版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
第一篇熱點(diǎn)、難點(diǎn)突破篇專題20解析幾何中的范圍、最值和探索性問(wèn)題(練)【對(duì)點(diǎn)演練】一、單選題1.(2023秋·江蘇揚(yáng)州·高三揚(yáng)州中學(xué)??茧A段練習(xí))在平面直角坐標(biāo)系xOv中,M為雙曲線SKIPIF1<0右支上的一個(gè)動(dòng)點(diǎn),若點(diǎn)M到直線SKIPIF1<0的距離大于m恒成立,則實(shí)數(shù)m的最大值為(
)A.1 B.SKIPIF1<0 C.2 D.2SKIPIF1<0【答案】B【分析】先求出漸近線方程,利用平行線直接的距離公式即可求解.【詳解】由點(diǎn)M到直線SKIPIF1<0的距離大于m恒成立,可得點(diǎn)M到直線SKIPIF1<0的最近距離大于m.因?yàn)殡p曲線的漸近線為SKIPIF1<0,則SKIPIF1<0與SKIPIF1<0的距離SKIPIF1<0即為最近距離,則SKIPIF1<0,即SKIPIF1<0.故選:B2.(2023·全國(guó)·高三專題練習(xí))已知點(diǎn)P在拋物線SKIPIF1<0上,且SKIPIF1<0,則SKIPIF1<0的最小值為(
).A.2 B.SKIPIF1<0 C.3 D.4【答案】A【分析】設(shè)SKIPIF1<0,利用兩點(diǎn)間的距離公式結(jié)合二次函數(shù)的性質(zhì)求解即可【詳解】設(shè)SKIPIF1<0,則有SKIPIF1<0,又SKIPIF1<0,所以SKIPIF1<0因?yàn)镾KIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0,當(dāng)且僅當(dāng)SKIPIF1<0時(shí)取等,所以SKIPIF1<0的最小值為2,故選:A3.(2023秋·河南信陽(yáng)·高三信陽(yáng)高中??计谀┮阎c(diǎn)SKIPIF1<0是拋物線SKIPIF1<0上任意一點(diǎn),則點(diǎn)SKIPIF1<0到拋物線SKIPIF1<0的準(zhǔn)線和直線SKIPIF1<0的距離之和的最小值為(
)A.SKIPIF1<0 B.4 C.SKIPIF1<0 D.5【答案】C【分析】點(diǎn)SKIPIF1<0到直線SKIPIF1<0的距離為SKIPIF1<0,到準(zhǔn)線SKIPIF1<0的距離為SKIPIF1<0,利用拋物線的定義得SKIPIF1<0,當(dāng)SKIPIF1<0,SKIPIF1<0和SKIPIF1<0共線時(shí),點(diǎn)SKIPIF1<0到直線SKIPIF1<0和準(zhǔn)線SKIPIF1<0的距離之和的最小,由點(diǎn)到直線的距離公式求得答案.【詳解】解:由拋物線SKIPIF1<0知,焦點(diǎn)SKIPIF1<0,準(zhǔn)線方程為SKIPIF1<0,根據(jù)題意作圖如下;點(diǎn)SKIPIF1<0到直線SKIPIF1<0的距離為SKIPIF1<0,點(diǎn)SKIPIF1<0到SKIPIF1<0的距離為SKIPIF1<0;由拋物線的定義知:SKIPIF1<0,所以點(diǎn)SKIPIF1<0到直線SKIPIF1<0和準(zhǔn)線SKIPIF1<0的距離之和為SKIPIF1<0,且點(diǎn)SKIPIF1<0到直線SKIPIF1<0的距離為SKIPIF1<0,所以點(diǎn)SKIPIF1<0到直線SKIPIF1<0和準(zhǔn)線SKIPIF1<0的距離之和最小值為SKIPIF1<0.故選:C.4.(2022·全國(guó)·高三專題練習(xí))已知圓SKIPIF1<0,若拋物線SKIPIF1<0上存在點(diǎn)SKIPIF1<0,過(guò)點(diǎn)SKIPIF1<0作圓SKIPIF1<0的兩條切線,切點(diǎn)SKIPIF1<0滿足SKIPIF1<0,則實(shí)數(shù)SKIPIF1<0的取值范圍是(
)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0【答案】A【分析】根據(jù)題意可以求出SKIPIF1<0,再利用兩點(diǎn)間的距離公式表示出SKIPIF1<0,整理得到關(guān)于SKIPIF1<0的一個(gè)一元二次方程,利用根的判別式列出關(guān)于SKIPIF1<0的不等式,解不等式即可【詳解】SKIPIF1<0,設(shè)點(diǎn)SKIPIF1<0,則SKIPIF1<0SKIPIF1<0即SKIPIF1<0有非負(fù)實(shí)根SKIPIF1<0解得SKIPIF1<0故選:A二、填空題5.(2023秋·山東棗莊·高三統(tǒng)考期末)已知橢圓SKIPIF1<0,SKIPIF1<0,SKIPIF1<0是其左、右焦點(diǎn),點(diǎn)SKIPIF1<0在橢圓上且滿足SKIPIF1<0.若SKIPIF1<0到直線SKIPIF1<0的距離為SKIPIF1<0,則SKIPIF1<0的最小值為_(kāi)_____.【答案】SKIPIF1<0【分析】由正弦定理可得SKIPIF1<0,則SKIPIF1<0,令SKIPIF1<0,則問(wèn)題轉(zhuǎn)化為求SKIPIF1<0的最小值,即右焦點(diǎn)SKIPIF1<0到直線SKIPIF1<0的距離,即可得解.【詳解】解:在SKIPIF1<0中由正弦定理SKIPIF1<0,又SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0,令SKIPIF1<0,要求SKIPIF1<0的最小值,即求SKIPIF1<0的最小值,則SKIPIF1<0,當(dāng)且僅當(dāng)SKIPIF1<0垂直直線SKIPIF1<0且SKIPIF1<0在SKIPIF1<0與SKIPIF1<0之間時(shí)取等號(hào),所以SKIPIF1<0.故答案為:SKIPIF1<0.6.