版權(quán)說(shuō)明:本文檔由用戶(hù)提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
第07講拋物線(精講)目錄第一部分:知識(shí)點(diǎn)精準(zhǔn)記憶第二部分:課前自我評(píng)估測(cè)試第三部分:典型例題剖析題型一:拋物線的定義及其應(yīng)用題型二:拋物線的標(biāo)準(zhǔn)方程題型三:拋物線的簡(jiǎn)單幾何性質(zhì)題型四:與拋物線有關(guān)的最值問(wèn)題角度1:利用拋物線定義求最值角度2:利用函數(shù)思想求最值第四部分:高考真題感悟第一部分:知識(shí)點(diǎn)精準(zhǔn)記憶第一部分:知識(shí)點(diǎn)精準(zhǔn)記憶知識(shí)點(diǎn)一:拋物線的定義1、拋物線的定義:平面內(nèi)與一個(gè)定點(diǎn)SKIPIF1<0和一條定直線SKIPIF1<0(其中定點(diǎn)SKIPIF1<0不在定直線SKIPIF1<0上)的距離相等的點(diǎn)的軌跡叫做拋物線,定點(diǎn)SKIPIF1<0叫做拋物線的焦點(diǎn),定直線SKIPIF1<0叫做拋物線的準(zhǔn)線.2、拋物線的數(shù)學(xué)表達(dá)式:SKIPIF1<0(SKIPIF1<0為點(diǎn)SKIPIF1<0到準(zhǔn)線SKIPIF1<0的距離).知識(shí)點(diǎn)二:拋物線的標(biāo)準(zhǔn)方程和幾何性質(zhì)標(biāo)準(zhǔn)方程SKIPIF1<0(SKIPIF1<0)SKIPIF1<0(SKIPIF1<0)SKIPIF1<0(SKIPIF1<0)SKIPIF1<0(SKIPIF1<0)圖形范圍SKIPIF1<0,SKIPIF1<0SKIPIF1<0,SKIPIF1<0SKIPIF1<0,SKIPIF1<0SKIPIF1<0,SKIPIF1<0對(duì)稱(chēng)軸SKIPIF1<0軸SKIPIF1<0軸SKIPIF1<0軸SKIPIF1<0軸焦點(diǎn)坐標(biāo)SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0準(zhǔn)線方程SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0頂點(diǎn)坐標(biāo)SKIPIF1<0離心率SKIPIF1<0通徑長(zhǎng)SKIPIF1<0知識(shí)點(diǎn)三:拋物線的焦半徑公式如下:(SKIPIF1<0為焦準(zhǔn)距)(1)焦點(diǎn)SKIPIF1<0在SKIPIF1<0軸正半軸,拋物線上任意一點(diǎn)SKIPIF1<0,則SKIPIF1<0;(2)焦點(diǎn)SKIPIF1<0在SKIPIF1<0軸負(fù)半軸,拋物線上任意一點(diǎn)SKIPIF1<0,則SKIPIF1<0;(3)焦點(diǎn)SKIPIF1<0在SKIPIF1<0軸正半軸,拋物線上任意一點(diǎn)SKIPIF1<0,則SKIPIF1<0;(4)焦點(diǎn)SKIPIF1<0在SKIPIF1<0軸負(fù)半軸,拋物線上任意一點(diǎn)SKIPIF1<0,則SKIPIF1<0.第二部分:課前自我評(píng)估測(cè)試第二部分:課前自我評(píng)估測(cè)試1.(2022·湖南衡陽(yáng)·高二期末)拋物線SKIPIF1<0的焦點(diǎn)到其準(zhǔn)線的距離為(
)A.SKIPIF1<0 B.SKIPIF1<0 C.2 D.4【答案】C解:拋物線SKIPIF1<0,即SKIPIF1<0,則SKIPIF1<0,所以SKIPIF1<0,所以拋物線的焦點(diǎn)到其準(zhǔn)線的距離為SKIPIF1<0.故選:C2.(2022·北京平谷·高二期末)拋物線SKIPIF1<0的焦點(diǎn)到其準(zhǔn)線的距離是(
)A.1 B.2 C.3 D.4【答案】A解:拋物線SKIPIF1<0的焦點(diǎn)為SKIPIF1<0,準(zhǔn)線方程為SKIPIF1<0,所以焦點(diǎn)到準(zhǔn)線的距離SKIPIF1<0;故選:A3.(2022·北京·清華附中高二階段練習(xí))已知拋物線SKIPIF1<0:SKIPIF1<0的焦點(diǎn)為SKIPIF1<0,點(diǎn)SKIPIF1<0在拋物線上,SKIPIF1<0,則點(diǎn)SKIPIF1<0的橫坐標(biāo)為(
