版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
2021-2022高考數(shù)學(xué)模擬試卷考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應(yīng)位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準(zhǔn)考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.已知平面向量,,滿足:,,則的最小值為()A.5 B.6 C.7 D.82.已知函數(shù)滿足當(dāng)時,,且當(dāng)時,;當(dāng)時,且).若函數(shù)的圖象上關(guān)于原點(diǎn)對稱的點(diǎn)恰好有3對,則的取值范圍是()A. B. C. D.3.一個超級斐波那契數(shù)列是一列具有以下性質(zhì)的正整數(shù):從第三項(xiàng)起,每一項(xiàng)都等于前面所有項(xiàng)之和(例如:1,3,4,8,16…).則首項(xiàng)為2,某一項(xiàng)為2020的超級斐波那契數(shù)列的個數(shù)為()A.3 B.4 C.5 D.64.已知集合,,則集合的真子集的個數(shù)是()A.8 B.7 C.4 D.35.已知角的頂點(diǎn)與坐標(biāo)原點(diǎn)重合,始邊與軸的非負(fù)半軸重合,若點(diǎn)在角的終邊上,則()A. B. C. D.6.已知函數(shù)的圖像向右平移個單位長度后,得到的圖像關(guān)于軸對稱,,當(dāng)取得最小值時,函數(shù)的解析式為()A. B.C. D.7.已知為等比數(shù)列,,,則()A.9 B.-9 C. D.8.在直角坐標(biāo)系中,已知A(1,0),B(4,0),若直線x+my﹣1=0上存在點(diǎn)P,使得|PA|=2|PB|,則正實(shí)數(shù)m的最小值是()A. B.3 C. D.9.若復(fù)數(shù)滿足,則(其中為虛數(shù)單位)的最大值為()A.1 B.2 C.3 D.410.已知整數(shù)滿足,記點(diǎn)的坐標(biāo)為,則點(diǎn)滿足的概率為()A. B. C. D.11.下列函數(shù)中既關(guān)于直線對稱,又在區(qū)間上為增函數(shù)的是()A.. B.C. D.12.已知等差數(shù)列的前項(xiàng)和為,且,則()A.45 B.42 C.25 D.36二、填空題:本題共4小題,每小題5分,共20分。13.(5分)已知為實(shí)數(shù),向量,,且,則____________.14.已知內(nèi)角的對邊分別為外接圓的面積為,則的面積為_________.15.如圖,兩個同心圓的半徑分別為和,為大圓的一條直徑,過點(diǎn)作小圓的切線交大圓于另一點(diǎn),切點(diǎn)為,點(diǎn)為劣弧上的任一點(diǎn)(不包括兩點(diǎn)),則的最大值是__________.16.如圖,某地一天從時的溫度變化曲線近似滿足函數(shù),則這段曲線的函數(shù)解析式為______________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)的內(nèi)角,,的對邊分別為,,,其面積記為,滿足.(1)求;(2)若,求的值.18.(12分)已知函數(shù),.(1)若對于任意實(shí)數(shù),恒成立,求實(shí)數(shù)的范圍;(2)當(dāng)時,是否存在實(shí)數(shù),使曲線:在點(diǎn)處的切線與軸垂直?若存在,求出的值;若不存在,說明理由.19.(12分)一種游戲的規(guī)則為拋擲一枚硬幣,每次正面向上得2分,反面向上得1分.(1)設(shè)拋擲4次的得分為,求變量的分布列和數(shù)學(xué)期望.(2)當(dāng)游戲得分為時,游戲停止,記得分的概率和為.①求;②當(dāng)時,記,證明:數(shù)列為常數(shù)列,數(shù)列為等比數(shù)列.20.