1【解析】
根據(jù)一元二次方程的解的定義得a2﹣3a+1=1,即a2﹣3a=﹣1,再代入,然后利用整體思想進(jìn)行計(jì)算即可.【詳解】∵a是方程x2﹣3x+1=1的一根,∴a2﹣3a+1=1,即a2﹣3a=﹣1,a2+1=3a∴故答案為1.【點(diǎn)睛】本題考查了一元二次方程的解:使一元二次方程兩邊成立的未知數(shù)的值叫一元二次方程的解.也考查了整體思想的運(yùn)用.15、或【解析】
過點(diǎn)A作AG⊥BC,垂足為G,根據(jù)等腰直角三角形的性質(zhì)可得AG=BG=CG=6,設(shè)BD=x,則DF=BD=x,EF=7-x,然后利用勾股定理可得到關(guān)于x的方程,從而求得DG的長,繼而可求得AD的長.【詳解】如圖所示,過點(diǎn)A作AG⊥BC,垂足為G,∵AB=AC=6,∠BAC=90°,∴BC==12,∵AB=AC,AG⊥BC,∴AG=BG=CG=6,設(shè)BD=x,則EC=12-DE-BD=12-5-x=7-x,由翻折的性質(zhì)可知:∠DFA=∠B=∠C=∠AFE=45°,DB=DF,EF=FC,∴DF=x,EF=7-x,在Rt△DEF中,DE2=DF2+EF2,即25=x2+(7-x)2,解得:x=3或x=4,當(dāng)BD=3時,DG=3,AD=,當(dāng)BD=4時,DG=2,AD=,∴AD的長為或,故答案為:或.【點(diǎn)睛】本題考查了翻折的性質(zhì)、勾股定理的應(yīng)用、等腰直角三角形的性質(zhì),正確添加輔助線,靈活運(yùn)用勾股定理是解題的關(guān)鍵.16、1【解析】
如圖作點(diǎn)D關(guān)于BC的對稱點(diǎn)D′,連接PD′,ED′,由DP=PD′,推出PD+PF=PD′+PF,又EF=EA=2是定值,即可推出當(dāng)E、F、P、D′共線時,PF+PD′定值最小,最小值=ED′﹣EF.【詳解】如圖作點(diǎn)D關(guān)于BC的對稱點(diǎn)D′,連接PD′,ED′,在Rt△EDD′中,∵DE=6,DD′=1,∴ED′==10,∵DP=PD′,∴PD+PF=PD′+PF,∵EF=EA=2是定值,∴當(dāng)E、F、P、D′共線時,PF+PD′定值最小,最小值=10﹣2=1,∴PF+PD的最小值為1,故答案為1.【點(diǎn)睛】本題考查翻折變換、矩形的性質(zhì)、勾股定理等知識,解題的關(guān)鍵是學(xué)會利用軸對稱,根據(jù)兩點(diǎn)之間線段最短解決最短問題.17、【解析】分析:依據(jù)等式的基本性質(zhì)依次移項(xiàng)、合并同類項(xiàng)、系數(shù)化為1即可得出答案.詳解:移項(xiàng),得:ax﹣x=1,合并同類項(xiàng),得:(a﹣1)x=1.∵a≠1,∴a﹣1≠0,方程兩邊都除以a﹣1,得:x=.故答案為x=.點(diǎn)睛:本題主要考查解一元一次方程的能力,熟練掌握等式的基本性質(zhì)及解一元一次方程的基本步驟是解題的關(guān)鍵.18、4n﹣1.【解析】由圖可知:第一個圖案有陰影小三角形1個,第二圖案有陰影小三角形1+4=6個,第三個圖案有陰影小三角形1+8=11個,···那么第n個就有陰影小三角形1+4(n﹣1)=4n﹣1個.三、解答題:(本大題共9個小題,共78分,解答應(yīng)寫出文字說明、證明過程或演算步驟.19、(1)y=x2+3x;(2)當(dāng)PO+PC的值最小時,點(diǎn)P的坐標(biāo)為(2,);(3)存在,具體見解析.【解析】