(2022秋·安徽·高三校聯(lián)考開(kāi)學(xué)考試)已知拋物線SKIPIF1<0的焦點(diǎn)為SKIPIF1<0,圓SKIPIF1<0,過(guò)SKIPIF1<0的直線SKIPIF1<0與SKIPIF1<0交于SKIPIF1<0兩點(diǎn),與SKIPIF1<0交于SKIPIF1<0兩點(diǎn),且SKIPIF1<0在同一象限,則SKIPIF1<0的最小值為_(kāi)____.【答案】12【分析】設(shè)直線SKIPIF1<0,聯(lián)立拋物線方程可得到SKIPIF1<0,利用焦半徑公式化簡(jiǎn)SKIPIF1<0,結(jié)合基本不等式,即可求得答案.【詳解】拋物線SKIPIF1<0的焦點(diǎn)為SKIPIF1<0以SKIPIF1<0為圓心以3為半徑,由題意可知直線l不與y軸垂直,設(shè)直線SKIPIF1<0,聯(lián)立SKIPIF1<0,得SKIPIF1<0,SKIPIF1<0.設(shè)SKIPIF1<0,則SKIPIF1<0,∴SKIPIF1<0SKIPIF1<0,當(dāng)且僅當(dāng)SKIPIF1<0時(shí),等號(hào)成立,即SKIPIF1<0的最小值為12,故答案為:127.(2022·湖南·模擬預(yù)測(cè))已知SKIPIF1<0,點(diǎn)P滿足SKIPIF1<0,動(dòng)點(diǎn)M,N滿足SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0的最小值是____________.【答案】3【分析】以SKIPIF1<0的中點(diǎn)O為坐標(biāo)原點(diǎn),SKIPIF1<0的中垂線為y軸,建立如圖所示的直角坐標(biāo)系,由雙曲線定義得點(diǎn)P的軌跡是以SKIPIF1<0,SKIPIF1<0為焦點(diǎn),實(shí)軸長(zhǎng)為6的雙曲線的左支,然后根據(jù)雙曲線的性質(zhì),數(shù)量積的運(yùn)算律求解.【詳解】以SKIPIF1<0的中點(diǎn)O為坐標(biāo)原點(diǎn),SKIPIF1<0的中垂線為y軸,建立如圖所示的直角坐標(biāo)系,則SKIPIF1<0,由雙曲線定義可知,點(diǎn)P的軌跡是以SKIPIF1<0,SKIPIF1<0為焦點(diǎn),實(shí)軸長(zhǎng)為6的雙曲線的左支,即點(diǎn)P的軌跡方程為SKIPIF1<0.SKIPIF1<0,由SKIPIF1<0,可得SKIPIF1<0.因?yàn)镾KIPIF1<0的最小值為SKIPIF1<0,所以SKIPIF1<0的最小值是3.故答案為:3.三、解答題8.(2023·四川成都·統(tǒng)考一模)已知橢圓SKIPIF1<0的左,右焦點(diǎn)分別為SKIPIF1<0,上頂點(diǎn)為SKIPIF1<0,且SKIPIF1<0為等邊三角形.經(jīng)過(guò)焦點(diǎn)SKIPIF1<0的直線SKIPIF1<0與橢圓SKIPIF1<0相交于SKIPIF1<0兩點(diǎn),SKIPIF1<0的周長(zhǎng)為8.(1)求橢圓SKIPIF1<0的方程;(2)求SKIPIF1<0的面積的最大值及此時(shí)直線SKIPIF1<0的方程.【答案】(1)SKIPIF1<0;(2)最大值3,此時(shí)直線SKIPIF1<0的方程為SKIPIF1<0.【分析】(1)由SKIPIF1<0為等邊三角形,得到SKIPIF1<0,由橢圓定義得到SKIPIF1<0的周長(zhǎng)為SKIPIF1<0,求出SKIPIF1<0,進(jìn)而求出SKIPIF1<0,得到橢圓方程;(2)推理出直線SKIPIF1<0斜率不為0,設(shè)出直線SKIPIF1<0,聯(lián)立橢圓方程,求出兩根之和,兩根之積,表達(dá)出SKIPIF1<0的面積SKIPIF1<0,換元后結(jié)合基本不等式求出最大值及此時(shí)直線SKIPIF1<0的方程.【詳解】(1)由SKIPIF1<0為等邊三角形,SKIPIF1<0,SKIPIF1<0,故SKIPIF1<0,SKIPIF1<0,SKIPIF1<0的周長(zhǎng)為SKIPIF1<0,得SKIPIF1<0.SKIPIF1<0,SKIPIF1<0橢圓SKIPIF1<0的方程為SKIPIF1<0;(2)由(1)知SKIPIF1<0,且直線SKIPIF1<0斜率不為0.設(shè)直線SKIPIF1<0.由SKIPIF1<0消去SKIPIF1<0,得SKIPIF1<0,顯然SKIPIF1<0,SKIPIF1<0,由SKIPIF1<0面積SKIPIF1<0,而SKIPIF1<0,設(shè)SKIPIF1<0,則SKIPIF1<0.SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,SKIPIF1<0當(dāng)SKIPIF1<0時(shí),SKIPIF1<0.即當(dāng)SKIPIF1<0時(shí),SKIPIF1<0取得最大值3,此時(shí)直線SKIPIF1<0的方程為SKIPIF1<0.9.(2023·陜西渭南·統(tǒng)考一模)“工藝折紙”是一種把紙張折成各種不同形狀物品的藝術(shù)活動(dòng),在我國(guó)源遠(yuǎn)流長(zhǎng).某些折紙活動(dòng)蘊(yùn)含豐富的數(shù)學(xué)內(nèi)容,例如:用一張圓形紙片,按如下步驟折紙(如圖)步驟1:設(shè)圓心是,在圓內(nèi)異于圓心處取一點(diǎn),標(biāo)記為;步驟2:把紙片折疊,使圓周正好通過(guò)點(diǎn);步驟3:把紙片展開(kāi),并留下一道折痕;步驟4:不停重復(fù)步驟2和3,就能得到越來(lái)越多的折痕.已知這些折痕所圍成的圖形是一個(gè)橢圓.若取半徑為6的圓形紙片,設(shè)定點(diǎn)到圓心的距離為4,按上述方法折紙.