(12分)如圖,在中,已知,,,為線段的中點(diǎn),是由繞直線旋轉(zhuǎn)而成,記二面角的大小為.(1)當(dāng)平面平面時,求的值;(2)當(dāng)時,求二面角的余弦值.21.(12分)某企業(yè)現(xiàn)有A.B兩套設(shè)備生產(chǎn)某種產(chǎn)品,現(xiàn)從A,B兩套設(shè)備生產(chǎn)的大量產(chǎn)品中各抽取了100件產(chǎn)品作為樣本,檢測某一項(xiàng)質(zhì)量指標(biāo)值,若該項(xiàng)質(zhì)量指標(biāo)值落在內(nèi)的產(chǎn)品視為合格品,否則為不合格品.圖1是從A設(shè)備抽取的樣本頻率分布直方圖,表1是從B設(shè)備抽取的樣本頻數(shù)分布表.圖1:A設(shè)備生產(chǎn)的樣本頻率分布直方圖表1:B設(shè)備生產(chǎn)的樣本頻數(shù)分布表質(zhì)量指標(biāo)值頻數(shù)2184814162(1)請估計(jì)A.B設(shè)備生產(chǎn)的產(chǎn)品質(zhì)量指標(biāo)的平均值;(2)企業(yè)將不合格品全部銷毀后,并對合格品進(jìn)行等級細(xì)分,質(zhì)量指標(biāo)值落在內(nèi)的定為一等品,每件利潤240元;質(zhì)量指標(biāo)值落在或內(nèi)的定為二等品,每件利潤180元;其它的合格品定為三等品,每件利潤120元.根據(jù)圖1、表1的數(shù)據(jù),用該組樣本中一等品、二等品、三等品各自在合格品中的頻率代替從所有產(chǎn)品中抽到一件相應(yīng)等級產(chǎn)品的概率.企業(yè)由于投入資金的限制,需要根據(jù)A,B兩套設(shè)備生產(chǎn)的同一種產(chǎn)品每件獲得利潤的期望值調(diào)整生產(chǎn)規(guī)模,請根據(jù)以上數(shù)據(jù),從經(jīng)濟(jì)效益的角度考慮企業(yè)應(yīng)該對哪一套設(shè)備加大生產(chǎn)規(guī)模?22.(10分)以直角坐標(biāo)系的原點(diǎn)為極點(diǎn),軸的非負(fù)半軸為極軸,且兩坐標(biāo)系取相同的長度單位.已知曲線的參數(shù)方程:(為參數(shù)),直線的極坐標(biāo)方程:(1)求曲線的極坐標(biāo)方程;(2)若直線與曲線交于、兩點(diǎn),求的最大值.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.B【解析】
建立平面直角坐標(biāo)系,將已知條件轉(zhuǎn)化為所設(shè)未知量的關(guān)系式,再將的最小值轉(zhuǎn)化為用該關(guān)系式表達(dá)的算式,利用基本不等式求得最小值.【詳解】建立平面直角坐標(biāo)系如下圖所示,設(shè),,且,由于,所以..所以,即..當(dāng)且僅當(dāng)時取得最小值,此時由得,當(dāng)時,有最小值為,即,,解得.所以當(dāng)且僅當(dāng)時有最小值為.故選:B【點(diǎn)睛】本小題主要考查向量的位置關(guān)系、向量的模,考查基本不等式的運(yùn)用,考查數(shù)形結(jié)合的數(shù)學(xué)思想方法,屬于難題.2.C【解析】
先作出函數(shù)在上的部分圖象,再作出關(guān)于原點(diǎn)對稱的圖象,分類利用圖像列出有3個交點(diǎn)時滿足的條件,解之即可.【詳解】先作出函數(shù)在上的部分圖象,再作出關(guān)于原點(diǎn)對稱的圖象,如圖所示,當(dāng)時,對稱后的圖象不可能與在的圖象有3個交點(diǎn);當(dāng)時,要使函數(shù)關(guān)于原點(diǎn)對稱后的圖象與所作的圖象有3個交點(diǎn),則,解得.故選:C.【點(diǎn)睛】本題考查利用函數(shù)圖象解決函數(shù)的交點(diǎn)個數(shù)問題,考查學(xué)生數(shù)形結(jié)合的思想、轉(zhuǎn)化與化歸的思想,是一道中檔題.3.A【解析】
