新高考數(shù)學(xué)一輪復(fù)習(xí)知識(shí)總結(jié) 數(shù)列(含解析)_第1頁(yè)
新高考數(shù)學(xué)一輪復(fù)習(xí)知識(shí)總結(jié) 數(shù)列(含解析)_第2頁(yè)
新高考數(shù)學(xué)一輪復(fù)習(xí)知識(shí)總結(jié) 數(shù)列(含解析)_第3頁(yè)
新高考數(shù)學(xué)一輪復(fù)習(xí)知識(shí)總結(jié) 數(shù)列(含解析)_第4頁(yè)
新高考數(shù)學(xué)一輪復(fù)習(xí)知識(shí)總結(jié) 數(shù)列(含解析)_第5頁(yè)
已閱讀5頁(yè),還剩15頁(yè)未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶(hù)提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

第四章數(shù)列要點(diǎn)一:數(shù)列的通項(xiàng)公式數(shù)列的通項(xiàng)公式一個(gè)數(shù)列SKIPIF1<0的第n項(xiàng)SKIPIF1<0與項(xiàng)數(shù)n之間的函數(shù)關(guān)系,如果可以用一個(gè)公式SKIPIF1<0來(lái)表示,我們就把這個(gè)公式叫做這個(gè)數(shù)列的通項(xiàng)公式.要點(diǎn)詮釋?zhuān)孩俨皇敲總€(gè)數(shù)列都能寫(xiě)出它的通項(xiàng)公式.如數(shù)列1,2,3,―1,4,―2,就寫(xiě)不出通項(xiàng)公式;②有的數(shù)列雖然有通項(xiàng)公式,但在形式上又不一定是唯一的.如:數(shù)列―1,1,―1,1,…的通項(xiàng)公式可以寫(xiě)成SKIPIF1<0,也可以寫(xiě)成SKIPIF1<0;③僅僅知道一個(gè)數(shù)列的前面的有限項(xiàng),無(wú)其他說(shuō)明,數(shù)列是不能確定的.通項(xiàng)SKIPIF1<0與前n項(xiàng)和SKIPIF1<0的關(guān)系:任意數(shù)列SKIPIF1<0的前n項(xiàng)和SKIPIF1<0;SKIPIF1<0要點(diǎn)詮釋?zhuān)河汕皀項(xiàng)和SKIPIF1<0求數(shù)列通項(xiàng)時(shí),要分三步進(jìn)行:(1)求SKIPIF1<0,(2)求出當(dāng)n≥2時(shí)的SKIPIF1<0,(3)如果令n≥2時(shí)得出的SKIPIF1<0中的n=1時(shí)有SKIPIF1<0成立,則最后的通項(xiàng)公式可以統(tǒng)一寫(xiě)成一個(gè)形式,否則就只能寫(xiě)成分段的形式.數(shù)列的遞推式:如果已知數(shù)列的第一項(xiàng)或前若干項(xiàng),且任一項(xiàng)SKIPIF1<0與它的前一項(xiàng)SKIPIF1<0或前若干項(xiàng)間的關(guān)系可以用一個(gè)公式來(lái)表示,那么這個(gè)公式就叫做這個(gè)數(shù)列的遞推公式,簡(jiǎn)稱(chēng)遞推式.要點(diǎn)詮釋?zhuān)豪眠f推關(guān)系表示數(shù)列時(shí),需要有相應(yīng)個(gè)數(shù)的初始值,可用湊配法、換元法等.要點(diǎn)二:等差數(shù)列判定一個(gè)數(shù)列為等差數(shù)列的常用方法①定義法:SKIPIF1<0(常數(shù))SKIPIF1<0SKIPIF1<0是等差數(shù)列;②中項(xiàng)公式法:SKIPIF1<0是等差數(shù)列;③通項(xiàng)公式法:SKIPIF1<0(p,q為常數(shù))SKIPIF1<0SKIPIF1<0是等差數(shù)列;④前n項(xiàng)和公式法:SKIPIF1<0(A,B為常數(shù))SKIPIF1<0SKIPIF1<0是等差數(shù)列.要點(diǎn)詮釋?zhuān)簩?duì)于探索性較強(qiáng)的問(wèn)題,則應(yīng)注意從特例入手,歸納猜想一般特性.等差數(shù)列的有關(guān)性質(zhì):(1)通項(xiàng)公式的推廣:SKIPIF1<0(2)若SKIPIF1<0,則SKIPIF1<0;特別,若SKIPIF1<0,則SKIPIF1<0(3)等差數(shù)列SKIPIF1<0中,若SKIPIF1<0SKIPIF1<0.(4)公差為d的等差數(shù)列中,連續(xù)k項(xiàng)和SKIPIF1<0,…組成新的等差數(shù)列.(5)等差數(shù)列SKIPIF1<0,前n項(xiàng)和為SKIPIF1<0①當(dāng)n為奇數(shù)時(shí),SKIPIF1<0;SKIPIF1<0;SKIPIF1<0;②當(dāng)n為偶數(shù)時(shí),SKIPIF1<0;SKIPIF1<0;SKIPIF1<0.(6)等差數(shù)列SKIPIF1<0,前n項(xiàng)和為SKIPIF1<0,則SKIPIF1<0(m、n∈N*,且m≠n).