(1)以點(diǎn)、所在的直線為軸,建立適當(dāng)?shù)淖鴺?biāo)系,求折痕圍成的橢圓的標(biāo)準(zhǔn)方程;(2)若過(guò)點(diǎn)且不與軸垂直的直線與橢圓交于,兩點(diǎn),在軸的正半軸上是否存在定點(diǎn),使得直線,斜率之積為定值?若存在,求出該定點(diǎn)和定值;若不存在,請(qǐng)說(shuō)明理由.【答案】(1)(2)存在點(diǎn),使得直線與斜率之積為定值.【分析】(1)根據(jù)橢圓的定義對(duì)照折紙的方法求出;(2)設(shè)直線l的方程,與橢圓方程聯(lián)立,再根據(jù)斜率的定義求解即可.【詳解】(1)如圖,以所在的直線為軸,的中點(diǎn)為原點(diǎn)建立平面直角坐標(biāo)系設(shè)為橢圓上一點(diǎn),由題意可知,,所以點(diǎn)軌跡是以,為焦點(diǎn),長(zhǎng)軸長(zhǎng)的橢圓,因?yàn)?,,所以,,則,所以橢圓的標(biāo)準(zhǔn)方程為;(2)由已知:直線過(guò),設(shè)的方程為,由題意m必定是存在的,聯(lián)立兩個(gè)方程得,消去得,得,設(shè),,則,(*),,將(*)代入上式,可得上式,要使為定值,則有,,又∵,∴,此時(shí),∴存在點(diǎn),使得直線與斜率之積為定值;綜上,橢圓的標(biāo)準(zhǔn)方程為,存在點(diǎn),使得直線與斜率之積為定值.10.(江西省上饒市六校2023屆高三第一次聯(lián)考數(shù)學(xué)(理)試題)已知點(diǎn)SKIPIF1<0在橢圓SKIPIF1<0上,且長(zhǎng)軸長(zhǎng)為4.(1)求橢圓C的方程:(2)過(guò)點(diǎn)SKIPIF1<0的直線SKIPIF1<0與橢圓C相交于SKIPIF1<0、SKIPIF1<0兩點(diǎn),點(diǎn)SKIPIF1<0關(guān)于SKIPIF1<0軸的對(duì)稱點(diǎn)為SKIPIF1<0,直線SKIPIF1<0與SKIPIF1<0軸相交于點(diǎn)SKIPIF1<0.求SKIPIF1<0的面積的取值范圍.【答案】(1)SKIPIF1<0(2)SKIPIF1<0【分析】(1)由長(zhǎng)軸長(zhǎng)為4得SKIPIF1<0,再將SKIPIF1<0代入解方程可得SKIPIF1<0;(2)設(shè)SKIPIF1<0,利用SKIPIF1<0兩點(diǎn)坐標(biāo)表示出直線SKIPIF1<0,解得SKIPIF1<0利用直線方程和韋達(dá)定理化簡(jiǎn)得SKIPIF1<0,又SKIPIF1<0,結(jié)合函數(shù)知識(shí)易得面積的取值范圍.【詳解】(1)因?yàn)殚L(zhǎng)軸長(zhǎng)為4,所以SKIPIF1<0,將SKIPIF1<0代入解方程得SKIPIF1<0,解得SKIPIF1<0,所以橢圓C的方程為SKIPIF1<0;(2)易知直線SKIPIF1<0斜率存在且不為0,設(shè)直線SKIPIF1<0方程為:SKIPIF1<0SKIPIF1<0則SKIPIF1<0,聯(lián)立SKIPIF1<0得:SKIPIF1<0SKIPIF1<0,SKIPIF1<0,SKIPIF1<0直線SKIPIF1<0的方程為:SKIPIF1<0,令SKIPIF1<0,得SKIPIF1<0即SKIPIF1<0,則SKIPIF1<0化簡(jiǎn)得SKIPIF1<0令SKIPIF1<0,易知SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,則SKIPIF1<0代回得SKIPIF1<0,所以SKIPIF1<0的面積的取值范圍為SKIPIF1<0.【沖刺提升】一、單選題1.(2022秋·四川成都·高三石室中學(xué)??茧A段練習(xí))已知拋物線SKIPIF1<0:SKIPIF1<0的焦點(diǎn)為SKIPIF1<0,圓SKIPIF1<0:SKIPIF1<0,過(guò)點(diǎn)SKIPIF1<0的直線SKIPIF1<0與拋物線SKIPIF1<0交于SKIPIF1<0,SKIPIF1<0兩點(diǎn),與圓SKIPIF1<0交于SKIPIF1<0,SKIPIF1<0兩點(diǎn),且點(diǎn)SKIPIF1<0,SKIPIF1<0在同一象限,則SKIPIF1<0的最小值為(
)A.8 B.12 C.16 D.20【答案】B【分析】確定拋物線焦點(diǎn)坐標(biāo)和圓的圓心以及半徑,設(shè)SKIPIF1<0,SKIPIF1<0,聯(lián)立SKIPIF1<0,求得SKIPIF1<0,利用拋物線的焦半徑公式結(jié)合基本不等式即可求得答案.【詳解】由已知SKIPIF1<0得SKIPIF1<0.顯然,直線SKIPIF1<0不與SKIPIF1<0軸垂直.圓SKIPIF1<0:SKIPIF1<0的圓心為SKIPIF1<0,半徑為3,設(shè)直線SKIPIF1<0:SKIPIF1<0.聯(lián)立SKIPIF1<0,得SKIPIF1<0,SKIPIF1<0.設(shè)SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0,得SKIPIF1<0,所以SKIPIF1<0,當(dāng)且僅當(dāng)SKIPIF1<0,SKIPIF1<0時(shí)等號(hào)成立,故SKIPIF1<0的最小值為12,故選:B二、多選題2.(2023·全國(guó)·高三專題練習(xí))已知橢圓SKIPIF1<0:SKIPIF1<0的左、右焦點(diǎn)為SKIPIF1<0,SKIPIF1<0,點(diǎn)SKIPIF1<0,SKIPIF1<0,SKIPIF1<0為橢圓SKIPIF1<0上一動(dòng)點(diǎn),過(guò)點(diǎn)SKIPIF1<0的直線SKIPIF1<0交橢圓于SKIPIF1<0,SKIPIF1<0兩點(diǎn),則下列說(shuō)法正確的有(
