新高考數(shù)學(xué)一輪復(fù)習(xí)第8章 第11講 高考難點(diǎn)突破三 圓錐曲線的綜合問(wèn)題(最值、范圍問(wèn)題) 精講(教師版)_第1頁(yè)
新高考數(shù)學(xué)一輪復(fù)習(xí)第8章 第11講 高考難點(diǎn)突破三 圓錐曲線的綜合問(wèn)題(最值、范圍問(wèn)題) 精講(教師版)_第2頁(yè)
新高考數(shù)學(xué)一輪復(fù)習(xí)第8章 第11講 高考難點(diǎn)突破三 圓錐曲線的綜合問(wèn)題(最值、范圍問(wèn)題) 精講(教師版)_第3頁(yè)
新高考數(shù)學(xué)一輪復(fù)習(xí)第8章 第11講 高考難點(diǎn)突破三 圓錐曲線的綜合問(wèn)題(最值、范圍問(wèn)題) 精講(教師版)_第4頁(yè)
新高考數(shù)學(xué)一輪復(fù)習(xí)第8章 第11講 高考難點(diǎn)突破三 圓錐曲線的綜合問(wèn)題(最值、范圍問(wèn)題) 精講(教師版)_第5頁(yè)
已閱讀5頁(yè),還剩37頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

第11講高考難點(diǎn)突破三:圓錐曲線的綜合問(wèn)題(最值、范圍問(wèn)題)(精講)目錄第一部分:典型例題剖析題型一:橢圓中的最值、范圍問(wèn)題角度1:橢圓中最值問(wèn)題角度2:橢圓中參數(shù)范圍問(wèn)題題型二:雙曲線中的最值、范圍問(wèn)題角度1:雙曲線中最值問(wèn)題角度2:雙曲線中參數(shù)范圍問(wèn)題題型三:拋物線中的最值、范圍問(wèn)題角度1:拋物線中最值問(wèn)題角度2:拋物線中參數(shù)范圍問(wèn)題題型一:橢圓中的最值、范圍問(wèn)題角度1:橢圓中最值問(wèn)題典型例題例題1.(2022·全國(guó)·高三專題練習(xí))如圖,已知橢圓SKIPIF1<0的左、右焦點(diǎn)分別為SKIPIF1<0,過(guò)SKIPIF1<0的直線交橢圓于SKIPIF1<0兩點(diǎn),過(guò)SKIPIF1<0的直線交橢圓于SKIPIF1<0兩點(diǎn),且SKIPIF1<0.求四邊形面積的最小值.【答案】SKIPIF1<0.當(dāng)直線SKIPIF1<0斜率SKIPIF1<0存在且不為0時(shí),設(shè)SKIPIF1<0方程為:SKIPIF1<0,聯(lián)立SKIPIF1<0,設(shè)SKIPIF1<0,則SKIPIF1<0,由弦長(zhǎng)公式可得SKIPIF1<0;因?yàn)镾KIPIF1<0,故SKIPIF1<0,進(jìn)而可得SKIPIF1<0所以四邊形的面積為SKIPIF1<0,因?yàn)镾KIPIF1<0,即SKIPIF1<0,SKIPIF1<0,當(dāng)且僅當(dāng)SKIPIF1<0時(shí),等號(hào)成立,當(dāng)直線SKIPIF1<0斜率不存在或者為0時(shí),此時(shí)四邊形的面積為SKIPIF1<0∴四邊形面積的最小值為SKIPIF1<0.例題2.(2022·安徽·合肥一中高二期末)已知橢圓SKIPIF1<0,SKIPIF1<0,SKIPIF1<0分別為左右焦點(diǎn),點(diǎn)SKIPIF1<0,SKIPIF1<0在橢圓E上.(1)求橢圓SKIPIF1<0的離心率;(2)過(guò)左焦點(diǎn)SKIPIF1<0且不垂直于坐標(biāo)軸的直線SKIPIF1<0交橢圓SKIPIF1<0于SKIPIF1<0,SKIPIF1<0兩點(diǎn),若SKIPIF1<0的中點(diǎn)為SKIPIF1<0,SKIPIF1<0為原點(diǎn),直線SKIPIF1<0交直線SKIPIF1<0于點(diǎn)SKIPIF1<0,求SKIPIF1<0取最大值時(shí)直線SKIPIF1<0的方程.【答案】(1)SKIPIF1<0(2)SKIPIF1<0(1)解:將SKIPIF1<0,SKIPIF1<0代入橢圓方程,SKIPIF1<0解得SKIPIF1<0,所以橢圓SKIPIF1<0的方程為SKIPIF1<0,又SKIPIF1<0,所以SKIPIF1<0(2)解:設(shè)直線SKIPIF1<0方程為SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,聯(lián)立SKIPIF1<0可得SKIPIF1<0;則SKIPIF1<0,且SKIPIF1<0,SKIPIF1<0,設(shè)SKIPIF1<0的中點(diǎn)SKIPIF1<0,則SKIPIF1<0,SKIPIF1<0,∴SKIPIF1<0坐標(biāo)為SKIPIF1<0,SKIPIF1<0,因此直線SKIPIF1<0的方程為SKIPIF1<0,從而點(diǎn)SKIPIF1<0為SKIPIF1<0,又SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0,令SKIPIF1<0,則SKIPIF1<0,因此當(dāng)SKIPIF1<0,即SKIPIF1<0時(shí),SKIPIF1<0最大值為3.