)A.6 B.5 C.4 D.2【答案】C解:設(shè)點(diǎn)SKIPIF1<0的橫坐標(biāo)為SKIPIF1<0,拋物線SKIPIF1<0的準(zhǔn)線方程為SKIPIF1<0,SKIPIF1<0點(diǎn)SKIPIF1<0在拋物線上,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0.故選:C.4.(2022·四川省資中縣球溪高級(jí)中學(xué)高二階段練習(xí)(文))拋物線SKIPIF1<0的準(zhǔn)線方程是SKIPIF1<0,則實(shí)數(shù)a的值(
)A.SKIPIF1<0 B.SKIPIF1<0 C.8 D.-8【答案】A由題意得:SKIPIF1<0,解得:SKIPIF1<0.故選:A5.(2022·湖北·模擬預(yù)測(cè))已知拋物線SKIPIF1<0,過(guò)其焦點(diǎn)F的直線l與其交與A、B兩點(diǎn),SKIPIF1<0,其準(zhǔn)線方程為_(kāi)__________.【答案】SKIPIF1<0設(shè)線段AB中點(diǎn)為D,則F為線段BD中點(diǎn),過(guò)A、B、D、F分別向拋物線準(zhǔn)線作垂線,垂足分別為SKIPIF1<0、SKIPIF1<0、SKIPIF1<0、SKIPIF1<0,SKIPIF1<0,SKIPIF1<0由梯形中位線得SKIPIF1<0,SKIPIF1<0,∴準(zhǔn)線方程為SKIPIF1<0故答案為:SKIPIF1<0.第三部分:典型例題剖析第三部分:典型例題剖析題型一:拋物線的定義及其應(yīng)用典型例題例題1.(2022·上海普陀·二模)已知點(diǎn)SKIPIF1<0,直線SKIPIF1<0,若動(dòng)點(diǎn)SKIPIF1<0到SKIPIF1<0的距離等于SKIPIF1<0,則點(diǎn)SKIPIF1<0的軌跡是(
)A.橢圓 B.雙曲線C.拋物線 D.直線【答案】C由拋物線的定義(平面內(nèi),到定點(diǎn)與定直線的距離相等的點(diǎn)的軌跡叫做拋物線)可知,點(diǎn)SKIPIF1<0的軌跡是拋物線.故選:C例題2.(2022·福建福州·高二期中)在平面直角坐標(biāo)系SKIPIF1<0中,動(dòng)點(diǎn)SKIPIF1<0到直線SKIPIF1<0的距離比它到定點(diǎn)SKIPIF1<0的距離小1,則SKIPIF1<0的軌跡方程為(
)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0【答案】D由題意知?jiǎng)狱c(diǎn)SKIPIF1<0到直線SKIPIF1<0的距離與定點(diǎn)SKIPIF1<0的距離相等,由拋物線的定義知,P的軌跡是以SKIPIF1<0為焦點(diǎn),SKIPIF1<0為準(zhǔn)線的拋物線,所以SKIPIF1<0,軌跡方程為SKIPIF1<0,故選:D例題3.(2022·全國(guó)·高三專(zhuān)題練習(xí))動(dòng)點(diǎn)SKIPIF1<0到y(tǒng)軸的距離比它到定點(diǎn)SKIPIF1<0的距離小2,求動(dòng)點(diǎn)SKIPIF1<0的軌跡方程.【答案】SKIPIF1<0或SKIPIF1<0.解:∵動(dòng)點(diǎn)M到y(tǒng)軸的距離比它到定點(diǎn)SKIPIF1<0的距離小2,∴動(dòng)點(diǎn)M到定點(diǎn)SKIPIF1<0的距離與它到定直線SKIPIF1<0的距離相等.∴動(dòng)點(diǎn)M到軌跡是以SKIPIF1<0為焦點(diǎn),SKIPIF1<0為準(zhǔn)線的拋物線,且SKIPIF1<0.∴拋物線的方程為SKIPIF1<0,又∵x軸上點(diǎn)SKIPIF1<0左側(cè)的點(diǎn)到y(tǒng)軸的距離比它到SKIPIF1<0點(diǎn)的距離小2,∴M點(diǎn)的軌跡方程為SKIPIF1<0②.綜上,得動(dòng)點(diǎn)M的軌跡方程為SKIPIF1<0或SKIPIF1<0.同類(lèi)題型歸類(lèi)練1.(2022·山東·青島二中高二階段練習(xí))已知?jiǎng)訄AM與直線y=2相切,且與定圓SKIPIF1<0外切,則動(dòng)圓圓心M的軌跡方程為(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】A設(shè)動(dòng)圓圓心為M(x,y),半徑為r,由題意可得M到C(0,-3)的距離與到直線y=3的距離相等,由拋物線的定義可知,動(dòng)圓圓心的軌跡是以C(0,-3)為焦點(diǎn),以y=3為準(zhǔn)線的一條拋物線,所以SKIPIF1<0,其方程為SKIPIF1<0,故選:A2.(2022·江蘇·高二)與點(diǎn)SKIPIF1<0和直線SKIPIF1<0的距離相等的點(diǎn)的軌跡方程是______.