(7)等差數(shù)列SKIPIF1<0中,若m+n=p+q(m、n、p、q∈N*,且m≠n,p≠q),則SKIPIF1<0.(8)等差數(shù)列SKIPIF1<0中,公差d,依次每k項(xiàng)和:SKIPIF1<0,SKIPIF1<0,SKIPIF1<0成等差數(shù)列,新公差SKIPIF1<0.等差數(shù)列前n項(xiàng)和SKIPIF1<0的最值問(wèn)題:等差數(shù)列SKIPIF1<0中=1\*GB3①若a1>0,d<0,SKIPIF1<0有最大值,可由不等式組SKIPIF1<0來(lái)確定n;=2\*GB3②若a1<0,d>0,SKIPIF1<0有最小值,可由不等式組SKIPIF1<0來(lái)確定n,也可由前n項(xiàng)和公式SKIPIF1<0來(lái)確定n.要點(diǎn)詮釋?zhuān)旱炔顢?shù)列的求和中的函數(shù)思想是解決最值問(wèn)題的基本方法.要點(diǎn)三:等比數(shù)列判定一個(gè)數(shù)列是等比數(shù)列的常用方法(1)定義法:SKIPIF1<0(q是不為0的常數(shù),n∈N*)SKIPIF1<0是等比數(shù)列;(2)通項(xiàng)公式法:SKIPIF1<0(c、q均是不為0的常數(shù)n∈N*)SKIPIF1<0是等比數(shù)列;(3)中項(xiàng)公式法:SKIPIF1<0(SKIPIF1<0,SKIPIF1<0)SKIPIF1<0是等比數(shù)列.等比數(shù)列的主要性質(zhì):(1)通項(xiàng)公式的推廣:SKIPIF1<0(2)若SKIPIF1<0,則SKIPIF1<0.特別,若SKIPIF1<0,則SKIPIF1<0(3)等比數(shù)列SKIPIF1<0中,若SKIPIF1<0SKIPIF1<0.(4)公比為q的等比數(shù)列中,連續(xù)k項(xiàng)和SKIPIF1<0,…組成新的等比數(shù)列.(5)等比數(shù)列SKIPIF1<0,前n項(xiàng)和為SKIPIF1<0,當(dāng)n為偶數(shù)時(shí),SKIPIF1<0.(6)等比數(shù)列SKIPIF1<0中,公比為q,依次每k項(xiàng)和:SKIPIF1<0,SKIPIF1<0,SKIPIF1<0…成公比為qk的等比數(shù)列.(7)若SKIPIF1<0為正項(xiàng)等比數(shù)列,則SKIPIF1<0(a>0且a≠1)為等差數(shù)列;反之,若SKIPIF1<0為等差數(shù)列,則SKIPIF1<0(a>0且a≠1)為等比數(shù)列.(8)等比數(shù)列SKIPIF1<0前n項(xiàng)積為SKIPIF1<0,則SKIPIF1<0等比數(shù)列的通項(xiàng)公式與函數(shù):SKIPIF1<0①方程觀點(diǎn):知二求一;②函數(shù)觀點(diǎn):SKIPIF1<0SKIPIF1<0時(shí),是關(guān)于n的指數(shù)型函數(shù);SKIPIF1<0時(shí),是常數(shù)函數(shù);要點(diǎn)詮釋?zhuān)寒?dāng)SKIPIF1<0時(shí),若SKIPIF1<0,等比數(shù)列SKIPIF1<0是遞增數(shù)列;若SKIPIF1<0,等比數(shù)列SKIPIF1<0是遞減數(shù)列;當(dāng)SKIPIF1<0時(shí),若SKIPIF1<0,等比數(shù)列SKIPIF1<0是遞減數(shù)列;若SKIPIF1<0,等比數(shù)列SKIPIF1<0是遞增數(shù)列;當(dāng)SKIPIF1<0時(shí),等比數(shù)列SKIPIF1<0是擺動(dòng)數(shù)列;當(dāng)SKIPIF1<0時(shí),等比數(shù)列SKIPIF1<0是非零常數(shù)列.要點(diǎn)四:常見(jiàn)的數(shù)列求和方法公式法:如果一個(gè)數(shù)列是等差數(shù)列或者等比數(shù)列,直接用其前n項(xiàng)和公式求和.分組求和法:將通項(xiàng)拆開(kāi)成等差數(shù)列和等比數(shù)列相加或相減的形式,然后分別對(duì)等差數(shù)列和等比數(shù)列求和.如:an=2n+3n.裂項(xiàng)相消求和法:把數(shù)列的通項(xiàng)拆成兩項(xiàng)之差,正負(fù)相消,剩下首尾若干項(xiàng)的方法.一般通項(xiàng)的分子為非零常數(shù),分母為非常數(shù)列的等差數(shù)列的兩項(xiàng)積的形式.若SKIPIF1<0,分子為非零常數(shù),分母為非常數(shù)列的等差數(shù)列的兩項(xiàng)積的形式,則SKIPIF1<0,如an=SKIPIF1<0SKIPIF1<0錯(cuò)位相減求和法:通項(xiàng)為非常數(shù)列的等差數(shù)列與等比數(shù)列的對(duì)應(yīng)項(xiàng)的積的形式:SKIPIF1<0,其中SKIPIF1<0是公差d≠0等差數(shù)列,SKIPIF1<0是公比q≠1等比數(shù)列,如an=(2n-1)2n.