(1)由條件可求得拋物線的頂點(diǎn)坐標(biāo)及A點(diǎn)坐標(biāo),利用待定系數(shù)法可求得拋物線解析式;(2)D與P重合時有最小值,求出點(diǎn)D的坐標(biāo)即可;(3)存在,分別根據(jù)①AC為對角線,②AC為邊,兩種情況,分別求解即可.【詳解】(1)在矩形OABC中,OA=4,OC=3,∴A(4,0),C(0,3),∵拋物線經(jīng)過O、A兩點(diǎn),且頂點(diǎn)在BC邊上,∴拋物線頂點(diǎn)坐標(biāo)為(2,3),∴可設(shè)拋物線解析式為y=a(x﹣2)2+3,把A點(diǎn)坐標(biāo)代入可得0=a(4﹣2)2+3,解得a=,∴拋物線解析式為y=(x﹣2)2+3,即y=x2+3x;(2)∵點(diǎn)P在拋物線對稱軸上,∴PA=PO,∴PO+PC=PA+PC.∴當(dāng)點(diǎn)P與點(diǎn)D重合時,PA+PC=AC;當(dāng)點(diǎn)P不與點(diǎn)D重合時,PA+PC>AC;∴當(dāng)點(diǎn)P與點(diǎn)D重合時,PO+PC的值最小,設(shè)直線AC的解析式為y=kx+b,根據(jù)題意,得解得∴直線AC的解析式為,當(dāng)x=2時,,∴當(dāng)PO+PC的值最小時,點(diǎn)P的坐標(biāo)為(2,);(3)存在.①AC為對角線,當(dāng)四邊形AQCP為平行四邊形,點(diǎn)Q為拋物線的頂點(diǎn),即Q(2,3),則P(2,0);②AC為邊,當(dāng)四邊形AQPC為平行四邊形,點(diǎn)C向右平移2個單位得到P,則點(diǎn)A向右平移2個單位得到點(diǎn)Q,則Q點(diǎn)的橫坐標(biāo)為6,當(dāng)x=6時,,此時Q(6,?9),則點(diǎn)A(4,0)向右平移2個單位,向下平移9個單位得到點(diǎn)Q,所以點(diǎn)C(0,3)向右平移2個單位,向下平移9個單位得到點(diǎn)P,則P(2,?6);當(dāng)四邊形APQC為平行四邊形,點(diǎn)A向左平移2個單位得到P,則點(diǎn)C向左平移2個單位得到點(diǎn)Q,則Q點(diǎn)的橫坐標(biāo)為?2,當(dāng)x=?2時,,此時Q(?2,?9),則點(diǎn)C(0,3)向左平移2個單位,向下平移12個單位得到點(diǎn)Q,所以點(diǎn)A(4,0)向左平移2個單位,向下平移12個單位得到點(diǎn)P,則P(2,?12);綜上所述,P(2,0),Q(2,3)或P(2,?6),Q(6,?9)或P(2,?12),Q(?2,?9).【點(diǎn)睛】二次函數(shù)的綜合應(yīng)用,涉及矩形的性質(zhì)、待定系數(shù)法、平行四邊形的性質(zhì)、方程思想及分類討論思想等知識.20、﹣9<x<1.【解析】
先求每一個不等式的解集,然后找出它們的公共部分,即可得出答案.【詳解】解不等式1(x﹣1)<2x,得:x<1,解不等式﹣<1,得:x>﹣9,則原不等式組的解集為﹣9<x<1.【點(diǎn)睛】此題考查了解一元一次不等式組,用到的知識點(diǎn)是解一元一次不等式組的步驟,關(guān)鍵是找出兩個不等式解集的公共部分.21、(1);6;(2)有最小值;(3),.【解析】
(1)先求出點(diǎn)B,C坐標(biāo),利用待定系數(shù)法求出拋物線解析式,進(jìn)而求出點(diǎn)A坐標(biāo),即可求出半圓的直徑,再構(gòu)造直角三角形求出點(diǎn)D的坐標(biāo)即可求出BD;
(2)先判斷出要求的最小值,只要CG最大即可,再求出直線EG解析式和拋物線解析式聯(lián)立成的方程只有一個交點(diǎn),求出直線EG解析式,即可求出CG,結(jié)論得證.