【答案】SKIPIF1<0解:由拋物線的定義可得平面內(nèi)與點(diǎn)SKIPIF1<0和直線SKIPIF1<0的距離相等的點(diǎn)的軌跡為拋物線,且SKIPIF1<0為焦點(diǎn),直線SKIPIF1<0為準(zhǔn)線,設(shè)拋物線的方程為SKIPIF1<0,可知SKIPIF1<0,解得SKIPIF1<0,所以該拋物線方程是SKIPIF1<0,故答案為:SKIPIF1<03.(2022·全國(guó)·高三專(zhuān)題練習(xí))已知?jiǎng)狱c(diǎn)SKIPIF1<0的坐標(biāo)滿足SKIPIF1<0,則動(dòng)點(diǎn)SKIPIF1<0的軌跡方程為_(kāi)____________.【答案】SKIPIF1<0設(shè)SKIPIF1<0直線SKIPIF1<0SKIPIF1<0,則動(dòng)點(diǎn)SKIPIF1<0到點(diǎn)SKIPIF1<0的距離為SKIPIF1<0,動(dòng)點(diǎn)SKIPIF1<0到直線SKIPIF1<0SKIPIF1<0的距離為SKIPIF1<0,又因?yàn)镾KIPIF1<0SKIPIF1<0,所以動(dòng)點(diǎn)M的軌跡是以SKIPIF1<0為焦點(diǎn),SKIPIF1<0為準(zhǔn)線的拋物線,其軌跡方程為SKIPIF1<0.故答案為:SKIPIF1<0題型二:拋物線的標(biāo)準(zhǔn)方程典型例題例題1.(2022·云南曲靖·高二期末)過(guò)拋物線SKIPIF1<0的焦點(diǎn)SKIPIF1<0的直線交拋物線于點(diǎn)SKIPIF1<0,SKIPIF1<0,交其準(zhǔn)線于點(diǎn)SKIPIF1<0,若SKIPIF1<0,則此拋物線方程為_(kāi)_________.【答案】SKIPIF1<0如圖,作SKIPIF1<0準(zhǔn)線于SKIPIF1<0,SKIPIF1<0準(zhǔn)線于SKIPIF1<0,設(shè)SKIPIF1<0,由拋物線定義得SKIPIF1<0,SKIPIF1<0,故SKIPIF1<0,在直角三角形SKIPIF1<0中,因?yàn)镾KIPIF1<0,SKIPIF1<0,所以SKIPIF1<0,從而得SKIPIF1<0,設(shè)準(zhǔn)線與x軸交于SKIPIF1<0,則SKIPIF1<0,所以SKIPIF1<0,因此拋物線方程為SKIPIF1<0.故答案為:SKIPIF1<0.例題2.(2022·全國(guó)·高二課時(shí)練習(xí))求適合下列條件的拋物線的方程.(1)焦點(diǎn)為SKIPIF1<0,準(zhǔn)線方程為SKIPIF1<0;(2)頂點(diǎn)在原點(diǎn),準(zhǔn)線方程為SKIPIF1<0;(3)頂點(diǎn)在原點(diǎn),以SKIPIF1<0軸為對(duì)稱(chēng)軸,過(guò)點(diǎn)SKIPIF1<0.【答案】(1)SKIPIF1<0(2)SKIPIF1<0(3)SKIPIF1<0(1)解:根據(jù)題意,可設(shè)所求拋物線的標(biāo)準(zhǔn)方程為SKIPIF1<0,則SKIPIF1<0,可得SKIPIF1<0,故所求拋物線的標(biāo)準(zhǔn)方程為SKIPIF1<0.(2)解:根據(jù)題意,可設(shè)所求拋物線的標(biāo)準(zhǔn)方程為SKIPIF1<0,則SKIPIF1<0,可得SKIPIF1<0,故所求拋物線的標(biāo)準(zhǔn)方程為SKIPIF1<0.(3)解:根據(jù)題意,設(shè)所求拋物線的標(biāo)準(zhǔn)方程為SKIPIF1<0,則SKIPIF1<0,得SKIPIF1<0,故所求拋物線的標(biāo)準(zhǔn)方程為SKIPIF1<0.同類(lèi)題型歸類(lèi)練1.(2022·全國(guó)·高二課時(shí)練習(xí))已知點(diǎn)SKIPIF1<0到點(diǎn)SKIPIF1<0的距離比點(diǎn)SKIPIF1<0到直線SKIPIF1<0的距離小SKIPIF1<0,求點(diǎn)SKIPIF1<0的軌跡方程.【答案】SKIPIF1<0解:由題意可知,點(diǎn)SKIPIF1<0到點(diǎn)SKIPIF1<0的距離和點(diǎn)SKIPIF1<0到直線SKIPIF1<0的距離相等,故點(diǎn)SKIPIF1<0的軌跡是以點(diǎn)SKIPIF1<0為焦點(diǎn),以直線SKIPIF1<0為準(zhǔn)線的拋物線,設(shè)點(diǎn)SKIPIF1<0的軌跡方程為SKIPIF1<0,則SKIPIF1<0,解得SKIPIF1<0,故點(diǎn)SKIPIF1<0的軌跡方程為SKIPIF1<0.2.(2022·全國(guó)·高二課時(shí)練習(xí))根據(jù)下列條件,求拋物線的標(biāo)準(zhǔn)方程、頂點(diǎn)坐標(biāo)和焦點(diǎn)坐標(biāo).