一般步驟:SKIPIF1<0,則SKIPIF1<0所以有SKIPIF1<0要點(diǎn)詮釋?zhuān)呵蠛椭杏^察數(shù)列的類(lèi)型,選擇合適的變形手段,注意錯(cuò)位相減中變形的要點(diǎn).要點(diǎn)五:數(shù)列應(yīng)用問(wèn)題數(shù)列應(yīng)用問(wèn)題是中學(xué)數(shù)學(xué)教學(xué)與研究的一個(gè)重要內(nèi)容,解答數(shù)學(xué)應(yīng)用問(wèn)題的核心是建立數(shù)學(xué)模型,有關(guān)平均增長(zhǎng)率、利率(復(fù)利)以及等值增減等實(shí)際問(wèn)題,需利用數(shù)列知識(shí)建立數(shù)學(xué)模型.建立數(shù)學(xué)模型的一般方法步驟.①認(rèn)真審題,準(zhǔn)確理解題意,達(dá)到如下要求:⑴明確問(wèn)題屬于哪類(lèi)應(yīng)用問(wèn)題;⑵弄清題目中的主要已知事項(xiàng);⑶明確所求的結(jié)論是什么.②抓住數(shù)量關(guān)系,聯(lián)想數(shù)學(xué)知識(shí)和數(shù)學(xué)方法,恰當(dāng)引入?yún)?shù)變量或適當(dāng)建立坐標(biāo)系,將文字語(yǔ)言翻譯成數(shù)學(xué)語(yǔ)言,將數(shù)量關(guān)系用數(shù)學(xué)式子表達(dá).③將實(shí)際問(wèn)題抽象為數(shù)學(xué)問(wèn)題,將已知與所求聯(lián)系起來(lái),據(jù)題意列出滿足題意的數(shù)學(xué)關(guān)系式(如函數(shù)關(guān)系、方程、不等式).要點(diǎn)詮釋?zhuān)簲?shù)列的建模過(guò)程是解決數(shù)列應(yīng)用題的重點(diǎn),要正確理解題意,恰當(dāng)設(shè)出數(shù)列的基本量.要點(diǎn)六數(shù)學(xué)歸納法一般地,證明一個(gè)與正整數(shù)SKIPIF1<0有關(guān)的命題,可按下列步驟進(jìn)行:(1)歸納奠基:證明當(dāng)SKIPIF1<0取第一個(gè)值SKIPIF1<0時(shí)命題成立;(2)歸納遞推:假設(shè)當(dāng)SKIPIF1<0時(shí)命題成立,證明當(dāng)SKIPIF1<0時(shí)命題也成立.只要完成這兩個(gè)步驟,就可以斷定命題對(duì)從SKIPIF1<0開(kāi)始的所有正整數(shù)SKIPIF1<0都成立.上述證明方法叫做數(shù)學(xué)歸納法,數(shù)學(xué)歸納法的框圖表示如下:歸納奠基歸納奠基歸納遞推驗(yàn)證當(dāng)SKIPIF1<0時(shí)命題成立若當(dāng)SKIPIF1<0時(shí)命題成立,證明當(dāng)SKIPIF1<0時(shí)命題也成立命題對(duì)從SKIPIF1<0開(kāi)始的所有正整數(shù)SKIPIF1<0都成立要點(diǎn)詮釋一般地,對(duì)于一些可以遞推的與正整數(shù)有關(guān)的命題,都可以用數(shù)學(xué)歸納法來(lái)證明.其常見(jiàn)應(yīng)用類(lèi)型有:(1)證明恒等式;(2)證明不等式;(3)整除性的證明;(4)探求平面幾何中的問(wèn)題;(5)探求數(shù)列的通項(xiàng).專(zhuān)題一求數(shù)列的通項(xiàng)公式數(shù)列的通項(xiàng)公式是數(shù)列的核心內(nèi)容之一,它如同函數(shù)中的解析式一樣,有了解析式就可以研究函數(shù)的性質(zhì),而有了數(shù)列的通項(xiàng)公式便可以求出數(shù)列中的任何一項(xiàng).所以求數(shù)列的通項(xiàng)公式往往是解題的關(guān)鍵點(diǎn)和突破口,常用的求數(shù)列通項(xiàng)公式的方法有:(1)觀察法:就是觀察數(shù)列的特征,找出各項(xiàng)共同的構(gòu)成規(guī)律,歸納出通項(xiàng)公式.(2)遞推公式法:就是根據(jù)數(shù)列的遞推公式,采用迭代、疊加、累乘、轉(zhuǎn)化等方法產(chǎn)生SKIPIF1<0與SKIPIF1<0(或SKIPIF1<0)的關(guān)系,得出通項(xiàng)公式.(3)前SKIPIF1<0項(xiàng)和公式法:就是利用SKIPIF1<0,求通項(xiàng)公式,這里應(yīng)當(dāng)注意檢驗(yàn)SKIPIF1<0是否符合SKIPIF1<0時(shí)的形式.1.利用觀察法求通項(xiàng)公式例1將乒乓球堆成若干堆“正三棱錐”形的展品,其中第1堆只有1層,就一個(gè)球;第2,3,4,…堆最底層(第一層)分別按人頭SKIPIF1<0所示方式固定擺放,從第二層開(kāi)始,每層的小球自然壘放在下一層之上,第SKIPIF1<0堆第SKIPIF1<0層就放一個(gè)乒乓球.以SKIPIF1<0表示第SKIPIF1<0堆的乒乓球總數(shù),則SKIPIF1<0;SKIPIF1<0(答案用SKIPIF1<0表示).解析:方法1:SKIPIF1<0表示第3堆的乒乓球總數(shù),則SKIPIF1<0.