所以SKIPIF1<0的最大值為SKIPIF1<0,此時(shí),直線l的方程為SKIPIF1<0.例題3.(2022·全國(guó)·高三專題練習(xí))已知橢圓SKIPIF1<0的離心率為SKIPIF1<0,過(guò)橢圓SKIPIF1<0右焦點(diǎn)并垂直于SKIPIF1<0軸的直線SKIPIF1<0交橢圓SKIPIF1<0于SKIPIF1<0,SKIPIF1<0(點(diǎn)SKIPIF1<0位于SKIPIF1<0軸上方)兩點(diǎn),且SKIPIF1<0(SKIPIF1<0為坐標(biāo)原點(diǎn))的面積為SKIPIF1<0.(1)求橢圓SKIPIF1<0的標(biāo)準(zhǔn)方程;(2)若直線SKIPIF1<0交橢圓SKIPIF1<0于SKIPIF1<0,SKIPIF1<0(SKIPIF1<0,SKIPIF1<0異于點(diǎn)SKIPIF1<0)兩點(diǎn),且直線SKIPIF1<0與SKIPIF1<0的斜率之積為SKIPIF1<0,求點(diǎn)SKIPIF1<0到直線SKIPIF1<0距離的最大值.【答案】(1)SKIPIF1<0(2)SKIPIF1<0(1)由題意可得SKIPIF1<0,∴由題意可得SKIPIF1<0且SKIPIF1<0,解得SKIPIF1<0,SKIPIF1<0,∴橢圓的方程為:SKIPIF1<0.(2)解法1:由(1)可得SKIPIF1<0,當(dāng)直線SKIPIF1<0沒(méi)有斜率時(shí),設(shè)方程為:SKIPIF1<0,則SKIPIF1<0,此時(shí)SKIPIF1<0,化簡(jiǎn)得:SKIPIF1<0又SKIPIF1<0,解得SKIPIF1<0或SKIPIF1<0(舍去),此時(shí)P到直線l的距離為SKIPIF1<0設(shè)直線l有斜率時(shí),設(shè)SKIPIF1<0,SKIPIF1<0,設(shè)其方程為:SKIPIF1<0,聯(lián)立可得SKIPIF1<0且整理可得:SKIPIF1<0,SKIPIF1<0,且SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,整理可得:SKIPIF1<0,整理可得SKIPIF1<0,整理可得SKIPIF1<0,即SKIPIF1<0,SKIPIF1<0或SKIPIF1<0,若SKIPIF1<0,則直線方程為:SKIPIF1<0,直線恒過(guò)SKIPIF1<0,與P點(diǎn)重合,若SKIPIF1<0,則直線方程為:SKIPIF1<0,∴直線恒過(guò)定點(diǎn)SKIPIF1<0,∴P到直線l的距離的最大值為SKIPIF1<0的值為SKIPIF1<0,由于SKIPIF1<0∴點(diǎn)P到直線l距離的最大值SKIPIF1<0.解法2:公共點(diǎn)SKIPIF1<0,左移1個(gè)單位,下移SKIPIF1<0個(gè)單位,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,等式兩邊同時(shí)除以SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0過(guò)SKIPIF1<0,右移1個(gè)單位,上移SKIPIF1<0個(gè)單位,過(guò)SKIPIF1<0,∴P到直線l的距離的最大值為SKIPIF1<0的值為SKIPIF1<0,由于SKIPIF1<0∴點(diǎn)P到直線l距離的最大值SKIPIF1<0.同類題型歸類練1.(2022·四川成都·高二期末(理))已知橢圓SKIPIF1<0與拋物線SKIPIF1<0有相同的焦點(diǎn)SKIPIF1<0.(1)求橢圓的方程;(2)SKIPIF1<0為坐標(biāo)原點(diǎn),過(guò)焦點(diǎn)SKIPIF1<0的直線SKIPIF1<0交橢圓于SKIPIF1<0,SKIPIF1<0兩點(diǎn),求SKIPIF1<0面積的最大值.【答案】(1)SKIPIF1<0(2)SKIPIF1<0(1)SKIPIF1<0橢圓SKIPIF1<0與拋物線SKIPIF1<0有相同的焦點(diǎn)SKIPIF1<0,SKIPIF1<0即SKIPIF1<0且SKIPIF1<0,SKIPIF1<0,SKIPIF1<0橢圓的方程為:SKIPIF1<0.(2)由(1)可知SKIPIF1<0的坐標(biāo)為SKIPIF1<0.顯然SKIPIF1<0的斜率不為0.設(shè)直線SKIPIF1<0的方程為:SKIPIF1<0,設(shè)SKIPIF1<0,SKIPIF1<0.聯(lián)立SKIPIF1<0,可得SKIPIF1<0,SKIPIF1<0恒成立,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0SKIPIF1<0.當(dāng)且僅當(dāng)SKIPIF1<0,即SKIPIF1<0時(shí)取等號(hào),SKIPIF1<0面積的最大值為SKIPIF1<0.2.(2022·江蘇·高二)已知橢圓C:SKIPIF1<0的離心率為SKIPIF1<0,左,右焦點(diǎn)分別為SKIPIF1<0,SKIPIF1<0,O為坐標(biāo)原點(diǎn),點(diǎn)Q在橢圓C上,且滿足SKIPIF1<0.