(1)準(zhǔn)線方程為SKIPIF1<0;(2)準(zhǔn)線方程為SKIPIF1<0;(3)準(zhǔn)線方程為SKIPIF1<0.【答案】(1)拋物線方程為SKIPIF1<0,頂點(diǎn)坐標(biāo)為SKIPIF1<0,焦點(diǎn)坐標(biāo)為SKIPIF1<0(2)拋物線方程為SKIPIF1<0,頂點(diǎn)坐標(biāo)為SKIPIF1<0,焦點(diǎn)坐標(biāo)為SKIPIF1<0(3)拋物線方程為SKIPIF1<0,頂點(diǎn)坐標(biāo)為SKIPIF1<0,焦點(diǎn)坐標(biāo)為SKIPIF1<0(1)由題意設(shè)拋物線的方程為SKIPIF1<0,因?yàn)闇?zhǔn)線方程為SKIPIF1<0,所以SKIPIF1<0,得SKIPIF1<0,所以拋物線方程為SKIPIF1<0,頂點(diǎn)坐標(biāo)為SKIPIF1<0,焦點(diǎn)坐標(biāo)為SKIPIF1<0.(2)由題意設(shè)拋物線方程為SKIPIF1<0,因?yàn)闇?zhǔn)線方程為SKIPIF1<0,所以SKIPIF1<0,得SKIPIF1<0,所以拋物線方程為SKIPIF1<0,頂點(diǎn)坐標(biāo)為SKIPIF1<0,焦點(diǎn)坐標(biāo)為SKIPIF1<0.(3)由題意設(shè)拋物線方程為SKIPIF1<0,因?yàn)闇?zhǔn)線方程為SKIPIF1<0,所以SKIPIF1<0,得SKIPIF1<0,所以拋物線方程為SKIPIF1<0,頂點(diǎn)坐標(biāo)為SKIPIF1<0,焦點(diǎn)坐標(biāo)為SKIPIF1<0.題型三:拋物線的簡(jiǎn)單幾何性質(zhì)典型例題例題1.(2022·河南·駐馬店市基礎(chǔ)教學(xué)研究室高二期末(理))已知拋物線SKIPIF1<0:SKIPIF1<0,則過(guò)拋物線SKIPIF1<0的焦點(diǎn),弦長(zhǎng)為整數(shù)且不超過(guò)2022的直線的條數(shù)是(
)A.4037 B.4044 C.2019 D.2022【答案】A∵拋物線C:SKIPIF1<0,即SKIPIF1<0,由拋物線的性質(zhì)可得,過(guò)拋物線焦點(diǎn)中,長(zhǎng)度最短的為垂直于y軸的那條弦,則過(guò)拋物線C的焦點(diǎn),長(zhǎng)度最短的弦的長(zhǎng)為SKIPIF1<0,由拋物線的對(duì)稱(chēng)性可得,弦長(zhǎng)在5到2022之間的有共有SKIPIF1<0條,故弦長(zhǎng)為整數(shù)且不超過(guò)2022的直線的條數(shù)是SKIPIF1<0.故選:A.例題2.(多選)(2022·湖南永州·高二期末)已知拋物線SKIPIF1<0的焦點(diǎn)SKIPIF1<0,點(diǎn)SKIPIF1<0為SKIPIF1<0上任意一點(diǎn),若點(diǎn)SKIPIF1<0,下列結(jié)論正確的是(
)A.SKIPIF1<0的最小值為2B.拋物線SKIPIF1<0關(guān)于SKIPIF1<0軸對(duì)稱(chēng)C.過(guò)點(diǎn)SKIPIF1<0與拋物線SKIPIF1<0有一個(gè)公共點(diǎn)的直線有且只有一條D.點(diǎn)SKIPIF1<0到點(diǎn)SKIPIF1<0的距離與到焦點(diǎn)SKIPIF1<0距離之和的最小值為4【答案】CD設(shè)SKIPIF1<0,則SKIPIF1<0,SKIPIF1<0,又拋物線的焦點(diǎn)為SKIPIF1<0,所以SKIPIF1<0,SKIPIF1<0時(shí),等號(hào)成立.所以SKIPIF1<0的最小值是1,A錯(cuò);拋物線的焦點(diǎn)在SKIPIF1<0軸上,拋物線關(guān)于SKIPIF1<0軸對(duì)稱(chēng),B錯(cuò);易知點(diǎn)SKIPIF1<0在拋物線的內(nèi)部(含有焦點(diǎn)的部分),因此過(guò)SKIPIF1<0與對(duì)稱(chēng)軸平行的直線與拋物線只有一個(gè)公共點(diǎn),其他直線與拋物線都有兩個(gè)公共點(diǎn),C正確;記拋物線的準(zhǔn)線為SKIPIF1<0,準(zhǔn)線方程為SKIPIF1<0,過(guò)SKIPIF1<0作SKIPIF1<0于SKIPIF1<0,過(guò)SKIPIF1<0作SKIPIF1<0于SKIPIF1<0,則SKIPIF1<0,SKIPIF1<0,所以當(dāng)SKIPIF1<0三點(diǎn)共線,即SKIPIF1<0與SKIPIF1<0重合時(shí),SKIPIF1<0最小,最小值為SKIPIF1<0.D正確.故選:CD.同類(lèi)題型歸類(lèi)練1.(2022·全國(guó)·高三專(zhuān)題練習(xí))點(diǎn)SKIPIF1<0到拋物線SKIPIF1<0的準(zhǔn)線的距離為6,那么拋物線的標(biāo)準(zhǔn)方程是(