設(shè)第SKIPIF1<0堆的最底層有SKIPIF1<0個(gè)乒乓球,則SKIPIF1<0.所以SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0.方法2.易知SKIPIF1<0.由題意,知SKIPIF1<0比SKIPIF1<0多最底層,有SKIPIF1<0個(gè),SKIPIF1<0比SKIPIF1<0多最底層,有SKIPIF1<0個(gè),SKIPIF1<0比SKIPIF1<0多最底層,有SKIPIF1<0個(gè),……,SKIPIF1<0比SKIPIF1<0多最底層,有SKIPIF1<0個(gè),所以SKIPIF1<0SKIPIF1<0.所以由累加法可得SKIPIF1<0.答案:SKIPIF1<0SKIPIF1<0解后反思:利用觀察法求通項(xiàng)公式,體現(xiàn)了由特殊到一般的認(rèn)識(shí)事物的規(guī)律.解決這類(lèi)問(wèn)題一定要注意觀察項(xiàng)與項(xiàng)數(shù)的關(guān)系和相鄰項(xiàng)間的關(guān)系.2.公式法求通項(xiàng)公式等差數(shù)列與等比數(shù)列是兩種常見(jiàn)且重要的數(shù)列,所謂公式法就是先分析后項(xiàng)與前項(xiàng)的差或比是否符合等差數(shù)列、等比數(shù)列的定義.求通項(xiàng)時(shí),只需先求出SKIPIF1<0與SKIPIF1<0或SKIPIF1<0與SKIPIF1<0,再代入等差數(shù)列通項(xiàng)公式SKIPIF1<0或等比數(shù)列通項(xiàng)公式SKIPIF1<0中即可.例2已知等差數(shù)列SKIPIF1<0滿足:SKIPIF1<0,且SKIPIF1<0成等比數(shù)列.(1)求數(shù)列SKIPIF1<0的通項(xiàng)公式;(2)記SKIPIF1<0為數(shù)列SKIPIF1<0的前SKIPIF1<0項(xiàng)和,是否存在正整數(shù)SKIPIF1<0,使得SKIPIF1<0?若存在,求SKIPIF1<0的最小值;若不存在,說(shuō)明理由.分析:(1)設(shè)等差數(shù)列SKIPIF1<0的公差為SKIPIF1<0,利用等比數(shù)列的性質(zhì)得到SKIPIF1<0,并利用SKIPIF1<0表示SKIPIF1<0來(lái)求解公差SKIPIF1<0,進(jìn)而求出通項(xiàng);(2)首先利用(1)的結(jié)論與等差數(shù)列的前SKIPIF1<0項(xiàng)和公式求解SKIPIF1<0,然后根據(jù)列不等式SKIPIF1<0求解.解:設(shè)等差數(shù)列SKIPIF1<0的公差為SKIPIF1<0,依題意,知SKIPIF1<0成等比數(shù)列,故SKIPIF1<0,化簡(jiǎn),得SKIPIF1<0,解得SKIPIF1<0或SKIPIF1<0.當(dāng)SKIPIF1<0時(shí),SKIPIF1<0;當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,故數(shù)列SKIPIF1<0的通項(xiàng)公式為SKIPIF1<0或SKIPIF1<0.(2)當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,顯然SKIPIF1<0,此時(shí)不存在正整數(shù)SKIPIF1<0,使得SKIPIF1<0成立.當(dāng)SKIPIF1<0時(shí),SKIPIF1<0.令SKIPIF1<0,即SKIPIF1<0,解得SKIPIF1<0或SKIPIF1<0(舍去),此時(shí)存在正整數(shù)SKIPIF1<0,使得SKIPIF1<0成立,SKIPIF1<0的最小值為SKIPIF1<0.綜上,當(dāng)SKIPIF1<0時(shí),不存在滿足題意的SKIPIF1<0;當(dāng)SKIPIF1<0時(shí),存在滿足題意的SKIPIF1<0,其最小值為SKIPIF1<0.解后反思:運(yùn)用公式法求數(shù)列的通項(xiàng)公式的關(guān)鍵是在已知數(shù)列是等差數(shù)列還是等比數(shù)列的前提下,先求出首相和公差或公比,再代入求出相應(yīng)的通項(xiàng)公式.3.利用SKIPIF1<0與SKIPIF1<0的關(guān)系求通項(xiàng)公式如果給出條件中是SKIPIF1<0與SKIPIF1<0的關(guān)系式,可利用SKIPIF1<0,先求出SKIPIF1<0,若計(jì)算出的SKIPIF1<0中,當(dāng)SKIPIF1<0時(shí),也有SKIPIF1<0,則可合并為一個(gè)通項(xiàng)公式,否則要分段表述.例3設(shè)各項(xiàng)均為正數(shù)的數(shù)列SKIPIF1<0的前SKIPIF1<0項(xiàng)和為SKIPIF1<0,且SKIPIF1<0滿足SKIPIF1<0.(1)求SKIPIF1<0的值;(2)求數(shù)列SKIPIF1<0的通項(xiàng)公式.