(1)求橢圓C的標(biāo)準(zhǔn)方程;(2)設(shè)P為橢圓C的右頂點(diǎn),直線l與橢圓C相交于M,N兩點(diǎn)(M,N兩點(diǎn)異于P點(diǎn)),且PM⊥PN,求SKIPIF1<0的最大值.【答案】(1)SKIPIF1<0(2)SKIPIF1<0(1)解:因?yàn)闄E圓的離心率為SKIPIF1<0,又點(diǎn)Q在橢圓C上,且滿足SKIPIF1<0,所以SKIPIF1<0,即SKIPIF1<0,則SKIPIF1<0,SKIPIF1<0,所以橢圓方程為:SKIPIF1<0;(2)由題意知,直線l的斜率不為0,則不妨設(shè)直線l的方程為SKIPIF1<0.聯(lián)立得SKIPIF1<0,消去x得SKIPIF1<0,SKIPIF1<0,化簡(jiǎn)整理,得SKIPIF1<0.設(shè)SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0,SKIPIF1<0.∵PM⊥PN,∴SKIPIF1<0.∵SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,得SKIPIF1<0,將SKIPIF1<0,SKIPIF1<0代入上式,得SKIPIF1<0,得SKIPIF1<0,解得SKIPIF1<0或SKIPIF1<0(舍去),∴直線l的方程為SKIPIF1<0,則直線l恒過(guò)點(diǎn)SKIPIF1<0,∴SKIPIF1<0.設(shè)SKIPIF1<0,則SKIPIF1<0,SKIPIF1<0,易知SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,∴當(dāng)SKIPIF1<0時(shí),SKIPIF1<0取得最大值為SKIPIF1<0.又SKIPIF1<0,∴SKIPIF1<0.3.(2022·四川·綿陽(yáng)中學(xué)實(shí)驗(yàn)學(xué)校模擬預(yù)測(cè)(文))已知在平面直角坐標(biāo)系中有兩定點(diǎn)SKIPIF1<0,SKIPIF1<0,平面上一動(dòng)點(diǎn)SKIPIF1<0到兩定點(diǎn)的距離之和為SKIPIF1<0.(1)求動(dòng)點(diǎn)SKIPIF1<0的軌跡SKIPIF1<0的方程;(2)過(guò)點(diǎn)SKIPIF1<0作兩條互相垂直的直線,分別與SKIPIF1<0交于SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0四點(diǎn),求四邊形SKIPIF1<0面積的最小值.【答案】(1)SKIPIF1<0(2)SKIPIF1<0(1)因?yàn)镾KIPIF1<0(SKIPIF1<0),所以SKIPIF1<0點(diǎn)軌跡是以SKIPIF1<0為焦點(diǎn),SKIPIF1<0為長(zhǎng)軸長(zhǎng)的橢圓,所以SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,所以軌跡方程為SKIPIF1<0;(2)當(dāng)一條直線斜率不存在時(shí),SKIPIF1<0代入橢圓方程得SKIPIF1<0,SKIPIF1<0,因此弦長(zhǎng)SKIPIF1<0,另一直線斜率為0,SKIPIF1<0,SKIPIF1<0;當(dāng)兩條直線斜率都存在且不為0時(shí),設(shè)直線SKIPIF1<0方程為SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,由SKIPIF1<0,得SKIPIF1<0,所以SKIPIF1<0,SKIPIF1<0,SKIPIF1<0SKIPIF1<0SKIPIF1<0,由于SKIPIF1<0,所以直線SKIPIF1<0斜率為SKIPIF1<0,同理SKIPIF1<0,SKIPIF1<0,令SKIPIF1<0,則SKIPIF1<0,SKIPIF1<0,因?yàn)镾KIPIF1<0,所以SKIPIF1<0,SKIPIF1<0,綜上,SKIPIF1<0,SKIPIF1<0的最小值為SKIPIF1<0.角度2:橢圓中參數(shù)范圍問(wèn)題典型例題例題1.(2022·四川遂寧·三模(文))已知橢圓SKIPIF1<0:SKIPIF1<0的左、右焦點(diǎn)分別為SKIPIF1<0,SKIPIF1<0,坐標(biāo)原點(diǎn)為O,離心率SKIPIF1<0,過(guò)SKIPIF1<0且垂直于SKIPIF1<0軸的直線與SKIPIF1<0交于SKIPIF1<0兩點(diǎn),SKIPIF1<0;過(guò)SKIPIF1<0且斜率為SKIPIF1<0的直線SKIPIF1<0與C交于SKIPIF1<0,SKIPIF1<0點(diǎn).(1)求SKIPIF1<0的標(biāo)準(zhǔn)方程;(2)令SKIPIF1<0,SKIPIF1<0的中點(diǎn)為SKIPIF1<0,若存在點(diǎn)SKIPIF1<0(SKIPIF1<0),使得SKIPIF1<0,求SKIPIF1<0的取值范圍.【答案】(1)SKIPIF1<0(2)SKIPIF1<0(1)由題意可得:過(guò)SKIPIF1<0且垂直于SKIPIF1<0軸的直線與SKIPIF1<0交于SKIPIF1<0兩點(diǎn),所以SKIPIF1<0,所以SKIPIF1<0.