根據(jù)定義,表示出數(shù)列的通項(xiàng)并等于2020.結(jié)合的正整數(shù)性質(zhì)即可確定解的個數(shù).【詳解】由題意可知首項(xiàng)為2,設(shè)第二項(xiàng)為,則第三項(xiàng)為,第四項(xiàng)為,第五項(xiàng)為第n項(xiàng)為且,則,因?yàn)?,?dāng)?shù)闹悼梢詾椋患从?個這種超級斐波那契數(shù)列,故選:A.【點(diǎn)睛】本題考查了數(shù)列新定義的應(yīng)用,注意自變量的取值范圍,對題意理解要準(zhǔn)確,屬于中檔題.4.D【解析】
轉(zhuǎn)化條件得,利用元素個數(shù)為n的集合真子集個數(shù)為個即可得解.【詳解】由題意得,,集合的真子集的個數(shù)為個.故選:D.【點(diǎn)睛】本題考查了集合的化簡和運(yùn)算,考查了集合真子集個數(shù)問題,屬于基礎(chǔ)題.5.D【解析】
由題知,又,代入計(jì)算可得.【詳解】由題知,又.故選:D【點(diǎn)睛】本題主要考查了三角函數(shù)的定義,誘導(dǎo)公式,二倍角公式的應(yīng)用求值.6.A【解析】
先求出平移后的函數(shù)解析式,結(jié)合圖像的對稱性和得到A和.【詳解】因?yàn)殛P(guān)于軸對稱,所以,所以,的最小值是.,則,所以.【點(diǎn)睛】本題主要考查三角函數(shù)的圖像變換及性質(zhì).平移圖像時需注意x的系數(shù)和平移量之間的關(guān)系.7.C【解析】
根據(jù)等比數(shù)列的下標(biāo)和性質(zhì)可求出,便可得出等比數(shù)列的公比,再根據(jù)等比數(shù)列的性質(zhì)即可求出.【詳解】∵,∴,又,可解得或設(shè)等比數(shù)列的公比為,則當(dāng)時,,∴;當(dāng)時,,∴.故選:C.【點(diǎn)睛】本題主要考查等比數(shù)列的性質(zhì)應(yīng)用,意在考查學(xué)生的數(shù)學(xué)運(yùn)算能力,屬于基礎(chǔ)題.8.D【解析】
設(shè)點(diǎn),由,得關(guān)于的方程.由題意,該方程有解,則,求出正實(shí)數(shù)m的取值范圍,即求正實(shí)數(shù)m的最小值.【詳解】由題意,設(shè)點(diǎn).,即,整理得,則,解得或..故選:.【點(diǎn)睛】本題考查直線與方程,考查平面內(nèi)兩點(diǎn)間距離公式,屬于中檔題.9.B【解析】
根據(jù)復(fù)數(shù)的幾何意義可知復(fù)數(shù)對應(yīng)的點(diǎn)在以原點(diǎn)為圓心,1為半徑的圓上,再根據(jù)復(fù)數(shù)的幾何意義即可確定,即可得的最大值.【詳解】由知,復(fù)數(shù)對應(yīng)的點(diǎn)在以原點(diǎn)為圓心,1為半徑的圓上,表示復(fù)數(shù)對應(yīng)的點(diǎn)與點(diǎn)間的距離,又復(fù)數(shù)對應(yīng)的點(diǎn)所在圓的圓心到的距離為1,所以.故選:B【點(diǎn)睛】本題考查了復(fù)數(shù)模的定義及其幾何意義應(yīng)用,屬于基礎(chǔ)題.10.D【解析】
列出所有圓內(nèi)的整數(shù)點(diǎn)共有37個,滿足條件的有7個,相除得到概率.【詳解】因?yàn)槭钦麛?shù),所以所有滿足條件的點(diǎn)是位于圓(含邊界)內(nèi)的整數(shù)點(diǎn),滿足條件的整數(shù)點(diǎn)有共37個,滿足的整數(shù)點(diǎn)有7個,則所求概率為.故選:.【點(diǎn)睛】本題考查了古典概率的計(jì)算,意在考查學(xué)生的應(yīng)用能力.11.C【解析】
根據(jù)函數(shù)的對稱性和單調(diào)性的特點(diǎn),利用排除法,即可得出答案.【詳解】A中,當(dāng)時,,所以不關(guān)于直線對稱,則錯誤;B中,,所以在區(qū)間上為減函數(shù),則錯誤;D中,,而,則,所以不關(guān)于直線對稱,則錯誤;故選:C.【點(diǎn)睛】本題考查函數(shù)基本性質(zhì),根據(jù)函數(shù)的解析式判斷函數(shù)的對稱性和單調(diào)性,屬于基礎(chǔ)題.12.D【解析】