分析(1)有SKIPIF1<0與SKIPIF1<0的關(guān)系直接求出SKIPIF1<0的值;(2)利用前SKIPIF1<0項(xiàng)和與第SKIPIF1<0項(xiàng)的關(guān)系求解.解:(1)當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,所以SKIPIF1<0,解得SKIPIF1<0(負(fù)值舍去).(2)由SKIPIF1<0,得SKIPIF1<0.又已知各項(xiàng)均為正數(shù),故SKIPIF1<0.當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0也滿足上式,所以SKIPIF1<0.解后反思:前SKIPIF1<0項(xiàng)和的關(guān)系式有兩種形式:一種是SKIPIF1<0與SKIPIF1<0的關(guān)系式,記為SKIPIF1<0,可由公式SKIPIF1<0直接求出SKIPIF1<0,但要注意SKIPIF1<0與SKIPIF1<0兩種情況能否統(tǒng)一;另一種是SKIPIF1<0與SKIPIF1<0的關(guān)系式,記為SKIPIF1<0,可由它求通項(xiàng)SKIPIF1<0.4.利用累加法求通項(xiàng)公式對(duì)于形如SKIPIF1<0形的遞推公式求通項(xiàng)公式,(1)當(dāng)SKIPIF1<0為常數(shù)時(shí),為等差數(shù)列,則SKIPIF1<0;(2)當(dāng)SKIPIF1<0為SKIPIF1<0的函數(shù)時(shí),用累加法,方法如下:由SKIPIF1<0,得當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,SKIPIF1<0……SKIPIF1<0SKIPIF1<0以上SKIPIF1<0個(gè)等式累加,得SKIPIF1<0,所以SKIPIF1<0.為了書(shū)寫(xiě)方便,也可以這樣寫(xiě):因?yàn)楫?dāng)SKIPIF1<0時(shí),SKIPIF1<0SKIPIF1<0(3)已知SKIPIF1<0,SKIPIF1<0,其中SKIPIF1<0可以是關(guān)于SKIPIF1<0的一次函數(shù)、二次函數(shù)、指數(shù)函數(shù)、分式函數(shù),求SKIPIF1<0.①若SKIPIF1<0是關(guān)于SKIPIF1<0的一次函數(shù),累加后可轉(zhuǎn)化為等差數(shù)列求和;②若SKIPIF1<0是關(guān)于SKIPIF1<0的二次函數(shù),累加后可分組求和;③若SKIPIF1<0是關(guān)于SKIPIF1<0的指數(shù)函數(shù),累加后可轉(zhuǎn)化為等比數(shù)列求和;④若SKIPIF1<0是關(guān)于SKIPIF1<0的分式函數(shù),累加后可裂項(xiàng)求和.例4已知在數(shù)列SKIPIF1<0中,SKIPIF1<0,且SKIPIF1<0,求數(shù)列SKIPIF1<0的通項(xiàng)公式.分析:由于給出了數(shù)列SKIPIF1<0中連續(xù)兩項(xiàng)的差,故可考慮用累加法求解.解:由SKIPIF1<0,得SKIPIF1<0,SKIPIF1<0,……SKIPIF1<0,SKIPIF1<0.當(dāng)SKIPIF1<0時(shí),以上SKIPIF1<0個(gè)等式兩邊分別相加,得SKIPIF1<0SKIPIF1<0.即SKIPIF1<0.又因?yàn)镾KIPIF1<0,所以SKIPIF1<0.因?yàn)楫?dāng)SKIPIF1<0時(shí),SKIPIF1<0也適合上式,所以數(shù)列SKIPIF1<0的通項(xiàng)公式為SKIPIF1<0(SKIPIF1<0).解后反思:累加法是從SKIPIF1<0開(kāi)始,累加到SKIPIF1<0,此時(shí)SKIPIF1<0,所以求出的SKIPIF1<0只滿足SKIPIF1<0的所有項(xiàng),容易漏掉SKIPIF1<0這一項(xiàng)的檢驗(yàn).在學(xué)習(xí)過(guò)程中,要勇氣重視以減少不必要的失分.5.利用累乘法求通項(xiàng)公式對(duì)于由形如SKIPIF1<0型的遞推公式求通項(xiàng)公式.(1)當(dāng)SKIPIF1<0為常數(shù)時(shí),即SKIPIF1<0(其中SKIPIF1<0是不為SKIPIF1<0的常數(shù)),此時(shí)數(shù)列為等比數(shù)列,SKIPIF1<0;(2)當(dāng)SKIPIF1<0為SKIPIF1<0的函數(shù)時(shí),用累乘法.由SKIPIF1<0,得當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,所以SKIPIF1<0.例5如圖所示,互不相同的點(diǎn)SKIPIF1<0和分別在角SKIPIF1<0的兩條邊上,所有SKIPIF1<0相互平行,且所有梯形SKIPIF1<0的面積均相等.設(shè)SKIPIF1<0,若SKIPIF1<0,則數(shù)列SKIPIF1<0的通項(xiàng)公式是.