又有SKIPIF1<0,SKIPIF1<0,解得:SKIPIF1<0.所以SKIPIF1<0的標(biāo)準(zhǔn)方程為SKIPIF1<0.(2)由(1)可知:SKIPIF1<0.可設(shè)直線PQ:SKIPIF1<0.設(shè)SKIPIF1<0,則SKIPIF1<0,消去y,可得:SKIPIF1<0.因?yàn)镾KIPIF1<0在橢圓內(nèi),所以直線PQ與橢圓恒有兩個(gè)交點(diǎn),.SKIPIF1<0.設(shè)SKIPIF1<0,則SKIPIF1<0,即SKIPIF1<0.直線PQ的方向向量為SKIPIF1<0,SKIPIF1<0.因?yàn)镾KIPIF1<0,所以SKIPIF1<0.所以SKIPIF1<0.因?yàn)镾KIPIF1<0,所以SKIPIF1<0,解得:SKIPIF1<0或SKIPIF1<0.即SKIPIF1<0的取值范圍為SKIPIF1<0.例題2.(2022·全國(guó)·高三專題練習(xí)(理))已知橢圓SKIPIF1<0經(jīng)過(guò)點(diǎn)SKIPIF1<0,點(diǎn)SKIPIF1<0為橢圓SKIPIF1<0的右焦點(diǎn),過(guò)點(diǎn)SKIPIF1<0與坐標(biāo)軸不垂直的直線SKIPIF1<0交橢圓于SKIPIF1<0、SKIPIF1<0兩點(diǎn).(1)求橢圓SKIPIF1<0的方程;(2)在線段SKIPIF1<0上是否存在點(diǎn)SKIPIF1<0,使得SKIPIF1<0?若存在,求出SKIPIF1<0的取值范圍;若不存在,請(qǐng)說(shuō)明理由.【答案】(1)SKIPIF1<0;(2)存在,SKIPIF1<0.(1)由題意,SKIPIF1<0,解得SKIPIF1<0,所以橢圓方程為SKIPIF1<0.(2)設(shè)SKIPIF1<0,SKIPIF1<0,直線l為SKIPIF1<0,聯(lián)立直線與橢圓SKIPIF1<0得:SKIPIF1<0,SKIPIF1<0恒成立,所以SKIPIF1<0,SKIPIF1<0,而SKIPIF1<0,即SKIPIF1<0,化簡(jiǎn)得SKIPIF1<0,又SKIPIF1<0,SKIPIF1<0且SKIPIF1<0,所以SKIPIF1<0SKIPIF1<0,化簡(jiǎn)得:SKIPIF1<0且SKIPIF1<0,所以m的取值范圍為SKIPIF1<0.例題3.(2022·陜西西安·模擬預(yù)測(cè)(文))已知橢圓SKIPIF1<0的離心率為SKIPIF1<0,SKIPIF1<0是其右焦點(diǎn),直線SKIPIF1<0與橢圓交于SKIPIF1<0,SKIPIF1<0兩點(diǎn),SKIPIF1<0.(1)求橢圓的標(biāo)準(zhǔn)方程;(2)設(shè)SKIPIF1<0,若SKIPIF1<0為銳角,求實(shí)數(shù)SKIPIF1<0的取值范圍.【答案】(1)SKIPIF1<0(2)SKIPIF1<0或SKIPIF1<0(1)設(shè)SKIPIF1<0為橢圓的左焦點(diǎn),連接SKIPIF1<0,由橢圓的對(duì)稱性可知,SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0,又SKIPIF1<0,SKIPIF1<0,解得SKIPIF1<0,所以橢圓的標(biāo)準(zhǔn)方程為:SKIPIF1<0.(2)設(shè)點(diǎn)SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0,SKIPIF1<0,聯(lián)立直線與橢圓的方程整理得:SKIPIF1<0,所以SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,因?yàn)镾KIPIF1<0為銳角,所以SKIPIF1<0,所以SKIPIF1<0,整理得:SKIPIF1<0,解得:SKIPIF1<0,或SKIPIF1<0,所以實(shí)數(shù)SKIPIF1<0的取值范圍為:SKIPIF1<0或SKIPIF1<0.同類題型歸類練1.(2022·上海市建平中學(xué)高二期末)已知橢圓SKIPIF1<0:SKIPIF1<0,焦點(diǎn)為SKIPIF1<0?SKIPIF1<0,過(guò)x軸上的一點(diǎn)M(m,0)(SKIPIF1<0)作直線l交橢圓于A?B兩點(diǎn).(1)若點(diǎn)M在橢圓內(nèi),①求多邊形SKIPIF1<0的周長(zhǎng);②求SKIPIF1<0的最小值SKIPIF1<0的表達(dá)式;(2)是否存在與x軸不重合的直線l,使得SKIPIF1<0成立?如果存在,求出m的取值范圍;如果不存在,請(qǐng)說(shuō)明理由.【答案】(1)①SKIPIF1<0;②SKIPIF1<0(2)SKIPIF1<0(1)①由橢圓SKIPIF1<0:SKIPIF1<0知,SKIPIF1<0,所以SKIPIF1<0,根據(jù)橢圓的定義知,多邊形SKIPIF1<0的周長(zhǎng)為:SKIPIF1<0.