)A.SKIPIF1<0 B.SKIPIF1<0或SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0或SKIPIF1<0【答案】D將SKIPIF1<0轉(zhuǎn)化為SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),拋物線開(kāi)口向上,準(zhǔn)線方程SKIPIF1<0,點(diǎn)SKIPIF1<0到準(zhǔn)線的距離為SKIPIF1<0,解得SKIPIF1<0,所以拋物線方程為SKIPIF1<0,即SKIPIF1<0;當(dāng)SKIPIF1<0時(shí),拋物線開(kāi)口向下,準(zhǔn)線方程SKIPIF1<0,點(diǎn)SKIPIF1<0到準(zhǔn)線的距離為SKIPIF1<0,解得SKIPIF1<0或SKIPIF1<0(舍去),所以拋物線方程為SKIPIF1<0,即SKIPIF1<0.所以拋物線的方程為SKIPIF1<0或SKIPIF1<0故選:D2.(2022·福建·廈門(mén)一中高二階段練習(xí))拋物線SKIPIF1<0上一點(diǎn)SKIPIF1<0到焦點(diǎn)的距離為SKIPIF1<0,則實(shí)數(shù)SKIPIF1<0的值為A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】A解:因?yàn)閽佄锞€SKIPIF1<0過(guò)點(diǎn)SKIPIF1<0,所以SKIPIF1<0,拋物線SKIPIF1<0的焦點(diǎn)為SKIPIF1<0,由拋物線的定義可知SKIPIF1<0,解得SKIPIF1<0.故選:A.3.(2022·四川·閬中中學(xué)高二階段練習(xí)(理))已知拋物線SKIPIF1<0,以SKIPIF1<0為圓心,半徑為5的圓與拋物線SKIPIF1<0交于SKIPIF1<0兩點(diǎn),若SKIPIF1<0,則SKIPIF1<0(
)A.4 B.8 C.10 D.16【答案】B以SKIPIF1<0為圓心,半徑為5的圓的方程為SKIPIF1<0,由拋物線SKIPIF1<0,得到拋物線關(guān)于x軸對(duì)稱(chēng),又∵上面的圓的圓心在x軸上,∴圓的圖形也關(guān)于x軸對(duì)稱(chēng),∴它們的交點(diǎn)A,B關(guān)于x軸對(duì)稱(chēng),因?yàn)閨AB|=8,∴A,B點(diǎn)的縱坐標(biāo)的絕對(duì)值都是4,∵它們?cè)趻佄锞€上,于是A點(diǎn)的橫坐標(biāo)的值SKIPIF1<0,不妨設(shè)A在x軸上方,則A點(diǎn)的坐標(biāo)為SKIPIF1<0,又∵A在圓上,∴SKIPIF1<0,解得SKIPIF1<0,故選:B.題型四:與拋物線有關(guān)的最值問(wèn)題角度1:利用拋物線定義求最值典型例題例題1.(2022·新疆維吾爾自治區(qū)喀什第二中學(xué)高二期中(理))已知SKIPIF1<0,SKIPIF1<0為拋物線SKIPIF1<0的焦點(diǎn),點(diǎn)SKIPIF1<0在拋物線上移動(dòng),當(dāng)SKIPIF1<0取最小值時(shí),點(diǎn)SKIPIF1<0的坐標(biāo)為(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】D如圖所示,過(guò)SKIPIF1<0點(diǎn)作準(zhǔn)線SKIPIF1<0的垂線,垂足為SKIPIF1<0,由拋物線定義,知SKIPIF1<0SKIPIF1<0當(dāng)SKIPIF1<0在拋物線上移動(dòng)時(shí),SKIPIF1<0的值在變化,顯然SKIPIF1<0移動(dòng)到SKIPIF1<0時(shí),SKIPIF1<0三點(diǎn)共線,SKIPIF1<0最小,此時(shí)SKIPIF1<0,把SKIPIF1<0代入SKIPIF1<0,得SKIPIF1<0,所以當(dāng)SKIPIF1<0取最小值時(shí),點(diǎn)SKIPIF1<0的坐標(biāo)為SKIPIF1<0.故選:D.例題2.(2022·廣西南寧·高二期末(理))已知拋物線SKIPIF1<0焦點(diǎn)的坐標(biāo)為SKIPIF1<0,SKIPIF1<0為拋物線上的任意一點(diǎn),SKIPIF1<0,則SKIPIF1<0的最小值為(
