新高考數(shù)學(xué)一輪復(fù)習(xí) 導(dǎo)數(shù)專項重點難點突破專題09 導(dǎo)數(shù)新定義問題(原卷版)_第1頁
新高考數(shù)學(xué)一輪復(fù)習(xí) 導(dǎo)數(shù)專項重點難點突破專題09 導(dǎo)數(shù)新定義問題(原卷版)_第2頁
新高考數(shù)學(xué)一輪復(fù)習(xí) 導(dǎo)數(shù)專項重點難點突破專題09 導(dǎo)數(shù)新定義問題(原卷版)_第3頁
新高考數(shù)學(xué)一輪復(fù)習(xí) 導(dǎo)數(shù)專項重點難點突破專題09 導(dǎo)數(shù)新定義問題(原卷版)_第4頁
新高考數(shù)學(xué)一輪復(fù)習(xí) 導(dǎo)數(shù)專項重點難點突破專題09 導(dǎo)數(shù)新定義問題(原卷版)_第5頁
已閱讀5頁,還剩2頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)

文檔簡介

專題09導(dǎo)數(shù)新定義問題一、單選題1.給出以下新定義:若函數(shù)SKIPIF1<0在D上可導(dǎo),即SKIPIF1<0存在,且導(dǎo)函數(shù)SKIPIF1<0在D上也可導(dǎo),則稱SKIPIF1<0在D上存在二階導(dǎo)函數(shù),記SKIPIF1<0,若SKIPIF1<0在D上恒成立,則稱SKIPIF1<0在D上為凸函數(shù).以下四個函數(shù)在定義域上是凸函數(shù)的是(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<02.對于三次函數(shù)SKIPIF1<0,現(xiàn)給出定義:設(shè)SKIPIF1<0是函數(shù)SKIPIF1<0的導(dǎo)數(shù),SKIPIF1<0是SKIPIF1<0的導(dǎo)數(shù),若方程SKIPIF1<0有實數(shù)解SKIPIF1<0,則稱點SKIPIF1<0為函數(shù)SKIPIF1<0的“拐點”.經(jīng)過探究發(fā)現(xiàn):任何一個三次函數(shù)都有“拐點”,任何一個三次函數(shù)都有對稱中心,且“拐點”就是對稱中心.設(shè)函數(shù)SKIPIF1<0,則SKIPIF1<0(

)A.0 B.1 C.SKIPIF1<0 D.SKIPIF1<03.我們把分子、分母同時趨近于0的分式結(jié)構(gòu)稱為SKIPIF1<0型,比如:當(dāng)SKIPIF1<0時,SKIPIF1<0的極限即為SKIPIF1<0型.兩個無窮小之比的極限可能存在,也可能不存在,為此,洛必達在1696年提出洛必達法則:在一定條件下通過對分子、分母分別求導(dǎo)再求極限來確定未定式值的方法.如:SKIPIF1<0,則SKIPIF1<0(

)A.0 B.SKIPIF1<0 C.1 D.24.定義方程SKIPIF1<0的實根SKIPIF1<0叫做函數(shù)SKIPIF1<0的“新駐點”,若函數(shù)SKIPIF1<0,SKIPIF1<0,SKIPIF1<0的“新駐點”分別為SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0,SKIPIF1<0,SKIPIF1<0的大小關(guān)系為(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<05.已知函數(shù)SKIPIF1<0及其導(dǎo)函數(shù)SKIPIF1<0,若存在SKIPIF1<0使得SKIPIF1<0,則稱SKIPIF1<0是SKIPIF1<0的一個“巧值點”.下列選項中沒有“巧值點”的函數(shù)是(

)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<06.定義滿足方程SKIPIF1<0的解SKIPIF1<0叫做函數(shù)SKIPIF1<0的“自足點”,則下列函數(shù)不存在“自足點”的是(

)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<07.拉格朗日中值定理是微分學(xué)中的基本定理之一,定理內(nèi)容是:如果函數(shù)SKIPIF1<0在閉區(qū)間SKIPIF1<0上的圖象連續(xù)不間斷,在開區(qū)間SKIPIF1<0內(nèi)的導(dǎo)數(shù)為SKIPIF1<0,那么在區(qū)間SKIPIF1<0內(nèi)至少存在一點c,使得SKIPIF1<0成立,其中c叫做SKIPIF1<0在SKIPIF1<0上的“拉格朗日中值點”.根據(jù)這個定理,可得函數(shù)SKIPIF1<0在SKIPIF1<0上的“拉格朗日中值點”的個數(shù)為(