②設(shè)SKIPIF1<0,則SKIPIF1<0=SKIPIF1<0,其中SKIPIF1<0,令SKIPIF1<0,①當(dāng)SKIPIF1<0,即SKIPIF1<0時(shí),SKIPIF1<0,②當(dāng)SKIPIF1<0即SKIPIF1<0,SKIPIF1<0,③當(dāng)SKIPIF1<0即SKIPIF1<0,SKIPIF1<0,綜上:SKIPIF1<0.(2)存在直線l,使得SKIPIF1<0成立.理由如下:設(shè)直線l的方程為SKIPIF1<0,由SKIPIF1<0得SKIPIF1<0.SKIPIF1<0,化簡(jiǎn)得SKIPIF1<0.設(shè)SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0,SKIPIF1<0.若SKIPIF1<0成立,即SKIPIF1<0,等價(jià)于SKIPIF1<0.所以SKIPIF1<0.SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,化簡(jiǎn)得SKIPIF1<0,即SKIPIF1<0,代入SKIPIF1<0中,SKIPIF1<0,恒成立,所以SKIPIF1<0或SKIPIF1<0,所以實(shí)數(shù)m的取值范圍是SKIPIF1<0.2.(2022·北京東城·三模)已知橢圓SKIPIF1<0的左焦點(diǎn)為SKIPIF1<0,長(zhǎng)軸長(zhǎng)為SKIPIF1<0.過(guò)右焦點(diǎn)SKIPIF1<0的直線SKIPIF1<0交橢圓C于SKIPIF1<0兩點(diǎn),直線SKIPIF1<0分別交直線SKIPIF1<0于點(diǎn)SKIPIF1<0.(1)求橢圓C的方程;(2)設(shè)線段SKIPIF1<0中點(diǎn)為SKIPIF1<0,當(dāng)點(diǎn)SKIPIF1<0位于SKIPIF1<0軸異側(cè)時(shí),求SKIPIF1<0到直線SKIPIF1<0的距離的取值范圍.【答案】(1)SKIPIF1<0(2)SKIPIF1<0(1)由題可知SKIPIF1<0解得SKIPIF1<0.故橢圓C的方程為SKIPIF1<0.(2)當(dāng)直線l的斜率不存在時(shí),T到直線SKIPIF1<0的距離為1.當(dāng)直線l的斜率存在時(shí),設(shè)直線l的方程為SKIPIF1<0.聯(lián)立SKIPIF1<0消y,得SKIPIF1<0.由SKIPIF1<0及題意,可得SKIPIF1<0.設(shè)SKIPIF1<0,則SKIPIF1<0.直線SKIPIF1<0的方程為SKIPIF1<0,令SKIPIF1<0,得SKIPIF1<0,則SKIPIF1<0.同理,SKIPIF1<0.因?yàn)辄c(diǎn)M,N位于x軸異側(cè),所以SKIPIF1<0.即SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0,解得SKIPIF1<0.線段SKIPIF1<0中點(diǎn)T的橫坐標(biāo)為t,則SKIPIF1<0.T到直線SKIPIF1<0的距離為SKIPIF1<0.由SKIPIF1<0,得SKIPIF1<0,故SKIPIF1<0.綜上,T到直線SKIPIF1<0的距離的取值范圍為SKIPIF1<0.3.(2022·安徽省臨泉第一中學(xué)高二階段練習(xí))已知SKIPIF1<0分別是長(zhǎng)軸長(zhǎng)為4的橢圓C:SKIPIF1<0的左右焦點(diǎn),SKIPIF1<0是橢圓C的左右頂點(diǎn),P為橢圓上異于SKIPIF1<0的一個(gè)動(dòng)點(diǎn),O為坐標(biāo)原點(diǎn),點(diǎn)M為線段SKIPIF1<0的中點(diǎn),且直線SKIPIF1<0與OM的斜率的積恒為SKIPIF1<0.(1)求橢圓C的方程(2)設(shè)過(guò)點(diǎn)SKIPIF1<0且不與坐標(biāo)軸垂直的直線SKIPIF1<0交橢圓于A,B兩點(diǎn),線段AB的垂直平分線與x軸交于點(diǎn)N,點(diǎn)N的橫坐標(biāo)的取值范圍是SKIPIF1<0,求線段AB長(zhǎng)的取值范圍.【答案】(1)SKIPIF1<0(2)SKIPIF1<0(1)由已知,SKIPIF1<0,記SKIPIF1<0,因?yàn)镾KIPIF1<0,所以SKIPIF1<0,又點(diǎn)SKIPIF1<0在橢圓上,故SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0,即SKIPIF1<0,所以橢圓方程為SKIPIF1<0.(2)設(shè)直線SKIPIF1<0,聯(lián)立直線與橢圓方程SKIPIF1<0,得SKIPIF1<0,設(shè)SKIPIF1<0.由韋達(dá)定理可得SKIPIF1<0,可得SKIPIF1<0,所以SKIPIF1<0的中點(diǎn)為SKIPIF1<0,所以線段AB的垂直平分線方程為SKIPIF1<0,所以SKIPIF1<0,由已知條件得:SKIPIF1<0,解得SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0題型二:雙曲線中的最值、范圍問(wèn)題角度1:雙曲線中最值問(wèn)題典型例題例題1.