)A.3 B.4 C.5 D.SKIPIF1<0【答案】A因?yàn)閽佄锞€SKIPIF1<0焦點(diǎn)的坐標(biāo)為SKIPIF1<0,所以SKIPIF1<0,解得SKIPIF1<0.記拋物線的準(zhǔn)線為l,作SKIPIF1<0于SKIPIF1<0,作SKIPIF1<0于SKIPIF1<0,則由拋物線的定義得SKIPIF1<0,當(dāng)且僅當(dāng)P為BA與拋物線的交點(diǎn)時(shí),等號(hào)成立.故選:A.同類(lèi)題型歸類(lèi)練1.(2022·全國(guó)·高三專(zhuān)題練習(xí))已知拋物線SKIPIF1<0的焦點(diǎn)為SKIPIF1<0,定點(diǎn)SKIPIF1<0,設(shè)SKIPIF1<0為拋物線上的動(dòng)點(diǎn),SKIPIF1<0的最小值為_(kāi)_________,此時(shí)點(diǎn)SKIPIF1<0坐標(biāo)為_(kāi)_________.【答案】
3
SKIPIF1<0過(guò)點(diǎn)SKIPIF1<0作SKIPIF1<0垂直于準(zhǔn)線,過(guò)SKIPIF1<0作SKIPIF1<0垂直于準(zhǔn)線,SKIPIF1<0,SKIPIF1<0取到最小值時(shí),且為SKIPIF1<0;點(diǎn)SKIPIF1<0與點(diǎn)SKIPIF1<0的縱坐標(biāo)相同,可設(shè)點(diǎn)SKIPIF1<0為SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0,解得SKIPIF1<0,所以點(diǎn)SKIPIF1<0,SKIPIF1<0.故答案為:3;SKIPIF1<02.(2022·陜西安康·高二期末(文))已知M為拋物線SKIPIF1<0上的動(dòng)點(diǎn),F(xiàn)為拋物線的焦點(diǎn),SKIPIF1<0,則SKIPIF1<0的最小值為_(kāi)__________.【答案】4解:如圖所示:設(shè)點(diǎn)M在準(zhǔn)線上的射影為D,由拋物線的定義知SKIPIF1<0,∴要求SKIPIF1<0的最小值,即求SKIPIF1<0的最小值,當(dāng)D,M,P三點(diǎn)共線時(shí),SKIPIF1<0最小,最小值為SKIPIF1<0.故答案為:43.(2022·全國(guó)·高三專(zhuān)題練習(xí))已知點(diǎn)SKIPIF1<0在拋物線SKIPIF1<0上,點(diǎn)SKIPIF1<0在圓SKIPIF1<0上,則SKIPIF1<0長(zhǎng)度的最小值為_(kāi)__________.【答案】3因?yàn)閽佄锞€和圓都關(guān)于橫軸對(duì)稱(chēng),所以不妨設(shè)SKIPIF1<0,設(shè)圓SKIPIF1<0的圓心坐標(biāo)為:SKIPIF1<0,半徑為1,因此SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,所以SKIPIF1<0長(zhǎng)度的最小值為SKIPIF1<0,故答案為:SKIPIF1<04.(2022·重慶長(zhǎng)壽·高二期末)已知P為拋物線SKIPIF1<0上任意一點(diǎn),F(xiàn)為拋物線的焦點(diǎn),SKIPIF1<0為平面內(nèi)一定點(diǎn),則SKIPIF1<0的最小值為_(kāi)_________.【答案】5由題意,拋物線的準(zhǔn)線為SKIPIF1<0,焦點(diǎn)坐標(biāo)為SKIPIF1<0,過(guò)點(diǎn)SKIPIF1<0向準(zhǔn)線作垂線,垂足為SKIPIF1<0,則SKIPIF1<0,當(dāng)SKIPIF1<0共線時(shí),和最?。贿^(guò)點(diǎn)SKIPIF1<0向準(zhǔn)線作垂線,垂足為SKIPIF1<0,則SKIPIF1<0,所以最小值為5.故答案為:5.5.(2022·上海市青浦高級(jí)中學(xué)高二階段練習(xí))已知點(diǎn)SKIPIF1<0是拋物線SKIPIF1<0上的一個(gè)動(dòng)點(diǎn),則點(diǎn)SKIPIF1<0到點(diǎn)SKIPIF1<0的距離與SKIPIF1<0到SKIPIF1<0軸的距離之和的最小值為_(kāi)__________.【答案】1由拋物線SKIPIF1<0可知其焦點(diǎn)為SKIPIF1<0,由拋物線的定義可知SKIPIF1<0,故點(diǎn)SKIPIF1<0到點(diǎn)SKIPIF1<0的距離與SKIPIF1<0到SKIPIF1<0軸的距離之和為SKIPIF1<0,即點(diǎn)SKIPIF1<0到點(diǎn)SKIPIF1<0的距離與SKIPIF1<0到SKIPIF1<0軸的距離之和的最小值為1.故答案為:SKIPIF1<0.6.