(3)求出線段AC,BC進(jìn)而判斷出滿足條件的一個點(diǎn)P和點(diǎn)B重合,再利用拋物線的對稱性求出另一個點(diǎn)P.【詳解】解:(1)對于直線y=x-3,令x=0,
∴y=-3,
∴B(0,-3),
令y=0,
∴x-3=0,
∴x=4,
∴C(4,0),
∵拋物線y=x2+bx+c過B,C兩點(diǎn),∴∴∴拋物線的解析式為y=;令y=0,
∴=0,∴x=4或x=-1,
∴A(-1,0),
∴AC=5,
如圖2,記半圓的圓心為O',連接O'D,
∴O'A=O'D=O'C=AC=,
∴OO'=OC-O'C=4-=,
在Rt△O'OD中,OD==2,∴D(0,2),
∴BD=2-(-3)=5;(2)如圖3,
∵A(-1,0),C(4,0),
∴AC=5,
過點(diǎn)E作EG∥BC交x軸于G,
∵△ABF的AF邊上的高和△BEF的EF邊的高相等,設(shè)高為h,
∴S△ABF=AF?h,S△BEF=EF?h,∴==∵的最小值,∴最小,∵CF∥GE,∴∴最小,即:CG最大,∴EG和果圓的拋物線部分只有一個交點(diǎn)時,CG最大,
∵直線BC的解析式為y=x-3,
設(shè)直線EG的解析式為y=x+m①,
∵拋物線的解析式為y=x2-x-3②,
聯(lián)立①②化簡得,3x2-12x-12-4m=0,
∴△=144+4×3×(12+4m)=0,
∴m=-6,
∴直線EG的解析式為y=x-6,
令y=0,
∴x-6=0,
∴x=8,
∴CG=4,∴=;(3),.理由:如圖1,∵AC是半圓的直徑,
∴半圓上除點(diǎn)A,C外任意一點(diǎn)Q,都有∠AQC=90°,
∴點(diǎn)P只能在拋物線部分上,
∵B(0,-3),C(4,0),
∴BC=5,
∵AC=5,
∴AC=BC,
∴∠BAC=∠ABC,
當(dāng)∠APC=∠CAB時,點(diǎn)P和點(diǎn)B重合,即:P(0,-3),
由拋物線的對稱性知,另一個點(diǎn)P的坐標(biāo)為(3,-3),
即:使∠APC=∠CAB,點(diǎn)P坐標(biāo)為(0,-3)或(3,-3).【點(diǎn)睛】本題是二次函數(shù)綜合題,考查待定系數(shù)法,圓的性質(zhì),勾股定理,相似三角形的判定和性質(zhì),拋物線的對稱性,等腰三角形的判定和性質(zhì),判斷出CG最大時,兩三角形面積之比最小是解本題的關(guān)鍵.22、(1)4;(2),;(3).【解析】
(1)過點(diǎn)D作DE⊥x軸于點(diǎn)E,求出二次函數(shù)的頂點(diǎn)D的坐標(biāo),然后求出A、B、C的坐標(biāo),然后根據(jù)即可得出結(jié)論;(2)設(shè)點(diǎn)是第二象限拋物線對稱軸左側(cè)上一點(diǎn),將沿軸翻折得到,點(diǎn),連接,過點(diǎn)作于,過點(diǎn)作軸于,證出,列表比例式,并找出關(guān)于t的方程即可得出結(jié)論;(3)判斷點(diǎn)D在直線上,根據(jù)勾股定理求出DH,即可求出平移后的二次函數(shù)解析式,設(shè)點(diǎn),,過點(diǎn)作于,于,軸于,根據(jù)勾股定理求出AG,聯(lián)立方程即可求出m、n,從而求出結(jié)論.【詳解】解:(1)過點(diǎn)D作DE⊥x軸于點(diǎn)E當(dāng)時,得到,頂點(diǎn),∴DE=1由,得,;令,得;,,,,OC=3.(2)如圖1,設(shè)點(diǎn)是第二象限拋物線對稱軸左側(cè)上一點(diǎn),將沿軸翻折得到,點(diǎn),連接,過點(diǎn)作于,過點(diǎn)作軸于,由翻折得:,;,,軸,,,,由勾股定理得:,,,,,,,解得:(不符合題意,舍去),;,.