分析:利用梯形面積之間的關(guān)系探究出SKIPIF1<0與SKIPIF1<0之間的關(guān)系,累乘后即可得出通項(xiàng)公式.解析:令SKIPIF1<0,因?yàn)樗蠸KIPIF1<0相互平行且SKIPIF1<0,所以SKIPIF1<0.當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,……,SKIPIF1<0,以上各式SKIPIF1<0,因?yàn)镾KIPIF1<0,所以SKIPIF1<0.答案:SKIPIF1<0.解后反思:SKIPIF1<0,當(dāng)SKIPIF1<0為常數(shù)時(shí),則數(shù)列為等比數(shù)列,可用公式法求通項(xiàng)公式;當(dāng)SKIPIF1<0為關(guān)于SKIPIF1<0的表達(dá)式時(shí),則用累乘法求通項(xiàng)公式.6.利用構(gòu)造法求通項(xiàng)公式形如SKIPIF1<0轉(zhuǎn)化為SKIPIF1<0(SKIPIF1<0為待定系數(shù))的形式,比較SKIPIF1<0與SKIPIF1<0的系數(shù),得SKIPIF1<0,所以SKIPIF1<0.所以有SKIPIF1<0,因此數(shù)列SKIPIF1<0是首項(xiàng)為SKIPIF1<0,公比為SKIPIF1<0的等比數(shù)列,于是SKIPIF1<0,所以SKIPIF1<0.例6在數(shù)列SKIPIF1<0中,SKIPIF1<0,求SKIPIF1<0的通項(xiàng)公式.分析:構(gòu)造以SKIPIF1<0為公比的等比數(shù)列求解.解:方法1:因?yàn)镾KIPIF1<0,①所以SKIPIF1<0②①SKIPIF1<0②,得SKIPIF1<0令SKIPIF1<0,則SKIPIF1<0.所以SKIPIF1<0為等比數(shù)列,公比為SKIPIF1<0,首項(xiàng)SKIPIF1<0.所以SKIPIF1<0.即SKIPIF1<0③由①③兩式,得SKIPIF1<0.方法2:令SKIPIF1<0(SKIPIF1<0為常數(shù)),則SKIPIF1<0,把該式與已知SKIPIF1<0對(duì)應(yīng)得SKIPIF1<0,即SKIPIF1<0.令SKIPIF1<0,則數(shù)列SKIPIF1<0是首相為SKIPIF1<0,公比為SKIPIF1<0的等比數(shù)列.所以SKIPIF1<0.所以SKIPIF1<0.所以SKIPIF1<0.解后反思:方法1是解數(shù)列問(wèn)題經(jīng)常采用的方法;方法2中利用待定系數(shù)法確定常數(shù)SKIPIF1<0,構(gòu)造新的等比數(shù)列,進(jìn)而求通項(xiàng)公式,該方法也是常用的解法.專(zhuān)題二數(shù)列前SKIPIF1<0項(xiàng)和的求法求數(shù)列的前SKIPIF1<0項(xiàng)和是數(shù)列運(yùn)算的重要內(nèi)容之一,也是歷年高考考查的熱點(diǎn).對(duì)于等差數(shù)列、等比數(shù)列,可以直接利用求和公式計(jì)算,對(duì)于一些具有特殊結(jié)構(gòu)的運(yùn)算數(shù)列,常用倒序相加法、裂項(xiàng)相消法、錯(cuò)位相減法等求和.1.公式法如果一個(gè)數(shù)列的每一項(xiàng)是由幾個(gè)獨(dú)立的項(xiàng)組合而成,并且各獨(dú)立項(xiàng)也可組成等差數(shù)列或等比數(shù)列,則該數(shù)列的前SKIPIF1<0項(xiàng)和可考慮拆項(xiàng)后利用公式求解.例7已知數(shù)列SKIPIF1<0的通項(xiàng)公式SKIPIF1<0,求由其奇數(shù)項(xiàng)所組成的數(shù)列的前SKIPIF1<0項(xiàng)和SKIPIF1<0.分析:由SKIPIF1<0,知SKIPIF1<0是等比數(shù)列,所以其奇數(shù)項(xiàng)也成等比數(shù)列,確定其首項(xiàng)和公比,直接利用等比數(shù)列的前SKIPIF1<0項(xiàng)公式求和即可.解:由SKIPIF1<0,得SKIPIF1<0.又因?yàn)镾KIPIF1<0,所以SKIPIF1<0是等比數(shù)列,其公比SKIPIF1<0,首項(xiàng)SKIPIF1<0.所以SKIPIF1<0的奇數(shù)項(xiàng)也成等比數(shù)列,公比為SKIPIF1<0,首項(xiàng)為SKIPIF1<0,所以SKIPIF1<0SKIPIF1<0.解后反思:若已知是等差數(shù)列或等比數(shù)列,則直接利用相應(yīng)的前SKIPIF1<0項(xiàng)和公式求解.2.倒序相加法這是推導(dǎo)等差數(shù)列的前SKIPIF1<0項(xiàng)和公式時(shí)所用的方法,也就是將一個(gè)數(shù)列倒過(guò)來(lái)排列(反序),當(dāng)它與原數(shù)列相加時(shí),若有公因式可提,并且剩余項(xiàng)的和易于求得,則這樣的舒蕾可用倒序相加法求和.例8已知SKIPIF1<0,其中SKIPIF1<0,求SKIPIF1<0.