(2022·江蘇·高二)如圖所示,已知P為拋物線SKIPIF1<0上的一個(gè)動(dòng)點(diǎn),點(diǎn)SKIPIF1<0,F(xiàn)為拋物線C的焦點(diǎn),若SKIPIF1<0的最小值為3,則拋物線C的標(biāo)準(zhǔn)方程為_(kāi)_____.【答案】SKIPIF1<0過(guò)點(diǎn)P、Q分別作準(zhǔn)線的垂線,垂直分別為M、N,由拋物線定義可知SKIPIF1<0,當(dāng)P,M,Q三點(diǎn)共線時(shí)等號(hào)成立所以SKIPIF1<0,解得SKIPIF1<0所以拋物線C的標(biāo)準(zhǔn)方程為SKIPIF1<0.故答案為:SKIPIF1<0角度2:利用函數(shù)思想求最值典型例題例題1.(2022·四川瀘州·高二期末(文))動(dòng)點(diǎn)SKIPIF1<0在拋物線SKIPIF1<0上,則點(diǎn)SKIPIF1<0到點(diǎn)SKIPIF1<0的距離的最小值為(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.12【答案】B設(shè)SKIPIF1<0,則SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0取得最小值,最小值為SKIPIF1<0故選:B例題2.(2022·遼寧·東北育才學(xué)校模擬預(yù)測(cè))已知拋物線SKIPIF1<0,圓SKIPIF1<0.若點(diǎn)SKIPIF1<0,SKIPIF1<0分別在SKIPIF1<0,SKIPIF1<0上運(yùn)動(dòng),且設(shè)點(diǎn)SKIPIF1<0,則SKIPIF1<0的最小值為(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】A易知SKIPIF1<0即為拋物線SKIPIF1<0的焦點(diǎn),即SKIPIF1<0,設(shè)SKIPIF1<0,∴SKIPIF1<0∴SKIPIF1<0當(dāng)SKIPIF1<0時(shí),上式SKIPIF1<0,取等條件:SKIPIF1<0,即SKIPIF1<0時(shí),取得最小值SKIPIF1<0故選:A.例題3.(2022·全國(guó)·高三專(zhuān)題練習(xí))已知拋物線SKIPIF1<0的焦點(diǎn)坐標(biāo)為SKIPIF1<0,則拋物線上的動(dòng)點(diǎn)SKIPIF1<0到點(diǎn)SKIPIF1<0的距離SKIPIF1<0的最小值為(
)A.2 B.4 C.SKIPIF1<0 D.SKIPIF1<0【答案】C解:由題意,拋物線的標(biāo)準(zhǔn)方程為:SKIPIF1<0,設(shè)拋物線上的動(dòng)點(diǎn)SKIPIF1<0的坐標(biāo)為SKIPIF1<0,則:SKIPIF1<0由SKIPIF1<0,所以SKIPIF1<0由SKIPIF1<0,所以SKIPIF1<0,即動(dòng)點(diǎn)SKIPIF1<0到點(diǎn)SKIPIF1<0的距離SKIPIF1<0的最小值為SKIPIF1<0.故選:C同類(lèi)題型歸類(lèi)練1.(2022·內(nèi)蒙古·包鋼一中一模(文))已知圓SKIPIF1<0,點(diǎn)SKIPIF1<0在拋物線SKIPIF1<0上運(yùn)動(dòng),過(guò)點(diǎn)SKIPIF1<0引直線SKIPIF1<0,SKIPIF1<0與圓SKIPIF1<0相切,切點(diǎn)分別為SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0的最小值為(
)A.SKIPIF1<0 B.2 C.SKIPIF1<0 D.8【答案】C圓SKIPIF1<0的方程:SKIPIF1<0,可知SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,故四邊形SKIPIF1<0的面積SKIPIF1<0,SKIPIF1<0,當(dāng)SKIPIF1<0取最小值時(shí)SKIPIF1<0最小,設(shè)SKIPIF1<0,則SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0取最小值為SKIPIF1<0,SKIPIF1<0的最小值為SKIPIF1<0.故選:SKIPIF1<0.2.(2022·黑龍江大慶·三模(理))已知F是拋物線SKIPIF1<0的焦點(diǎn),A為拋物線上的動(dòng)點(diǎn),點(diǎn)SKIPIF1<0,則當(dāng)SKIPIF1<0取最大值時(shí),SKIPIF1<0的值為_(kāi)__________.