)A.若SKIPIF1<0的垂直平分線過(guò)點(diǎn)SKIPIF1<0,則SKIPIF1<0B.SKIPIF1<0的最小值為SKIPIF1<0C.若SKIPIF1<0,則SKIPIF1<0的面積的最大值為SKIPIF1<0D.若SKIPIF1<0的面積取最大值時(shí)的直線SKIPIF1<0不唯一,則SKIPIF1<0【答案】BCD【分析】若SKIPIF1<0的垂直平分線過(guò)點(diǎn)SKIPIF1<0,可得SKIPIF1<0,利用焦半徑公式可求得SKIPIF1<0點(diǎn)坐標(biāo),即可算出SKIPIF1<0,可判斷A錯(cuò)誤;利用橢圓定義和三角形兩邊之和與差的關(guān)系可知當(dāng)SKIPIF1<0四點(diǎn)共線時(shí)取到最小值為SKIPIF1<0,即B正確;設(shè)出直線方程與橢圓方程聯(lián)立,寫出SKIPIF1<0的面積表達(dá)式,再根據(jù)基本不等式即可得出面積最大值,可判斷C;若SKIPIF1<0的面積取最大值時(shí)的直線SKIPIF1<0不唯一,可知SKIPIF1<0面積取最大值時(shí)SKIPIF1<0的取值不唯一,利用基本不等式可得出SKIPIF1<0,進(jìn)而確定SKIPIF1<0的取值范圍即可判斷D.【詳解】由題意可知,SKIPIF1<0,橢圓離心率SKIPIF1<0對(duì)于A,若SKIPIF1<0的垂直平分線過(guò)點(diǎn)SKIPIF1<0,則SKIPIF1<0,設(shè)SKIPIF1<0,由焦半徑公式可知,SKIPIF1<0,可得SKIPIF1<0,SKIPIF1<0此時(shí)SKIPIF1<0,所以A錯(cuò)誤;對(duì)于B,由SKIPIF1<0,SKIPIF1<0,SKIPIF1<0可知,SKIPIF1<0三點(diǎn)共線,如下圖所示:利用橢圓定義可知,SKIPIF1<0,即SKIPIF1<0所以SKIPIF1<0SKIPIF1<0,當(dāng)且僅當(dāng)SKIPIF1<0四點(diǎn)共線時(shí)等號(hào)成立;所以SKIPIF1<0,即SKIPIF1<0的最小值為SKIPIF1<0,所以B正確;對(duì)于C,若SKIPIF1<0,則SKIPIF1<0即為右焦點(diǎn)SKIPIF1<0,設(shè)直線SKIPIF1<0的方程為SKIPIF1<0,SKIPIF1<0聯(lián)立SKIPIF1<0整理得SKIPIF1<0,所以SKIPIF1<0SKIPIF1<0的面積為SKIPIF1<0由于SKIPIF1<0,所以SKIPIF1<0,當(dāng)且僅當(dāng)SKIPIF1<0時(shí)等號(hào)成立,所以SKIPIF1<0的面積SKIPIF1<0,即SKIPIF1<0的面積的最大值為SKIPIF1<0,所以C正確;對(duì)于D,設(shè)直線SKIPIF1<0的方程為SKIPIF1<0聯(lián)立直線和橢圓方程整理得SKIPIF1<0,SKIPIF1<0,即SKIPIF1<0此時(shí)SKIPIF1<0的面積為SKIPIF1<0而SKIPIF1<0若SKIPIF1<0的面積取最大值時(shí)的直線SKIPIF1<0不唯一,所以SKIPIF1<0取最大值時(shí),滿足題意得SKIPIF1<0不止一個(gè),即SKIPIF1<0等號(hào)成立當(dāng)且僅當(dāng)SKIPIF1<0時(shí),即SKIPIF1<0成立而SKIPIF1<0,SKIPIF1<0時(shí),直線唯一不合題意,所以SKIPIF1<0,又SKIPIF1<0,所以SKIPIF1<0,即D正確.故選:BCD【點(diǎn)睛】方法點(diǎn)睛:解決圓錐曲線中三角形面積問(wèn)題時(shí),首先利用弦長(zhǎng)公式或分割三角形寫出面積表達(dá)式,再合理變形利用基本不等式或?qū)?shù)求得面積最值,利用基本不等式時(shí)要注意等號(hào)成立的條件,即可將問(wèn)題得到解決.三、填空題3.(2022·全國(guó)·高三專題練習(xí))已知點(diǎn)SKIPIF1<0為拋物線SKIPIF1<0的焦點(diǎn),過(guò)SKIPIF1<0作直線SKIPIF1<0與拋物線交于SKIPIF1<0兩點(diǎn),以SKIPIF1<0為切點(diǎn)作兩條切線交于點(diǎn)SKIPIF1<0,則SKIPIF1<0的面積的最小值為_(kāi)__________.【答案】4【分析】設(shè)直線SKIPIF1<0的方程為SKIPIF1<0,聯(lián)立直線SKIPIF1<0與拋物線方程,得到關(guān)于y的一元二次方程,利用根與系數(shù)的關(guān)系寫出SKIPIF1<0,SKIPIF1<0,再利用導(dǎo)數(shù)的幾何意義求出兩條切線的斜率和方程,聯(lián)立兩切線方程求出SKIPIF1<0,利用平面向量的數(shù)量積為0判定SKIPIF1<0,再利用三角形的面積公式進(jìn)行求解.【詳解】由題意,得SKIPIF1<0,設(shè)直線SKIPIF1<0的方程為SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,且SKIPIF1<0,聯(lián)立SKIPIF1<0,得SKIPIF1<0,則SKIPIF1<0,SKIPIF1<0,且SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),由SKIPIF1<0,得SKIPIF1<0,SKIPIF1<0,即在點(diǎn)SKIPIF1<0處的切線斜率為SKIPIF1<0,方程為SKIPIF1<0;當(dāng)SKIPIF1<0時(shí),由SKIPIF1<0,得SKIPIF1<0,SKIPIF1<0,即在點(diǎn)SKIPIF1<0處的切線斜率為SKIPIF1<0,方程為SKIPIF1<0;聯(lián)立SKIPIF1<0、SKIPIF1<0的方程,解得SKIPIF1<0,即SKIPIF1<0;因?yàn)镾KIPIF1<0,SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0,則SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0因?yàn)镾KIPIF1<0,SKIPIF1<0,SKIPIF1<0(當(dāng)且僅當(dāng)SKIPIF1<0時(shí)取等號(hào))所以SKIPIF1<0的面積的最小值為4.