)A.3 B.2 C.1 D.08.已知函數(shù)SKIPIF1<0的定義域為SKIPIF1<0,若SKIPIF1<0在SKIPIF1<0上為增函數(shù),則稱SKIPIF1<0為“SKIPIF1<0階比增函數(shù)”.若函數(shù)SKIPIF1<0為“SKIPIF1<0階比增函數(shù)",則實數(shù)SKIPIF1<0的取值范圍是(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0二、多選題9.已知函數(shù)SKIPIF1<0及其導(dǎo)數(shù)SKIPIF1<0,若存在SKIPIF1<0,使得SKIPIF1<0,則稱SKIPIF1<0是SKIPIF1<0的一個“巧值點”,下列函數(shù)中,沒有“巧值點”的是(

)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<010.函數(shù)SKIPIF1<0在區(qū)間SKIPIF1<0,SKIPIF1<0上連續(xù),對SKIPIF1<0,SKIPIF1<0上任意二點SKIPIF1<0與SKIPIF1<0,有SKIPIF1<0時,我們稱函數(shù)SKIPIF1<0在SKIPIF1<0,SKIPIF1<0上嚴(yán)格上凹,若用導(dǎo)數(shù)的知識可以簡單地解釋為原函數(shù)的導(dǎo)函數(shù)的導(dǎo)函數(shù)(二階導(dǎo)函數(shù))在給定區(qū)間內(nèi)恒為正,即SKIPIF1<0.下列所列函數(shù)在所給定義域中“嚴(yán)格上凹”的有(

)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<011.已知函數(shù)SKIPIF1<0及其導(dǎo)數(shù)SKIPIF1<0,若存在SKIPIF1<0,使得SKIPIF1<0,則稱SKIPIF1<0是SKIPIF1<0的一個“青山點”.下列函數(shù)中,有“青山點”的是()A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<012.若函數(shù)SKIPIF1<0在區(qū)間D上是減函數(shù),且函數(shù)SKIPIF1<0在區(qū)間D上也是減函數(shù),其中SKIPIF1<0是函數(shù)SKIPIF1<0的導(dǎo)函數(shù),則稱函數(shù)SKIPIF1<0是區(qū)間D的上“緩減函數(shù)”,區(qū)間D叫作“緩減函數(shù)”.則下列區(qū)間中,是函數(shù)SKIPIF1<0的“緩減函數(shù)”的是(

)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<013.定義在區(qū)間SKIPIF1<0上的連續(xù)函數(shù)SKIPIF1<0的導(dǎo)函數(shù)為SKIPIF1<0,若SKIPIF1<0使得SKIPIF1<0,則稱SKIPIF1<0為區(qū)間SKIPIF1<0上的“中值點”.下列在區(qū)間SKIPIF1<0上“中值點”多于一個的函數(shù)是(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<014.對于定義域為SKIPIF1<0的函數(shù)SKIPIF1<0,SKIPIF1<0為SKIPIF1<0的導(dǎo)函數(shù),若同時滿足:①SKIPIF1<0;②當(dāng)SKIPIF1<0且SKIPIF1<0時,都有SKIPIF1<0;③當(dāng)SKIPIF1<0且SKIPIF1<0時,都有SKIPIF1<0,則稱SKIPIF1<0為“偏對稱函數(shù)”.下列函數(shù)是“偏對稱函數(shù)”的是(