【答案】SKIPIF1<0設(shè)SKIPIF1<0,則SKIPIF1<0,而SKIPIF1<0,所以SKIPIF1<0,當(dāng)且僅當(dāng)SKIPIF1<0時(shí)等號(hào)成立,所以SKIPIF1<0取最大值時(shí)SKIPIF1<0,此時(shí)SKIPIF1<0.故答案為:SKIPIF1<03.(2022·全國(guó)·高二課時(shí)練習(xí))若拋物線SKIPIF1<0上一點(diǎn)SKIPIF1<0到焦點(diǎn)的距離為6,P、Q分別為拋物線與圓SKIPIF1<0上的動(dòng)點(diǎn),則SKIPIF1<0的最小值為_(kāi)_____.【答案】SKIPIF1<0##SKIPIF1<0由題設(shè)及拋物線定義知:SKIPIF1<0,可得SKIPIF1<0,故SKIPIF1<0,而SKIPIF1<0的圓心為SKIPIF1<0,半徑為1,所以SKIPIF1<0最小,則SKIPIF1<0共線且SKIPIF1<0,故只需SKIPIF1<0最小,令SKIPIF1<0,則SKIPIF1<0,且SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,故SKIPIF1<0的最小值為SKIPIF1<0.故答案為:SKIPIF1<0第四部分:高考真題感悟第四部分:高考真題感悟1.(2022·全國(guó)·高考真題(文))設(shè)F為拋物線SKIPIF1<0的焦點(diǎn),點(diǎn)A在C上,點(diǎn)SKIPIF1<0,若SKIPIF1<0,則SKIPIF1<0(
)A.2 B.SKIPIF1<0 C.3 D.SKIPIF1<0【答案】B由題意得,SKIPIF1<0,則SKIPIF1<0,即點(diǎn)SKIPIF1<0到準(zhǔn)線SKIPIF1<0的距離為2,所以點(diǎn)SKIPIF1<0的橫坐標(biāo)為SKIPIF1<0,不妨設(shè)點(diǎn)SKIPIF1<0在SKIPIF1<0軸上方,代入得,SKIPIF1<0,所以SKIPIF1<0.故選:B2.(2021·天津·高考真題)已知雙曲線SKIPIF1<0的右焦點(diǎn)與拋物線SKIPIF1<0的焦點(diǎn)重合,拋物線的準(zhǔn)線交雙曲線于A,B兩點(diǎn),交雙曲線的漸近線于C、D兩點(diǎn),若SKIPIF1<0.則雙曲線的離心率為(
)A.SKIPIF1<0
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶(hù)所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶(hù)上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶(hù)因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 有關(guān)光纖特性的課程設(shè)計(jì)
- 直流可逆調(diào)速課程設(shè)計(jì)
- 學(xué)前班課程設(shè)計(jì)
- 燕山大學(xué)填料塔課程設(shè)計(jì)
- 2025年高新技術(shù)產(chǎn)業(yè)用地租賃合同參考2篇
- 2025版鈑金噴涂維修項(xiàng)目安全管理承包合同2篇
- 二零二五年沖擊鉆施工環(huán)境保護(hù)合同2篇
- 2025版水利工程監(jiān)理服務(wù)合同規(guī)范文本2篇
- 2025版綠色低碳建筑設(shè)計(jì)與施工管理服務(wù)合同2篇
- 2025版少兒英語(yǔ)口語(yǔ)家教合同3篇
- 2024年內(nèi)蒙古自治區(qū)專(zhuān)業(yè)技術(shù)人員繼續(xù)教育公需課考試答案
- 《一元一次方程》復(fù)習(xí)學(xué)案
- 常州大學(xué)《數(shù)據(jù)采集與清洗》2022-2023學(xué)年期末試卷
- 國(guó)有企業(yè)內(nèi)部借款管理辦法范本
- 河南師范大學(xué)《中國(guó)社會(huì)思想史》2022-2023學(xué)年第一學(xué)期期末試卷
- 水利水電工程承攬合同三篇
- 投資可行性分析財(cái)務(wù)數(shù)據(jù)全套表格
- 2024年資格考試-注冊(cè)可靠性工程師考試近5年真題附答案
- 2023-2024學(xué)年福建省廈門(mén)市八年級(jí)(上)期末物理試卷
- 胃炎中醫(yī)辯證論治
- 2024年新人教版一年級(jí)數(shù)學(xué)上冊(cè)課件 第一單元 5以?xún)?nèi)數(shù)的認(rèn)識(shí)和加、減法 2. 1~5的加、減法 課時(shí)2 減法
評(píng)論
0/150
提交評(píng)論