故答案為:4.4.(2023秋·山東德州·高三統(tǒng)考期末)如圖所示,已知SKIPIF1<0、SKIPIF1<0分別為雙曲線SKIPIF1<0的左、右焦點(diǎn),過(guò)SKIPIF1<0的直線與雙曲線的右支交于SKIPIF1<0、SKIPIF1<0兩點(diǎn),則SKIPIF1<0的取值范圍為_(kāi)_____;記SKIPIF1<0的內(nèi)切圓SKIPIF1<0的面積為SKIPIF1<0,SKIPIF1<0的內(nèi)切圓SKIPIF1<0的面積為SKIPIF1<0,則SKIPIF1<0的取值范圍是______.【答案】
SKIPIF1<0
SKIPIF1<0【分析】分析可知直線SKIPIF1<0與SKIPIF1<0軸不重合,設(shè)直線SKIPIF1<0的方程為SKIPIF1<0,將直線SKIPIF1<0的方程與雙曲線的方程聯(lián)立,利用韋達(dá)定理結(jié)合已知條件求出SKIPIF1<0的取值范圍,可求得SKIPIF1<0的取值范圍;設(shè)圓SKIPIF1<0切SKIPIF1<0、SKIPIF1<0、SKIPIF1<0分別于點(diǎn)SKIPIF1<0、SKIPIF1<0、SKIPIF1<0,分析可知直線SKIPIF1<0的傾斜角取值范圍為SKIPIF1<0,推導(dǎo)出圓SKIPIF1<0、圓SKIPIF1<0的半徑SKIPIF1<0、SKIPIF1<0滿足SKIPIF1<0,求得SKIPIF1<0,利用雙勾函數(shù)的單調(diào)性可求得SKIPIF1<0的取值范圍.【詳解】設(shè)直線SKIPIF1<0的傾斜角為SKIPIF1<0,在雙曲線SKIPIF1<0中,SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0,故點(diǎn)SKIPIF1<0,若直線SKIPIF1<0與SKIPIF1<0軸重合,則直線SKIPIF1<0與雙曲線交于該雙曲線的兩個(gè)實(shí)軸的端點(diǎn),不合乎題意,所以,直線SKIPIF1<0與SKIPIF1<0軸不重合,設(shè)直線SKIPIF1<0的方程為SKIPIF1<0,設(shè)點(diǎn)SKIPIF1<0、SKIPIF1<0,聯(lián)立SKIPIF1<0可得SKIPIF1<0,由題意可得SKIPIF1<0,解得SKIPIF1<0,由韋達(dá)定理可得SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,可得SKIPIF1<0,SKIPIF1<0,可得SKIPIF1<0,所以,SKIPIF1<0,且SKIPIF1<0當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,此時(shí)SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0軸,此時(shí)SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,此時(shí)SKIPIF1<0,綜上,SKIPIF1<0,不妨設(shè)點(diǎn)SKIPIF1<0在第一象限,則SKIPIF1<0;設(shè)圓SKIPIF1<0切SKIPIF1<0、SKIPIF1<0、SKIPIF1<0分別于點(diǎn)SKIPIF1<0、SKIPIF1<0、SKIPIF1<0,過(guò)SKIPIF1<0的直線與雙曲線的右支交于SKIPIF1<0、SKIPIF1<0兩點(diǎn),可知直線SKIPIF1<0的傾斜角取值范圍為SKIPIF1<0,由切線長(zhǎng)定理可得SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,所以,SKIPIF1<0SKIPIF1<0,則SKIPIF1<0,所以點(diǎn)SKIPIF1<0的橫坐標(biāo)為SKIPIF1<0.故點(diǎn)SKIPIF1<0的橫坐標(biāo)也為SKIPIF1<0,同理可知點(diǎn)SKIPIF1<0的橫坐標(biāo)為SKIPIF1<0,故SKIPIF1<0軸,故圓SKIPIF1<0和圓SKIPIF1<0均與SKIPIF1<0軸相切于SKIPIF1<0,圓SKIPIF1<0和圓SKIPIF1<0兩圓外切.在SKIPIF1<0中,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,所以,SKIPIF1<0,所以,SKIPIF1<0,則SKIPIF1<0,所以SKIPIF1<0,即SKIPIF1<0,則SKIPIF1<0,由直線SKIPIF1<0的傾斜角取值范圍為SKIPIF1<0,可知SKIPIF1<0的取值范圍為SKIPIF1<0,則SKIPIF1<0,故SKIPIF1<0,則SKIPIF1<0,其中SKIPIF1<0,令SKIPIF1<0,其中SKIPIF1<0,則SKIPIF1<0在SKIPIF1<0單調(diào)遞減,在SKIPIF1<0單調(diào)遞增.因?yàn)镾KIPIF1<0,SKIPIF1<0,則當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,故SKIPIF1<0.故答案為:SKIPIF1<0;SKIPIF1<0.5.(2022秋·湖南株洲·高三校聯(lián)考階段練習(xí))已知拋物線E:SKIPIF1<0的焦點(diǎn)為F,過(guò)點(diǎn)F的直線l與拋物線交于A,B兩點(diǎn),與準(zhǔn)線交于C點(diǎn),SKIPIF1<0為SKIPIF1<0的中點(diǎn),且SKIPIF1<0,則SKIPIF1<0_____________;設(shè)點(diǎn)SKIPIF1<0是拋物線SKIPIF1<0上的任意一點(diǎn),拋物線SKIPIF1<0的準(zhǔn)線與SKIPIF1<0軸交于SKIPIF1<0點(diǎn),在SKIPIF1<0中SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0的最大值為_(kāi)____________.【答案】