分析:觀察首項(xiàng)和末項(xiàng)的真數(shù)的積與第二項(xiàng)和倒數(shù)第二項(xiàng)的真數(shù)的積相同,可用倒序相加法求和.解:將和式中各項(xiàng)倒序排列,得SKIPIF1<0將此式與原式兩邊對(duì)應(yīng)相加,得SKIPIF1<0SKIPIF1<0.因?yàn)镾KIPIF1<0,所以SKIPIF1<0.解后反思:對(duì)某些前后具有對(duì)稱(chēng)性的數(shù)列,可以運(yùn)用倒序相加法求其前SKIPIF1<0項(xiàng)和.3.錯(cuò)位相減法若數(shù)列SKIPIF1<0為等差數(shù)列,數(shù)列SKIPIF1<0為等比數(shù)列,由這兩個(gè)數(shù)列的對(duì)應(yīng)項(xiàng)乘積組成的新數(shù)列為SKIPIF1<0,當(dāng)求該新數(shù)列的前SKIPIF1<0項(xiàng)的和時(shí),常常采用將SKIPIF1<0的各項(xiàng)乘以公比SKIPIF1<0,并向后錯(cuò)位一項(xiàng)與SKIPIF1<0的同次項(xiàng)對(duì)應(yīng)相減,即可轉(zhuǎn)化為特殊數(shù)列的求和,所以這種數(shù)列求和的方法稱(chēng)為錯(cuò)位相減法.例9數(shù)列SKIPIF1<0的前SKIPIF1<0項(xiàng)和為SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0.(1)求SKIPIF1<0;(2)求數(shù)列SKIPIF1<0的前SKIPIF1<0項(xiàng)和SKIPIF1<0.分析:(1)先利用SKIPIF1<0與SKIPIF1<0的關(guān)系求出SKIPIF1<0,再分類(lèi)討論得出SKIPIF1<0;(2)利用錯(cuò)位相減法求前SKIPIF1<0項(xiàng)和SKIPIF1<0.解:(1)因?yàn)镾KIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0.又因?yàn)镾KIPIF1<0.所以SKIPIF1<0是首項(xiàng)為1,公比為3的等比數(shù)列.所以SKIPIF1<0.當(dāng)SKIPIF1<0時(shí)SKIPIF1<0,且SKIPIF1<0,所以SKIPIF1<0.(2)SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0;當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,①所以SKIPIF1<0,②①SKIPIF1<0②,得SKIPIF1<0SKIPIF1<0,所以SKIPIF1<0.又因?yàn)镾KIPIF1<0也滿足上式,所以SKIPIF1<0.解后反思:利用錯(cuò)位相減法求和時(shí),一定要注意作差后項(xiàng)的符號(hào)及項(xiàng)的變化.4.拆項(xiàng)(分組)求和法如果一個(gè)數(shù)列中連續(xù)分段的和具有一定的規(guī)律性,那么可考慮分組求和.分組求和實(shí)際上就是首先通過(guò)“拆”和“組”的手段把問(wèn)題劃歸為等差數(shù)列或等比數(shù)列,然后由等差數(shù)列、等比數(shù)列求和公式求解.解題時(shí)要根據(jù)各組的特點(diǎn),對(duì)SKIPIF1<0的取值進(jìn)行討論.例10設(shè)SKIPIF1<0為數(shù)列SKIPIF1<0的前SKIPIF1<0項(xiàng)和,SKIPIF1<0,SKIPIF1<0,則(1)SKIPIF1<0;(2)SKIPIF1<0.分析:(1)根據(jù)SKIPIF1<0建立關(guān)于SKIPIF1<0的關(guān)系式,并由SKIPIF1<0的關(guān)系式歸納尋找其規(guī)律后求解;(2)將遞推關(guān)系應(yīng)用到SKIPIF1<0中,將和式分組后求和.解析:(1)因?yàn)镾KIPIF1<0,所以SKIPIF1<0.當(dāng)SKIPIF1<0為偶數(shù)時(shí),SKIPIF1<0,當(dāng)SKIPIF1<0為奇數(shù)時(shí),SKIPIF1<0,所以當(dāng)SKIPIF1<0時(shí),SKIPIF1<0.(2)當(dāng)SKIPIF1<0為偶數(shù)時(shí),SKIPIF1<0,當(dāng)SKIPIF1<0為奇數(shù)時(shí),SKIPIF1<0,可得當(dāng)SKIPIF1<0為奇數(shù)時(shí),SKIPIF1<0,故SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0.答案:(1)SKIPIF1<0(2)SKIPIF1<0解后反思:數(shù)列求和應(yīng)從通項(xiàng)公式入手,若無(wú)通項(xiàng)公式,則先求其通項(xiàng)公式,再通過(guò)對(duì)通項(xiàng)公式的變形,轉(zhuǎn)化為求等差數(shù)列或等比數(shù)列的前SKIPIF1<0項(xiàng)和.5.