(2022·浙江·高三專題練習(xí))設(shè)雙曲線SKIPIF1<0的右頂點(diǎn)為SKIPIF1<0,虛軸長(zhǎng)為SKIPIF1<0,兩準(zhǔn)線間的距離為SKIPIF1<0.(1)求雙曲線SKIPIF1<0的方程;(2)設(shè)動(dòng)直線SKIPIF1<0與雙曲線SKIPIF1<0交于SKIPIF1<0兩點(diǎn),已知SKIPIF1<0,設(shè)點(diǎn)SKIPIF1<0到動(dòng)直線SKIPIF1<0的距離為SKIPIF1<0,求SKIPIF1<0的最大值.【答案】(1)SKIPIF1<0(2)SKIPIF1<0(1)解:依題意可得SKIPIF1<0,解得SKIPIF1<0,所以雙曲線方程為SKIPIF1<0(2)解:由(1)可知SKIPIF1<0,依題意可知SKIPIF1<0,設(shè)SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,則有SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0,SKIPIF1<0,作差得SKIPIF1<0,又SKIPIF1<0的方程為SKIPIF1<0,所以SKIPIF1<0過(guò)定點(diǎn)SKIPIF1<0,所以SKIPIF1<0,即SKIPIF1<0的最大值為SKIPIF1<0;例題2.(2022·全國(guó)·高三專題練習(xí))已知點(diǎn)SKIPIF1<0,SKIPIF1<0,雙曲線SKIPIF1<0上除頂點(diǎn)外任一點(diǎn)SKIPIF1<0滿足直線SKIPIF1<0與SKIPIF1<0的斜率之積為4.(1)求SKIPIF1<0的方程;(2)若直線SKIPIF1<0過(guò)SKIPIF1<0上的一點(diǎn)SKIPIF1<0,且與SKIPIF1<0的漸近線相交于SKIPIF1<0,SKIPIF1<0兩點(diǎn),點(diǎn)SKIPIF1<0,SKIPIF1<0分別位于第一、第二象限,SKIPIF1<0,求SKIPIF1<0的最小值.【答案】(1)SKIPIF1<0(2)1(1)由題意得SKIPIF1<0,即SKIPIF1<0,整理得SKIPIF1<0,因?yàn)殡p曲線的頂點(diǎn)坐標(biāo)滿足上式,所以C的方程為SKIPIF1<0.(2)由(1)可知,曲線C的漸近線方程為SKIPIF1<0,設(shè)點(diǎn)SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,由SKIPIF1<0,得SKIPIF1<0,整理得SKIPIF1<0,SKIPIF1<0①,把①代入SKIPIF1<0,整理得SKIPIF1<0②,因?yàn)镾KIPIF1<0,SKIPIF1<0,所以SKIPIF1<0.由SKIPIF1<0,得SKIPIF1<0,則SKIPIF1<0,當(dāng)且僅當(dāng)SKIPIF1<0時(shí)等號(hào)成立,所以SKIPIF1<0的最小值是1.例題3.(2022·湖南·長(zhǎng)郡中學(xué)高三階段練習(xí))已知雙曲線SKIPIF1<0(SKIPIF1<0,SKIPIF1<0)的左?右焦點(diǎn)分別為SKIPIF1<0?SKIPIF1<0,雙曲線SKIPIF1<0的右頂點(diǎn)SKIPIF1<0在圓SKIPIF1<0上,且SKIPIF1<0.(1)求雙曲線SKIPIF1<0的標(biāo)準(zhǔn)方程;(2)動(dòng)直線SKIPIF1<0與雙曲線SKIPIF1<0恰有1個(gè)公共點(diǎn),且與雙曲線SKIPIF1<0的兩條漸近線分別交于點(diǎn)SKIPIF1<0?SKIPIF1<0,設(shè)SKIPIF1<0為坐標(biāo)原點(diǎn).①求證:點(diǎn)SKIPIF1<0與點(diǎn)SKIPIF1<0的橫坐標(biāo)的積為定值;②求△SKIPIF1<0周長(zhǎng)的最小值.【答案】(1)SKIPIF1<0;(2)①證明見(jiàn)解析;②6.(1)設(shè)雙曲線SKIPIF1<0的半焦距為SKIPIF1<0,由SKIPIF1<0在圓SKIPIF1<0上,得:SKIPIF1<0,由SKIPIF1<0,得:SKIPIF1<0,所以SKIPIF1<0,則雙曲線SKIPIF1<0的標(biāo)準(zhǔn)方程為SKIPIF1<0.(2)①當(dāng)直線SKIPIF1<0的斜率存在時(shí),設(shè)其方程為SKIPIF1<0,顯然SKIPIF1<0,聯(lián)立SKIPIF1<0,消去SKIPIF1<0得:SKIPIF1<0,由直線SKIPIF1<0與雙曲線SKIPIF1<0有且只有一個(gè)公共點(diǎn),且與雙曲線SKIPIF1<0的兩條漸近線分別相交知:直線SKIPIF1<0與雙曲線的漸近線不平行,所以SKIPIF1<0且SKIPIF1<0,于是得SKIPIF1<0,則SKIPIF1<0,雙曲線SKIPIF1<0的漸近線為SKIPIF1<0,聯(lián)立SKIPIF1<0,消去SKIPIF1<0得:SKIPIF1<0,設(shè)SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0.