SKIPIF1<0##1.5
SKIPIF1<0【分析】(1)根據(jù)三角形中位線定理即可求解;(2)根據(jù)拋物線的定義SKIPIF1<0取最大值即SKIPIF1<0最小,此時(shí)直線SKIPIF1<0與拋物線SKIPIF1<0:SKIPIF1<0相切,利用導(dǎo)數(shù)即可求解.【詳解】過(guò)點(diǎn)SKIPIF1<0作準(zhǔn)線的垂線,垂足為SKIPIF1<0,因?yàn)镾KIPIF1<0為SKIPIF1<0的中點(diǎn),且SKIPIF1<0,則在SKIPIF1<0中,SKIPIF1<0所以SKIPIF1<0,在SKIPIF1<0中,SKIPIF1<0,即SKIPIF1<0,過(guò)點(diǎn)SKIPIF1<0作準(zhǔn)線的垂線,垂足為SKIPIF1<0,則可得SKIPIF1<0,若SKIPIF1<0取到最大值即SKIPIF1<0最小,此時(shí)直線SKIPIF1<0與拋物線SKIPIF1<0:SKIPIF1<0相切,,即SKIPIF1<0,則SKIPIF1<0,設(shè)SKIPIF1<0,則切線斜率SKIPIF1<0,切線方程為SKIPIF1<0SKIPIF1<0,切線過(guò)SKIPIF1<0,代入得SKIPIF1<0,解得SKIPIF1<0,即SKIPIF1<0,則SKIPIF1<0,SKIPIF1<0,即SKIPIF1<0,則SKIPIF1<0的最大值為SKIPIF1<0,所以SKIPIF1<0的最大值為SKIPIF1<0,故答案為:SKIPIF1<0,SKIPIF1<0.四、解答題4.(2023·貴州·校聯(lián)考一模)已知橢圓過(guò)點(diǎn),且離心率為.(1)求橢圓C的方程;(2)已知直線與橢圓交于不同的兩點(diǎn)P,Q,那么在x軸上是否存在點(diǎn)M,使且,若存在,求出該直線的方程;若不存在,請(qǐng)說(shuō)明理由.【答案】(1)(2)詳見(jiàn)解析【分析】(1)根據(jù)條件得到關(guān)于的方程組,即可求得橢圓方程;(2)首先直線與橢圓方程聯(lián)立,利用韋達(dá)定理表示線段中點(diǎn)坐標(biāo),再根據(jù),以及,轉(zhuǎn)化為坐標(biāo)表示,代入韋達(dá)定理后,即可求【詳解】(1)由條件可知,,解得:,,所以橢圓C的方程是;(2)假設(shè)在軸上存在點(diǎn),使且,聯(lián)立,設(shè),,方程整理為,,解得:或,,,則線段的中點(diǎn)的橫坐標(biāo)是,中點(diǎn)縱坐標(biāo),即中點(diǎn)坐標(biāo),,則,即,化簡(jiǎn)為,①又,則,,整理為,,化簡(jiǎn)為②由①得,即,代入②得,整理得③,又由①得,代入③得,即,整理得,即.當(dāng)時(shí),,當(dāng)時(shí),,滿足,所以存在定點(diǎn),此時(shí)直線方程是,當(dāng)定點(diǎn),此時(shí)直線方程是.5.(2023·福建·統(tǒng)考一模)已知橢圓的離心率為,其左焦點(diǎn)為.(1)求的方程;(2)如圖,過(guò)的上頂點(diǎn)作動(dòng)圓的切線分別交于兩點(diǎn),是否存在圓使得是以為斜邊的直角三角形?若存在,求出圓的半徑;若不存在,請(qǐng)說(shuō)明理由.【答案】(1)(2)不存在,理由見(jiàn)解析【分析】(1)根據(jù)待定系數(shù)法求橢圓標(biāo)準(zhǔn)方程即可;(2)假設(shè)存在圓滿足題意,當(dāng)圓過(guò)原點(diǎn)時(shí),直線與軸重合,直線的斜率為0,不合題意;不妨設(shè)為:,:,,,圓的半徑為,得圓心到直線的距離為,得,聯(lián)立直線與橢圓方程得,進(jìn)而得,由得,即可解決.【詳解】(1)由題意設(shè)焦距為,則,由離心率為,所以,則,的方程為.(2)不存在,證明如下:假設(shè)存在圓滿足題意,當(dāng)圓過(guò)原點(diǎn)時(shí),直線與軸重合,直線的斜率為0,不合題意.依題意不妨設(shè)為:,:,,,圓的半徑為,則圓心到直線的距離為,即是關(guān)于的方程的兩異根,此時(shí),再聯(lián)立直線與橢圓方程得,所以,即,得所以,同理由,得,由題意,,即,此時(shí),所以,因?yàn)?,所以方程無(wú)解,命題得證.6.(2023·全國(guó)·高三專題練習(xí))已知拋物線:的焦點(diǎn)為F,過(guò)點(diǎn)的直線與相交于A,B兩點(diǎn).當(dāng)直線經(jīng)過(guò)點(diǎn)時(shí),點(diǎn)A恰好為線段PF的中點(diǎn).(1)求的方程;(2)是否存在定點(diǎn)T,使得為常數(shù)?若存在,求出點(diǎn)T的坐標(biāo)及該常數(shù)﹔若不存在,說(shuō)明理由.【答案】(1);(2)存在,,.【分析】(1)根據(jù)中點(diǎn)坐標(biāo)公式求出點(diǎn)的坐標(biāo),代入拋物線方程即可得出的值;(2)假設(shè)存在,設(shè),.聯(lián)立直線與拋物線的方程,得到,根據(jù)韋達(dá)定理求出,.進(jìn)而整理得到,解,得出,即可得出定點(diǎn)坐標(biāo)以及常數(shù)的值.【詳解】(1)解:因?yàn)?,,且點(diǎn)A恰好為線段PF中點(diǎn),所以,又因?yàn)锳在C上,所以,即,解得,所以C的方程為.(2)解:存在定點(diǎn),使得.