(3)原拋物線的頂點(diǎn)在直線上,直線交軸于點(diǎn),如圖2,過點(diǎn)作軸于,;由題意,平移后的新拋物線頂點(diǎn)為,解析式為,設(shè)點(diǎn),,則,,,過點(diǎn)作于,于,軸于,,,、分別平分,,,點(diǎn)在拋物線上,,根據(jù)題意得:解得:【點(diǎn)睛】此題考查的是二次函數(shù)的綜合大題,難度較大,掌握二次函數(shù)平移規(guī)律、二次函數(shù)的圖象及性質(zhì)、相似三角形的判定及性質(zhì)和勾股定理是解決此題的關(guān)鍵.23、(1)任意實(shí)數(shù);(2);(3)見解析;(4)①當(dāng)x<﹣2時,y隨x的增大而增大;②當(dāng)x>2時,y隨x的增大而增大.【解析】
(1)沒有限定要求,所以x為任意實(shí)數(shù),(2)把x=3代入函數(shù)解析式即可,(3)描點(diǎn),連線即可解題,(4)看圖確定極點(diǎn)坐標(biāo),即可找到增減區(qū)間.【詳解】解:(1)函數(shù)y=﹣2x的自變量x的取值范圍是任意實(shí)數(shù);故答案為任意實(shí)數(shù);(2)把x=3代入y=﹣2x得,y=﹣;故答案為﹣;(3)如圖所示;(4)根據(jù)圖象得,①當(dāng)x<﹣2時,y隨x的增大而增大;②當(dāng)x>2時,y隨x的增大而增大.故答案為①當(dāng)x<﹣2時,y隨x的增大而增大;②當(dāng)x>2時,y隨x的增大而增大.【點(diǎn)睛】本題考查了函數(shù)的圖像和性質(zhì),屬于簡單題,熟悉函數(shù)的圖像和概念是解題關(guān)鍵.24、(1)5.6(2)貨物MNQP應(yīng)挪走,理由見解析.【解析】
(1)如圖,作AD⊥BC于點(diǎn)DRt△ABD中,AD=ABsin45°=4在Rt△ACD中,∵∠ACD=30°∴AC=2AD=4即新傳送帶AC的長度約為5.6米.(2)結(jié)論:貨物MNQP應(yīng)挪走.在Rt△ABD中,BD=ABcos45°=4在Rt△ACD中,CD=ACcos30°=∴CB=CD—BD=∵PC=PB—CB≈4—2.1=1.9<2∴貨物MNQP應(yīng)挪走.25、(1)80、72;(2)16人;(3)50人【解析】
(1)用步行人數(shù)除以其所占的百分比即可得到樣本總?cè)藬?shù):810%=80(人);用總?cè)藬?shù)乘以開私家車的所占百分比即可求出m,即m=8025%=20;用3600乘以騎自行車所占的百分比即可求出其所在扇形的圓心角:360(1-10%-25%-45%)=.(2)根據(jù)扇形統(tǒng)計(jì)圖算出騎自行車的所占百分比,再用總?cè)藬?shù)乘以該百分比即可求出騎自行車的人數(shù),補(bǔ)全條形圖即可.(3)依題意設(shè)原來開私家車的人中有x人改為騎自行車,用x分別表示改變出行方式后的騎自行車和開私家車的人數(shù),根據(jù)題意列出一元一次不等式,解不等式即可.【詳解】解:(1)樣本中的總?cè)藬?shù)為8÷10%=80人,∵騎自行車的百分比為1﹣(10%+25%+45%)=20%,∴扇形統(tǒng)計(jì)十圖中“騎自行車”所在扇形的圓心角為360°×20%=72°(2)騎自行車的人數(shù)為80×20%=16人,補(bǔ)全圖形如下:(3)設(shè)原來開私家車的人中有x人改騎自行車,由題意,得:1000×(1﹣10%﹣25%﹣45%)+x≥1000×25%﹣x,解得:x≥50,∴原來開私家車的人中至少有50人改為騎自行車,才能使騎自行車的人數(shù)不低于開私家車的人數(shù).【點(diǎn)睛】本題主要考查統(tǒng)計(jì)圖表和一元一次不等式的應(yīng)用。26、(1)y=﹣x2+2x+3;(2)d=﹣t2+4t﹣3;(3)P(,).【解析】