由等差數(shù)列的性質(zhì)可知,進(jìn)而代入等差數(shù)列的前項(xiàng)和的公式即可.【詳解】由題,.故選:D【點(diǎn)睛】本題考查等差數(shù)列的性質(zhì),考查等差數(shù)列的前項(xiàng)和.二、填空題:本題共4小題,每小題5分,共20分。13.5【解析】
由,,且,得,解得,則,則.14.【解析】
由外接圓面積,求出外接圓半徑,然后由正弦定理可求得三角形的內(nèi)角,從而有,于是可得三角形邊長,可得面積.【詳解】設(shè)外接圓半徑為,則,由正弦定理,得,∴,,.故答案為:.【點(diǎn)睛】本題考查正弦定理,利用正弦定理求出三角形的內(nèi)角,然后可得邊長,從而得面積,掌握正弦定理是解題關(guān)鍵.15.【解析】
以為坐標(biāo)原點(diǎn),所在的直線為軸,的垂直平分線為軸,建立平面直角坐標(biāo)系,從而可得、,,,然后利用向量數(shù)量積的坐標(biāo)運(yùn)算可得,再根據(jù)輔助角公式以及三角函數(shù)的性質(zhì)即可求解.【詳解】以為坐標(biāo)原點(diǎn),所在的直線為軸,的垂直平分線為軸,建立平面直角坐標(biāo)系,則、,由,且,所以,所以,即又平分,所以,則,設(shè),則,,所以,所以,,所以的最大值是.故答案為:【點(diǎn)睛】本題考查了向量數(shù)量積的坐標(biāo)運(yùn)算、利用向量解決幾何問題,同時考查了輔助角公式以及三角函數(shù)的性質(zhì),屬于中檔題.16.,【解析】
根據(jù)圖象得出該函數(shù)的最大值和最小值,可得,,結(jié)合圖象求得該函數(shù)的最小正周期,可得出,再將點(diǎn)代入函數(shù)解析式,求出的值,即可求得該函數(shù)的解析式.【詳解】由圖象可知,,,,,從題圖中可以看出,從時是函數(shù)的半個周期,則,.又,,得,取,所以,.故答案為:,.【點(diǎn)睛】本題考查由圖象求函數(shù)解析式,考查計(jì)算能力,屬于中等題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(1);(2)【解析】
(1)根據(jù)三角形面積公式及平面向量數(shù)量積定義代入公式,即可求得,進(jìn)而求得的值;(2)根據(jù)正弦定理將邊化為角,結(jié)合(1)中的值,即可將表達(dá)式化為的三角函數(shù)式;結(jié)合正弦和角公式與輔助角公式化簡,即可求得和,進(jìn)而由正弦定理確定,代入整式即可求解.【詳解】(1)因?yàn)?,所以由三角形面積公式及平面向量數(shù)量積運(yùn)算可得,所以.因?yàn)?,所?(2)因?yàn)?,所以由正弦定理代入化簡可得,由?),代入可得,展開化簡可得,根據(jù)輔助角公式化簡可得.因?yàn)?,所以,所以,所以為等腰三角形,且,所?【點(diǎn)睛】本題考查了正弦定理在解三角形中的應(yīng)用,三角形面積公式的應(yīng)用,平面向量數(shù)量積的運(yùn)算,正弦和角公式及輔助角公式的簡單應(yīng)用,屬于基礎(chǔ)題.18.(1);(2)不存在實(shí)數(shù),使曲線在點(diǎn)處的切線與軸垂直.【解析】
(1)分類時,恒成立,時,分離參數(shù)為,引入新函數(shù),利用導(dǎo)數(shù)求得函數(shù)最值即可;(2),導(dǎo)出導(dǎo)函數(shù),問題轉(zhuǎn)化為在上有解.再用導(dǎo)數(shù)研究的性質(zhì)可得.【詳解】解:(1)因?yàn)楫?dāng)時,恒成立,所以,若,為任意實(shí)數(shù),恒成立.若,恒成立,即當(dāng)時,,設(shè),,當(dāng)時,,則在上單調(diào)遞增,當(dāng)時,,則在上單調(diào)遞減,所以當(dāng)時,取得最大值.,所以,要使時,恒成立,的取值范圍為.(2)由題意,曲線為:.令,所以,設(shè),則,當(dāng)時,,故在上為增函數(shù),因此在區(qū)間上的最小值,所以,當(dāng)時,,,所以,曲線在點(diǎn)處的切線與軸垂直等價于方程在上有實(shí)數(shù)解.而,即方程無實(shí)數(shù)解.故不存在實(shí)數(shù),使曲線在點(diǎn)處的切線與軸垂直.【點(diǎn)睛】本題考查不等式恒成立,考查用導(dǎo)數(shù)的幾何意義,由導(dǎo)數(shù)幾何把問題進(jìn)行轉(zhuǎn)化是解題關(guān)鍵.本題屬于困難題.19.(1)分布列見解析,數(shù)學(xué)期望為6;(2)①;②證明見解析【解析】