假設(shè)存在定點(diǎn)T,使得為常數(shù).設(shè),由題意可知直線斜率存在.設(shè)直線的斜率為,則的方程為,設(shè),.聯(lián)立直線的方程以及拋物線的方程,可得.,所以且.由韋達(dá)定理可得,.又,,,.所以.由可得,.所以存在定點(diǎn),使得為常數(shù),此時(shí).7.(2023秋·內(nèi)蒙古包頭·高三統(tǒng)考期末)已知點(diǎn)SKIPIF1<0,SKIPIF1<0,動(dòng)點(diǎn)SKIPIF1<0滿足直線SKIPIF1<0與SKIPIF1<0的斜率之積為SKIPIF1<0,記SKIPIF1<0的軌跡為曲線SKIPIF1<0.(1)求SKIPIF1<0的方程,并說(shuō)明SKIPIF1<0是什么曲線;(2)過(guò)坐標(biāo)原點(diǎn)的直線交C于A,B兩點(diǎn),點(diǎn)A在第一象限,SKIPIF1<0軸,垂足為SKIPIF1<0,連接SKIPIF1<0并延長(zhǎng)交SKIPIF1<0于點(diǎn)SKIPIF1<0.(i)證明:直線SKIPIF1<0與SKIPIF1<0的斜率之積為定值;(ii)求SKIPIF1<0面積的最大值.【答案】(1)SKIPIF1<0的方程為:SKIPIF1<0SKIPIF1<0,SKIPIF1<0是一個(gè)長(zhǎng)軸長(zhǎng)為6,短軸長(zhǎng)為SKIPIF1<0且SKIPIF1<0的橢圓(2)(i)證明見(jiàn)解析(ii)SKIPIF1<0【分析】(1)直接利用斜率公式即可求解;(2)(i)設(shè)SKIPIF1<0SKIPIF1<0,根據(jù)坐標(biāo)之間的聯(lián)系,設(shè)直線SKIPIF1<0的方程為SKIPIF1<0,與SKIPIF1<0聯(lián)立消SKIPIF1<0,運(yùn)用韋達(dá)定理求出SKIPIF1<0的坐標(biāo),再利用斜率公式求出SKIPIF1<0,SKIPIF1<0,然后代入SKIPIF1<0化簡(jiǎn)即可證明;(ii)將點(diǎn)SKIPIF1<0SKIPIF1<0代入SKIPIF1<0SKIPIF1<0,利用基本不等式即可求解.【詳解】(1)依題知,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0,又直線SKIPIF1<0與SKIPIF1<0的斜率之積為SKIPIF1<0,即SKIPIF1<0,整理得:SKIPIF1<0SKIPIF1<0,因此SKIPIF1<0是一個(gè)長(zhǎng)軸長(zhǎng)為6,短軸長(zhǎng)為SKIPIF1<0且SKIPIF1<0的橢圓.(2)(i)如圖所示:設(shè)SKIPIF1<0SKIPIF1<0,SKIPIF1<0,因?yàn)镾KIPIF1<0兩點(diǎn)關(guān)于原點(diǎn)中心對(duì)稱,所以SKIPIF1<0,因?yàn)镾KIPIF1<0軸,垂足為SKIPIF1<0,所以SKIPIF1<0,所以直線SKIPIF1<0的斜率SKIPIF1<0,設(shè)直線SKIPIF1<0的斜率為SKIPIF1<0,則直線SKIPIF1<0的方程為:SKIPIF1<0,由SKIPIF1<0消SKIPIF1<0整理得:SKIPIF1<0,因?yàn)辄c(diǎn)SKIPIF1<0,SKIPIF1<0是直線SKIPIF1<0與SKIPIF1<0的交點(diǎn),所以SKIPIF1<0,整理得:SKIPIF1<0,由韋達(dá)定理得:SKIPIF1<0,解得:SKIPIF1<0,代入SKIPIF1<0,解得:SKIPIF1<0,即SKIPIF1<0,所以直線SKIPIF1<0的斜率SKIPIF1<0所以SKIPIF1<0,所以直線SKIPIF1<0與SKIPIF1<0的斜率之積為定值,其值為:SKIPIF1<0.(ii)由(i)知,SKIPIF1<0因?yàn)镾KIPIF1<0SKIPIF1<0在SKIPIF1<0SKIPIF1<0上,所以SKIPIF1<0,整理得:SKIPIF1<0,當(dāng)且僅當(dāng)SKIPIF1<0時(shí),等號(hào)成立,所以SKIPIF1<0面積的最大值為:SKIPIF1<0.【點(diǎn)睛】(1)解答直線與橢圓的題目時(shí),時(shí)常把兩個(gè)曲線的方程聯(lián)立,消去x(或y)建立一元二次方程,然后借助根與系數(shù)的關(guān)系,并結(jié)合題設(shè)條件建立有關(guān)參變量的等量關(guān)系.(2)涉及到直線方程的設(shè)法時(shí),務(wù)必考慮全面,不要忽略直線斜率為0或不存在等特殊情形.(3)強(qiáng)化有關(guān)直線與橢圓聯(lián)立得出一元二次方程后的運(yùn)算能力,重視根與系數(shù)之間的關(guān)系、弦長(zhǎng)、斜率、三角形的面積等問(wèn)題.8.(2023秋·湖南長(zhǎng)沙·高三湖南師大附中??茧A段練習(xí))已知橢圓SKIPIF1<0的離心率為SKIPIF1<0,且點(diǎn)SKIPIF1<0在橢圓上.(1)求橢圓的方程;(2)過(guò)橢圓右焦點(diǎn)SKIPIF1<0作兩條互相垂直的弦AB與CD,求SKIPIF1<0的取值范圍.【答案】(1)SKIPIF1<0(2)SKIPIF1<0.【分析】(1)根據(jù)題意,由離心率可得SKIPIF1<0的關(guān)系,再將點(diǎn)的坐標(biāo)代入即可得到橢圓方程;(2)根據(jù)題意,先討論兩條弦中一條斜率為0時(shí),另一條弦的斜率不存在,再討論兩條弦斜率均存在且不為0,此時(shí)設(shè)直線SKIPIF1<0的方程為SKIPIF1<0,則直線SKIPIF1<0的方程為SKIPIF1<0,聯(lián)立橢圓與直線SKIPIF1<0方程,結(jié)合韋達(dá)定理與弦長(zhǎng)公式分別表示出弦長(zhǎng)SKIPIF1<0與弦長(zhǎng)SKIPIF1<0,即可得到結(jié)果.