并項(xiàng)求和法一個(gè)數(shù)列的前SKIPIF1<0項(xiàng)和中,若可兩兩結(jié)合求解,則稱(chēng)之為并項(xiàng)求和.形如SKIPIF1<0的類(lèi)型,可采用兩項(xiàng)合并求解.例如,SKIPIF1<0SKIPIF1<0.例11數(shù)列SKIPIF1<0的通項(xiàng)公式為SKIPIF1<0,求:(1)數(shù)列SKIPIF1<0的前SKIPIF1<0項(xiàng)和SKIPIF1<0;(2)數(shù)列SKIPIF1<0的前SKIPIF1<0項(xiàng)和SKIPIF1<0.分析:形如SKIPIF1<0,運(yùn)用并項(xiàng)求和法,先判斷相鄰兩項(xiàng)和的關(guān)系.SKIPIF1<0,所以SKIPIF1<0,即SKIPIF1<0可以?xún)蓛珊喜⑦M(jìn)行求解.由于SKIPIF1<0的奇偶性未知,應(yīng)分SKIPIF1<0為奇數(shù)和SKIPIF1<0為偶數(shù)兩種情況討論.解:(1)SKIPIF1<0SKIPIF1<0SKIPIF1<0.(2)當(dāng)SKIPIF1<0為偶數(shù)時(shí),SKIPIF1<0SKIPIF1<0.因?yàn)镾KIPIF1<0成等差數(shù)列,共SKIPIF1<0項(xiàng),所以SKIPIF1<0.當(dāng)SKIPIF1<0為奇數(shù)時(shí),SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0.故SKIPIF1<0.解后反思:在并項(xiàng)求和時(shí),要先判斷項(xiàng)數(shù)的多少,由于是兩兩合并,就要知道最后一項(xiàng)是奇數(shù)項(xiàng)還是偶數(shù)項(xiàng),若不確定,則需分類(lèi)討論.6.裂項(xiàng)相消法對(duì)于裂項(xiàng)后明顯有能夠相消的項(xiàng)的一類(lèi)數(shù)列,在求和時(shí)常用“裂項(xiàng)法”,分式的求和多利用此法.可用待定系數(shù)法對(duì)通項(xiàng)公式進(jìn)行裂項(xiàng),相消時(shí)應(yīng)注意消去項(xiàng)的規(guī)律,即消去哪些項(xiàng),保留哪些項(xiàng).常見(jiàn)的裂項(xiàng)公式有:①SKIPIF1<0;②若SKIPIF1<0為等差數(shù)列,公差為SKIPIF1<0,則SKIPIF1<0;③SKIPIF1<0等.例12求數(shù)列SKIPIF1<0的前SKIPIF1<0項(xiàng)和SKIPIF1<0.分析:先求出通項(xiàng)公式SKIPIF1<0,對(duì)通項(xiàng)公式化簡(jiǎn)后,再分成兩項(xiàng)的差,使用裂項(xiàng)相消法求和.解:數(shù)列的通項(xiàng)公式SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0,則SKIPIF1<0SKIPIF1<0SKIPIF1<0.解后反思:(1)裂項(xiàng)原則:直到發(fā)現(xiàn)被消去項(xiàng)的規(guī)律為止;(2)消項(xiàng)規(guī)律:消項(xiàng)后前邊剩幾項(xiàng),后邊就剩幾項(xiàng),前邊剩第幾項(xiàng),后邊剩倒數(shù)第幾項(xiàng).專(zhuān)題三數(shù)列的綜合應(yīng)用數(shù)列(特別是等差數(shù)列與等比數(shù)列)涉及的內(nèi)容多、聯(lián)系多、綜合性強(qiáng),在處理與數(shù)列有關(guān)的綜合問(wèn)題是,一定要靈活應(yīng)用數(shù)列的基本知識(shí)與方法.?dāng)?shù)列始終處在知識(shí)的交匯點(diǎn)上,常與函數(shù)、方程、不等式等其他知識(shí)交匯進(jìn)行命題.例13以數(shù)列SKIPIF1<0的任意相鄰兩項(xiàng)為橫坐標(biāo)、縱坐標(biāo)的點(diǎn)SKIPIF1<0均在一次函數(shù)SKIPIF1<0的圖像上,數(shù)列SKIPIF1<0.(1)求證:數(shù)列SKIPIF1<0是等比數(shù)列;(2)設(shè)數(shù)列SKIPIF1<0的前SKIPIF1<0項(xiàng)和分別為SKIPIF1<0,若SKIPIF1<0,求SKIPIF1<0的值.分析:本題考查等比數(shù)列與函數(shù)的知識(shí).先由SKIPIF1<0在一次函數(shù)SKIPIF1<0上,結(jié)合SKIPIF1<0,求出SKIPIF1<0

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶(hù)所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶(hù)上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶(hù)因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論