(1)變量的所有可能取值為4,5,6,7,8,分別求出對應(yīng)的概率,進(jìn)而可求出變量的分布列和數(shù)學(xué)期望;(2)①得2分只需要拋擲一次正面向上或兩次反面向上,分別求出兩種情況的概率,進(jìn)而可求得;②得分分兩種情況,第一種為得分后拋擲一次正面向上,第二種為得分后拋擲一次反面向上,可知當(dāng)且時,,結(jié)合,可推出,從而可證明數(shù)列為常數(shù)列;結(jié)合,可推出,進(jìn)而可證明數(shù)列為等比數(shù)列.【詳解】(1)變量的所有可能取值為4,5,6,7,8.每次拋擲一次硬幣,正面向上的概率為,反面向上的概率也為,則,.所以變量的分布列為:45678故變量的數(shù)學(xué)期望為.(2)①得2分只需要拋擲一次正面向上或兩次反面向上,概率的和為.②得分分兩種情況,第一種為得分后拋擲一次正面向上,第二種為得分后拋擲一次反面向上,故且時,有,則時,,所以,故數(shù)列為常數(shù)列;又,,所以數(shù)列為等比數(shù)列.【點(diǎn)睛】本題考查離散型隨機(jī)變量的分布列及數(shù)學(xué)期望,考查常數(shù)列及等比數(shù)列的證明,考查學(xué)生的計(jì)算求解能力與推理論證能力,屬于中檔題.20.(1);(2).【解析】
(1)平面平面,建立坐標(biāo)系,根據(jù)法向量互相垂直求得;(2)求兩個平面的法向量的夾角.【詳解】(1)如圖,以為原點(diǎn),在平面內(nèi)垂直于的直線為軸所在的直線分別為軸,軸,建立空間直角坐標(biāo)系,則,設(shè)為平面的一個法向量,由得,取,則因?yàn)槠矫娴囊粋€法向量為由平面平面,得所以即.(2)設(shè)二面角的大小為,當(dāng)平面的一個法向量為,綜上,二面角的余弦值為.【點(diǎn)睛】本題考查用空間向量求平面間的夾角,平面與平面垂直的判定,二面角的平面角及求法,難度一般.21.(1)30.2,29;(2)B設(shè)備【解
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 八年級《短文兩篇》課件
- 文化創(chuàng)意產(chǎn)業(yè)扶貧-洞察分析
- 虛擬現(xiàn)實(shí)康復(fù)訓(xùn)練-第2篇-洞察分析
- 微整形手術(shù)風(fēng)險(xiǎn)與倫理探討-洞察分析
- 勤儉節(jié)約好少年事跡(6篇)
- 冬季雨雪的應(yīng)急預(yù)案(5篇)
- 《差異量數(shù)》課件
- 企業(yè)實(shí)驗(yàn)室內(nèi)訓(xùn)師的安全管理職責(zé)
- 幼兒教育行業(yè)親子活動分享
- 船舶行業(yè)會計(jì)工作總結(jié)
- 五年級數(shù)學(xué)(小數(shù)乘除法)計(jì)算題專項(xiàng)練習(xí)及答案
- 審計(jì)工作述職報(bào)告
- 《機(jī)電概念設(shè)計(jì)基礎(chǔ)》課件-運(yùn)行時行為
- 2024-2030年中國奶粉行業(yè)營銷策略及未來5發(fā)展趨勢報(bào)告
- 職業(yè)生涯規(guī)劃-體驗(yàn)式學(xué)習(xí)知到智慧樹章節(jié)測試答案2024年秋華僑大學(xué)
- 2024年度?;钒踩芾韱T聘用合同2篇
- 2024年社區(qū)工作者考試試題庫
- 交響音樂賞析智慧樹知到期末考試答案章節(jié)答案2024年西安交通大學(xué)
- 100道遞等式計(jì)算(能巧算得要巧算)
- 【2019年整理】園林景觀設(shè)計(jì)費(fèi)取費(fèi)標(biāo)準(zhǔn)
- 完整word版,ETS5使用教程
評論
0/150
提交評論