當(dāng)直線SKIPIF1<0的斜率不存在時(shí),SKIPIF1<0,故SKIPIF1<0,綜上,點(diǎn)SKIPIF1<0與點(diǎn)SKIPIF1<0的橫坐標(biāo)的積為定值3.②法1:由①,SKIPIF1<0,則SKIPIF1<0SKIPIF1<0SKIPIF1<0,當(dāng)且僅當(dāng)SKIPIF1<0時(shí)取等號(hào),所以△SKIPIF1<0周長(zhǎng)的最小值為6.法2:由①SKIPIF1<0,則SKIPIF1<0,SKIPIF1<0,在△SKIPIF1<0中,由余弦定理SKIPIF1<0,所以△SKIPIF1<0的周長(zhǎng)為SKIPIF1<0SKIPIF1<0,當(dāng)且僅當(dāng)SKIPIF1<0時(shí)取等號(hào),所以△SKIPIF1<0的周長(zhǎng)的最小值為6.同類題型歸類練1.(2022·江蘇南通·模擬預(yù)測(cè))已知雙曲線C:SKIPIF1<0的左右頂點(diǎn)分別為SKIPIF1<0,SKIPIF1<0,兩條準(zhǔn)線之間的距離為1.(1)求雙曲線C的標(biāo)準(zhǔn)方程;(2)若點(diǎn)P為右準(zhǔn)線上一點(diǎn),直線PA與C交于A,M,直線PB與C交于B,N,求點(diǎn)B到直線MN的距離的最大值.【答案】(1)SKIPIF1<0(2)1(1)由題意得SKIPIF1<0.設(shè)雙曲線C的焦距為2c,則SKIPIF1<0,所以SKIPIF1<0.所以SKIPIF1<0,所以雙曲線C的標(biāo)準(zhǔn)方程SKIPIF1<0.(2)設(shè)SKIPIF1<0,則直線PA的方程為:SKIPIF1<0.由SKIPIF1<0,得SKIPIF1<0.因?yàn)橹本€PA與C交于A,M,所以SKIPIF1<0,所以SKIPIF1<0.因?yàn)镾KIPIF1<0,所以SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0.因?yàn)橹本€PB的方程為SKIPIF1<0SKIPIF1<0由SKIPIF1<0,得SKIPIF1<0.因?yàn)橹本€PB與C交于B,N,所以SKIPIF1<0,所以SKIPIF1<0.因?yàn)镾KIPIF1<0,所以SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0.所以當(dāng)SKIPIF1<0時(shí),直線MN的方程為SKIPIF1<0.令SKIPIF1<0,得SKIPIF1<0.所以直線MN過(guò)定點(diǎn)SKIPIF1<0.當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,所以直線MN過(guò)定點(diǎn)SKIPIF1<0.所以當(dāng)SKIPIF1<0時(shí),點(diǎn)B到直線MN的距離取得最大值為1.2.(2022·湖北·監(jiān)利市教學(xué)研究室高二期末)已知曲線SKIPIF1<0上任意一點(diǎn)SKIPIF1<0滿足方程SKIPIF1<0,(1)求曲線SKIPIF1<0的方程;(2)若直線SKIPIF1<0與曲線SKIPIF1<0在SKIPIF1<0軸左?右兩側(cè)的交點(diǎn)分別是SKIPIF1<0,且SKIPIF1<0,求SKIPIF1<0的最小值.【答案】(1)SKIPIF1<0(2)8(1)解:設(shè)SKIPIF1<0,則SKIPIF1<0,等價(jià)于SKIPIF1<0,SKIPIF1<0曲線SKIPIF1<0為以SKIPIF1<0為焦點(diǎn)的雙曲線,且實(shí)軸長(zhǎng)為2,焦距為SKIPIF1<0,故曲線SKIPIF1<0的方程為:SKIPIF1<0;(2)解:由題意可得直線SKIPIF1<0的斜率存在且不為0,可設(shè)直線SKIPIF1<0的方程為SKIPIF1<0,則直線SKIPIF1<0的方程為SKIPIF1<0,由SKIPIF1<0,得SKIPIF1<0,所以SKIPIF1<0,同理可得,SKIPIF1<0,所以SKIPIF1<0,SKIPIF1<0,當(dāng)且僅當(dāng)SKIPIF1<0時(shí)取等號(hào),所以當(dāng)SKIPIF1<0時(shí),SKIPIF1<0取得最小值8.3.(2022·全國(guó)·高三專題練習(xí))已知雙曲線SKIPIF1<0:SKIPIF1<0和圓SKIPIF1<0:SKIPIF1<0(其中原點(diǎn)SKIPIF1<0為圓心),過(guò)雙曲線SKIPIF1<0上一點(diǎn)SKIPIF1<0引圓SKIPIF1<0的兩條切線,切點(diǎn)分別為SKIPIF1<0、SKIPIF1<0.(1)若雙曲線SKIPIF1<0上存在點(diǎn)SKIPIF1<0,使得SKIPIF1<0,求雙曲線離心率SKIPIF1<0的取值范圍;(2)求直線SKIPIF1<0的方程;(3)求三角形SKIPIF1<0面積的最大值.【答案】(1)SKIPIF1<0;(2)SKIPIF1<0;(3)SKIPIF1<0.