【詳解】(1)∵SKIPIF1<0,所以SKIPIF1<0.設(shè)橢圓方程為SKIPIF1<0,將SKIPIF1<0代入,得SKIPIF1<0.故橢圓方程為SKIPIF1<0.(2)①當(dāng)兩條弦中一條斜率為0時(shí),另一條弦的斜率不存在,易得其中一條弦為長(zhǎng)軸SKIPIF1<0,另一條弦長(zhǎng)為橢圓的通徑為SKIPIF1<0,即SKIPIF1<0;②當(dāng)兩條弦斜率均存在且不為0時(shí),設(shè)SKIPIF1<0,SKIPIF1<0,設(shè)直線SKIPIF1<0的方程為SKIPIF1<0,則直線SKIPIF1<0的方程為SKIPIF1<0,將直線SKIPIF1<0的方程代入橢圓方程中,并整理得:SKIPIF1<0,∴SKIPIF1<0,SKIPIF1<0,∴SKIPIF1<0,同理,SKIPIF1<0,∴SKIPIF1<0,令SKIPIF1<0,則SKIPIF1<0,∴SKIPIF1<0,∵SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0.綜合②可知,SKIPIF1<0的取值范圍為SKIPIF1<0.9.(2023·安徽淮南·統(tǒng)考一模)已知橢圓SKIPIF1<0的左焦點(diǎn)為F,C上任意一點(diǎn)M到F的距離最大值和最小值之積為3,離心率為SKIPIF1<0.(1)求C的方程;(2)若過(guò)點(diǎn)SKIPIF1<0的直線l交C于A,B兩點(diǎn),且點(diǎn)A關(guān)于x軸的對(duì)稱點(diǎn)落在直線SKIPIF1<0上,求n的值及SKIPIF1<0面積的最大值.【答案】(1)SKIPIF1<0;(2)SKIPIF1<0,SKIPIF1<0面積的最大值為SKIPIF1<0.【分析】(1)由已知SKIPIF1<0,根據(jù)SKIPIF1<0,可得SKIPIF1<0,SKIPIF1<0.根據(jù)已知得到SKIPIF1<0,SKIPIF1<0,根據(jù)離心率值即可求出SKIPIF1<0的值;(2)設(shè)SKIPIF1<0,SKIPIF1<0,由已知可得SKIPIF1<0,即SKIPIF1<0.聯(lián)立直線與橢圓方程,根據(jù)SKIPIF1<0,得到SKIPIF1<0.根據(jù)韋達(dá)定理求出SKIPIF1<0,SKIPIF1<0.根據(jù)坐標(biāo)表示出弦長(zhǎng)SKIPIF1<0以及點(diǎn)SKIPIF1<0到直線l的距離SKIPIF1<0,即可得出SKIPIF1<0.進(jìn)而根據(jù)基本不等式,結(jié)合SKIPIF1<0的范圍換元即可求出面積的最小值.【詳解】(1)解:由題意可得,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0SKIPIF1<0SKIPIF1<0.又因?yàn)镾KIPIF1<0,SKIPIF1<0,SKIPIF1<0,由已知可得SKIPIF1<0,即SKIPIF1<0,又橢圓C的離心率SKIPIF1<0,所以SKIPIF1<0,則SKIPIF1<0,解得SKIPIF1<0,所以SKIPIF1<0,所以橢圓C的方程為SKIPIF1<0.(2)解:設(shè)SKIPIF1<0,SKIPIF1<0,又SKIPIF1<0,因?yàn)镾KIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0,化簡(jiǎn)整理得SKIPIF1<0①.設(shè)直線SKIPIF1<0,聯(lián)立直線與橢圓方程SKIPIF1<0
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025下半年四川自貢市屬事業(yè)單位考試聘用人員高頻重點(diǎn)提升(共500題)附帶答案詳解
- 2025下半年北京市延慶縣事業(yè)單位招聘39人歷年高頻重點(diǎn)提升(共500題)附帶答案詳解
- 2025上海地鐵第一運(yùn)營(yíng)限公司多職能隊(duì)員(巡視)(儲(chǔ)備)招聘50人高頻重點(diǎn)提升(共500題)附帶答案詳解
- 2025上半年貴州六盤水市事業(yè)單位及國(guó)企業(yè)招聘應(yīng)征入伍大學(xué)畢業(yè)生【92】人高頻重點(diǎn)提升(共500題)附帶答案詳解
- 2025上半年四川省江油市事業(yè)單位招聘95人歷年高頻重點(diǎn)提升(共500題)附帶答案詳解
- 農(nóng)村建設(shè)誠(chéng)信承諾書(shū)模板
- 銀行網(wǎng)點(diǎn)智能系統(tǒng)布線合同
- 商場(chǎng)屋面瓦安裝合同
- 2024年租房合同終止協(xié)議3篇
- 2024年物業(yè)中介服務(wù)定金協(xié)議
- 湖北省武漢市洪山區(qū)2022-2023學(xué)年五年級(jí)上學(xué)期期末考試科學(xué)試題
- 以學(xué)增智-提升推進(jìn)高質(zhì)量發(fā)展的本領(lǐng)研討發(fā)言稿
- 2023年10月自考00055企業(yè)會(huì)計(jì)學(xué)真題及答案含評(píng)分標(biāo)準(zhǔn)
- 幼兒園人事工作總結(jié)
- 可修改版五年級(jí)數(shù)學(xué)期中考試答題卡模板
- 精裝修工程工作界面劃分
- 山東省青島市市北區(qū)2023-2024學(xué)年九年級(jí)上學(xué)期11月期中數(shù)學(xué)試題
- 【語(yǔ)文】上海市三年級(jí)上冊(cè)期末復(fù)習(xí)試題(含答案)
- 遙感技術(shù)基礎(chǔ)第二版課后答案
- 項(xiàng)目式高中化學(xué)教學(xué)《保護(hù)珊瑚礁的措施-沉淀溶解平衡》
- 犯罪現(xiàn)場(chǎng)勘察題庫(kù)(348道)
評(píng)論
0/150
提交評(píng)論