)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0三、填空題15.函數(shù)SKIPIF1<0的導(dǎo)函數(shù)為SKIPIF1<0,若對于定義域內(nèi)任意SKIPIF1<0,SKIPIF1<0SKIPIF1<0,有SKIPIF1<0恒成立,則稱SKIPIF1<0為恒均變函數(shù).給出下列函數(shù):①SKIPIF1<0;②SKIPIF1<0;③SKIPIF1<0;④SKIPIF1<0;⑤SKIPIF1<0.其中為恒均變函數(shù)的序號是__________________.(寫出所有滿足條件的函數(shù)的序號)16.我們把形如SKIPIF1<0的函數(shù)稱為冪指函數(shù),冪指函數(shù)在求導(dǎo)時,可以利用對數(shù)法:在函數(shù)解析式兩邊取對數(shù)得SKIPIF1<0,兩邊對x求導(dǎo)數(shù),得SKIPIF1<0于是SKIPIF1<0,運用此方法可以求得函數(shù)SKIPIF1<0在(1,1)處的切線方程是_________.17.若SKIPIF1<0可以作為一個三角形的三條邊長,`則稱函數(shù)SKIPIF1<0是區(qū)間D上的“穩(wěn)定函數(shù)”.已知函數(shù)SKIPIF1<0是區(qū)間SKIPIF1<0上的“穩(wěn)定函數(shù)”,則實數(shù)m的取值范圍為___________.18.設(shè)函數(shù)SKIPIF1<0在區(qū)間SKIPIF1<0上的導(dǎo)函數(shù)為SKIPIF1<0,SKIPIF1<0在區(qū)間SKIPIF1<0上的導(dǎo)函數(shù)為SKIPIF1<0,若區(qū)間SKIPIF1<0上SKIPIF1<0.則稱函數(shù)SKIPIF1<0在區(qū)間SKIPIF1<0上為“凹函數(shù)”,已知SKIPIF1<0在SKIPIF1<0上為“凹函數(shù)”則實數(shù)m的取值范圍為__________.19.對于函數(shù)SKIPIF1<0可以采用下列方法求導(dǎo)數(shù):由SKIPIF1<0可得SKIPIF1<0,兩邊求導(dǎo)可得SKIPIF1<0,故SKIPIF1<0.根據(jù)這一方法,可得函數(shù)SKIPIF1<0的極小值為___________.20.設(shè)SKIPIF1<0與SKIPIF1<0是定義在同一區(qū)間SKIPIF1<0上的兩個函數(shù),若函數(shù)SKIPIF1<0在SKIPIF1<0上有兩個不同的零點,則稱SKIPIF1<0與SKIPIF1<0在SKIPIF1<0上是“關(guān)聯(lián)函數(shù)”.若SKIPIF1<0與SKIPIF1<0在SKIPIF1<0上是“關(guān)聯(lián)函數(shù)”,則實數(shù)SKIPIF1<0的取值范圍是____________.四、解答題21.對于函數(shù)f(x),若存在實數(shù)SKIPIF1<0滿足SKIPIF1<0,則稱SKIPIF1<0為函數(shù)f(x)的一個不動點.已知函數(shù)SKIPIF1<0,其中SKIPIF1<0(1)當(dāng)SKIPIF1<0時,(i)求f(x)的極值點;(ii)若存在SKIPIF1<0既是f(x)的極值點,又是f(x)的不動點,求b的值:(2)若f(x)有兩個相異的極值點SKIPIF1<0,SKIPIF1<0,試問:是否存在a,b使得SKIPIF1<0,SKIPIF1<0均為f(x)的不動點?證明你的結(jié)論.22.已知函數(shù)SKIPIF1<0.(1)若SKIPIF1<0在其定義域內(nèi)是增函數(shù),求SKIPIF1<0的取值范圍;(2)定義:若SKIPIF1<0在其定義域內(nèi)單調(diào)遞增,且SKIPIF1<0在其定義域內(nèi)也單調(diào)遞增,則稱SKIPIF1<0為SKIPIF1<0的“協(xié)同增函數(shù)”.已知函數(shù)SKIPIF1<0,若SKIPIF1<0是SKIPIF1<0的“協(xié)同增函數(shù)”,求SKIPIF1<0的取值范圍.23.記SKIPIF1<0,SKIPIF1<0為SKIPIF1<0的導(dǎo)函數(shù).若對SKIPIF1<0,SKIPIF1<0,則稱函數(shù)SKIPIF1<0為SKIPIF1<0上的“凸函數(shù)”.已知函數(shù)SKIPIF1<0,SKIPIF1<0.(1)若函數(shù)SKIPIF1<0為SKIPIF1<0上的凸函數(shù),求SKIPIF1<0的取值范圍;(2)若函數(shù)SKIPIF1<0在SKIPIF1<0上有極值,求SKIPIF1<0的取值范圍.24.設(shè)SKIPIF1<0是函數(shù)SKIPIF1<0的導(dǎo)函數(shù),我們把使SKIPIF1<0的實數(shù)x叫做函數(shù)SKIPIF1<0的好點.已知函數(shù)SKIPIF1<0,(1)若0是函數(shù)SKIPIF1<0的好點,求a;(2)若當(dāng)SKIPIF1<0時,函數(shù)SKIPIF1<0無好點,求a的取值范圍.25.已知函數(shù)SKIPIF1<0.(1)求函數(shù)SKIPIF1<0的圖象在SKIPIF1<0(SKIPIF1<0為自然對數(shù)的底數(shù))處的切線方程;(2)若對任意的SKIPIF1<0,均有SKIPIF1<0,則稱SKIPIF1<0為SKIPIF1<0在區(qū)間SKIPIF1<0上的下界函數(shù),SKIPIF1<0為SKIPIF1<0在區(qū)間SKIPIF1<0上的上界函數(shù).①若SKIPIF1<0,求證:SKIPIF1<0為SKIPIF1<0在SKIPIF1<0上的上界函數(shù);②若SKIPIF1<0,SKIPIF1<0為SKIPIF1<0在SKIPIF1<0上的下界函數(shù),求實數(shù)SKIPIF1<0的取值范圍.26.已知函數(shù)SKIPIF1<0.(1)求函數(shù)SKIPIF1<0的最小值;(2)證明:對任意SKIPIF1<0恒成立;(3)對于函數(shù)SKIPIF1<0圖象上的不同兩點SKIPIF1<0,如果在函數(shù)SKIPIF1<0圖象上存在點SKIPIF1<0(其中SKIPIF1<0)使得點SKIPIF1<0處的切線SKIPIF1<0,則稱直線SKIPIF1<0

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論