(1)因?yàn)镾KIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0SKIPIF1<0.由SKIPIF1<0及圓的性質(zhì),可知四邊形SKIPIF1<0是正方形,所以SKIPIF1<0.因?yàn)镾KIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0SKIPIF1<0.故雙曲線離心率SKIPIF1<0的取值范圍為SKIPIF1<0.(2)因?yàn)镾KIPIF1<0,所以以點(diǎn)SKIPIF1<0為圓心,SKIPIF1<0為半徑的圓SKIPIF1<0的方程為SKIPIF1<0.因?yàn)閳ASKIPIF1<0與圓SKIPIF1<0兩圓的公共弦所在的直線即為直線SKIPIF1<0,所以聯(lián)立方程組SKIPIF1<0,消去SKIPIF1<0,SKIPIF1<0,即得直線SKIPIF1<0的方程為SKIPIF1<0.(3)由(2)知,直線SKIPIF1<0的方程為SKIPIF1<0,所以點(diǎn)SKIPIF1<0到直線SKIPIF1<0的距離為SKIPIF1<0.因?yàn)镾KIPIF1<0,所以三角形SKIPIF1<0的面積SKIPIF1<0.因?yàn)辄c(diǎn)SKIPIF1<0在雙曲線SKIPIF1<0上,所以SKIPIF1<0,即SKIPIF1<0SKIPIF1<0.設(shè)SKIPIF1<0,所以SKIPIF1<0.因?yàn)镾KIPIF1<0,所以當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0.所以SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,在SKIPIF1<0上單調(diào)遞減.當(dāng)SKIPIF1<0,即SKIPIF1<0時(shí),SKIPIF1<0,當(dāng)SKIPIF1<0,即SKIPIF1<0時(shí),SKIPIF1<0.綜上可知,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0;當(dāng)SKIPIF1<0時(shí),SKIPIF1<0.角度2:雙曲線中參數(shù)范圍問(wèn)題典型例題例題1.(2022·全國(guó)·高三專題練習(xí))已知雙曲線SKIPIF1<0與圓SKIPIF1<0交于點(diǎn)SKIPIF1<0第一象限SKIPIF1<0,曲線SKIPIF1<0為SKIPIF1<0、SKIPIF1<0上取滿足SKIPIF1<0的部分.(1)若SKIPIF1<0,求SKIPIF1<0的值;(2)當(dāng)SKIPIF1<0,SKIPIF1<0與x軸交點(diǎn)記作點(diǎn)SKIPIF1<0、SKIPIF1<0,SKIPIF1<0是曲線SKIPIF1<0上一點(diǎn),且在第一象限,且SKIPIF1<0,求SKIPIF1<0;(3)過(guò)點(diǎn)SKIPIF1<0斜率為SKIPIF1<0的直線SKIPIF1<0與曲線SKIPIF1<0只有兩個(gè)交點(diǎn),記為SKIPIF1<0、SKIPIF1<0,用SKIPIF1<0表示SKIPIF1<0,并求SKIPIF1<0的取值范圍.【答案】(1)SKIPIF1<0;(2)SKIPIF1<0;(3)SKIPIF1<0,SKIPIF1<0.(1)由SKIPIF1<0,點(diǎn)A為曲線SKIPIF1<0與曲線SKIPIF1<0的交點(diǎn),聯(lián)立SKIPIF1<0,解得SKIPIF1<0,SKIPIF1<0;(2)由題意可得SKIPIF1<0,SKIPIF1<0為曲線SKIPIF1<0的兩個(gè)焦點(diǎn),由雙曲線的定義可得SKIPIF1<0,又SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0,因?yàn)镾KIPIF1<0,則SKIPIF1<0,所以SKIPIF1<0,在SKIPIF1<0中,由余弦定理可得SKIPIF1<0SKIPIF1<0,由SKIPIF1<0,可得SKIPIF1<0;(3)設(shè)直線SKIPIF1<0,可得原點(diǎn)O到直線l的距離SKIPIF1<0,所以直線l是圓的切線,設(shè)切點(diǎn)為M,所以SKIPIF1<0,并設(shè)SKIPIF1<0與圓SKIPIF1<0聯(lián)立,可得SKIPIF1<0,可得SKIPIF1<0,SKIPIF1<0,即SKIPIF1<0,注意直線l與雙曲線的斜率為負(fù)的漸近線平行,所以只有當(dāng)SKIPIF1<0時(shí),直線l才能與曲線SKIPIF1<0有兩個(gè)交點(diǎn),由SKIPIF1<0,可得SKIPIF1<0,所以有SKIPIF1<0,解得SKIPIF1<0或SKIPIF1<0舍去SKIPIF1<0,因?yàn)镾KIPIF1<0為SKIPIF1<0在SKIPIF1<0上的投影可得,SKIPIF1<0,所以SKIPIF1<0,則SKIPIF1<0.例題2.(20

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論