(1)由拋物線y=ax2+bx+3與y軸交于點(diǎn)A,可求得點(diǎn)A的坐標(biāo),又OA=OC,可求得點(diǎn)C的坐標(biāo),然后分別代入B,C的坐標(biāo)求出a,b,即可求得二次函數(shù)的解析式;(2)首先延長PE交x軸于點(diǎn)H,現(xiàn)將解析式換為頂點(diǎn)解析式求得D(1,4),設(shè)直線CD的解析式為y=kx+b,再將點(diǎn)C(3,0)、D(1,4)代入,得y=﹣2x+6,則E(t,﹣2t+6),P(t,﹣t2+2t+3),PH=﹣t2+2t+3,EH=﹣2t+6,再根據(jù)d=PH﹣EH即可得答案;(3)首先,作DK⊥OC于點(diǎn)K,作QM∥x軸交DK于點(diǎn)T,延長PE、EP交OC于H、交QM于M,作ER⊥DK于點(diǎn)R,記QE與DK的交點(diǎn)為N,根據(jù)題意在(2)的條件下先證明△DQT≌△ECH,再根據(jù)全等三角形的性質(zhì)即可得ME=4﹣2(﹣2t+6),QM=t﹣1+(3﹣t),即可求得答案.【詳解】解:(1)當(dāng)x=0時,y=3,∴A(0,3)即OA=3,∵OA=OC,∴OC=3,∴C(3,0),∵拋物線y=ax2+bx+3經(jīng)過點(diǎn)B(﹣1,0),C(3,0)∴,解得:,∴拋物線的解析式為:y=﹣x2+2x+3;(2)如圖1,延長PE交x軸于點(diǎn)H,∵y=﹣x2+2x+3=﹣(x﹣1)2+4,∴D(1,4),設(shè)直線CD的解析式為y=kx+b,將點(diǎn)C(3,0)、D(1,4)代入,得:,解得:,∴y=﹣2x+6,∴E(t,﹣2t+6),P(t,﹣t2+2t+3),∴PH=﹣t2+2t+3,EH=﹣2t+6,∴d=PH﹣EH=﹣t2+2t+3﹣(﹣2t+6)=﹣t2+4t﹣3;(3)如圖2,作DK⊥OC于點(diǎn)K,作QM∥x軸交DK于點(diǎn)T,延長PE、EP交OC于H、交QM于M,作ER⊥DK于點(diǎn)R,記QE與DK的交點(diǎn)為N,∵D(1,4),B(﹣
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 行業(yè)主管的經(jīng)驗(yàn)交流與學(xué)習(xí)借鑒計(jì)劃
- 機(jī)械設(shè)計(jì)制造及其自動化專業(yè)人才培養(yǎng)方案(完整版)
- 2024秋北師大版數(shù)學(xué)七年級上冊5.3 一元一次方程的應(yīng)用課時3課件
- 一男兩女離婚協(xié)議書范文
- 旅拍品牌合作協(xié)議書范文范本
- 二手車拼車協(xié)議書范文模板
- 邢臺信都區(qū)民政局離婚協(xié)議書范文模板
- 火紅的楓葉作文
- 俄羅斯語言發(fā)展現(xiàn)狀及未來趨勢分析
- 濱??h暑期社會實(shí)踐
- 《論六家要旨》原文與翻譯
- 營銷總監(jiān)績效考核表(完整版)
- 電除塵拆除施工方案
- 線材基礎(chǔ)知識
- 灌漿平洞專項(xiàng)施工方案(完整版)
- 房屋修繕工程施工方案(完整版)
- 我國主要山脈高原盆地平原
- 派爾科化工材料(啟東)有限公司年產(chǎn)75500噸年合成材料搬遷改造項(xiàng)目環(huán)境影響評價(jià)
- IQ測試題和答案
- 6課題研究工作計(jì)劃表
- 井底車場軌道維修安全技術(shù)措施
評論
0/150
提交評論