新高考數(shù)學(xué)二輪復(fù)習(xí)重難點(diǎn)5-2 數(shù)列前n項(xiàng)和的求法(8題型+滿分技巧+限時(shí)檢測)(解析版)_第1頁
新高考數(shù)學(xué)二輪復(fù)習(xí)重難點(diǎn)5-2 數(shù)列前n項(xiàng)和的求法(8題型+滿分技巧+限時(shí)檢測)(解析版)_第2頁
新高考數(shù)學(xué)二輪復(fù)習(xí)重難點(diǎn)5-2 數(shù)列前n項(xiàng)和的求法(8題型+滿分技巧+限時(shí)檢測)(解析版)_第3頁
新高考數(shù)學(xué)二輪復(fù)習(xí)重難點(diǎn)5-2 數(shù)列前n項(xiàng)和的求法(8題型+滿分技巧+限時(shí)檢測)(解析版)_第4頁
新高考數(shù)學(xué)二輪復(fù)習(xí)重難點(diǎn)5-2 數(shù)列前n項(xiàng)和的求法(8題型+滿分技巧+限時(shí)檢測)(解析版)_第5頁
已閱讀5頁,還剩31頁未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

重難點(diǎn)5-2數(shù)列前n項(xiàng)和的求法數(shù)列求和是高考數(shù)學(xué)的必考內(nèi)容,一般利用等差數(shù)列的通項(xiàng)來構(gòu)建考查裂項(xiàng)求和,構(gòu)建等差等比數(shù)列考查錯(cuò)位相減法求和,解答題中等差數(shù)列、等比數(shù)列通項(xiàng)的考查往往是第1問,數(shù)列求和則是第2問。近幾年在數(shù)列求和中加大了思維能力的考查,減少了對程序化計(jì)算(錯(cuò)位相減、裂項(xiàng)相消)的考查,主要基于新的情景,要求考生通過歸納或挖掘數(shù)列各項(xiàng)間關(guān)系發(fā)現(xiàn)規(guī)律再進(jìn)行求和?!绢}型1公式法求數(shù)列前n項(xiàng)和】滿分技巧(1)等差數(shù)列SKIPIF1<0的前n項(xiàng)和SKIPIF1<0,推導(dǎo)方法:倒序相加法.(2)等比數(shù)列SKIPIF1<0的前n項(xiàng)和SKIPIF1<0,推導(dǎo)方法:乘公比,錯(cuò)位相減法.(3)一些常見的數(shù)列的前n項(xiàng)和:①SKIPIF1<0;SKIPIF1<0②SKIPIF1<0;③SKIPIF1<0;=4\*GB3④SKIPIF1<0【例1】(2023·廣東珠?!そy(tǒng)考模擬預(yù)測)已知SKIPIF1<0為等比數(shù)列,且SKIPIF1<0,若SKIPIF1<0.(1)求數(shù)列SKIPIF1<0的通項(xiàng)公式;(2)若SKIPIF1<0,求數(shù)列SKIPIF1<0的前SKIPIF1<0項(xiàng)和SKIPIF1<0.【答案】(1)SKIPIF1<0;(2)SKIPIF1<0【解析】(1)設(shè)等比數(shù)列SKIPIF1<0的公比為SKIPIF1<0,則依題意有:SKIPIF1<0,即SKIPIF1<0,解得SKIPIF1<0或SKIPIF1<0(舍去)所以SKIPIF1<0,(2)SKIPIF1<0,SKIPIF1<0,且SKIPIF1<0,SKIPIF1<0是首項(xiàng)為3,公差為2的等差數(shù)列,SKIPIF1<0【變式1-1】(2023·寧夏銀川·高三校聯(lián)考階段練習(xí))設(shè)正項(xiàng)等比數(shù)列SKIPIF1<0且SKIPIF1<0的等差中項(xiàng)為SKIPIF1<0.(1)求數(shù)列SKIPIF1<0的通項(xiàng)公式;(2)若SKIPIF1<0,數(shù)列SKIPIF1<0的前n項(xiàng)為SKIPIF1<0,數(shù)列SKIPIF1<0滿足SKIPIF1<0,SKIPIF1<0為數(shù)列SKIPIF1<0的前SKIPIF1<0項(xiàng)和,求SKIPIF1<0.【答案】(1)SKIPIF1<0;(2)SKIPIF1<0.【解析】(1)設(shè)等比數(shù)列SKIPIF1<0的公比為SKIPIF1<0,由題意,得SKIPIF1<0,解得SKIPIF1<0,則SKIPIF1<0,所以數(shù)列SKIPIF1<0的通項(xiàng)公式SKIPIF1<0.(2)由(1)得SKIPIF1<0,顯然數(shù)列SKIPIF1<0是等差數(shù)列,因此SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0.【變式1-2】(2023·山西·校考模擬預(yù)測)已知等差數(shù)列SKIPIF1<0滿足SKIPIF1<0.(1)求SKIPIF1<0的通項(xiàng)公式;(2)設(shè)數(shù)列SKIPIF1<0的前SKIPIF1<0項(xiàng)和為SKIPIF1<0,且SKIPIF1<0,若SKIPIF1<0,求SKIPIF1<0的最小值.【答案】(1)SKIPIF1<0;(2)10【解析】(1)設(shè)等差數(shù)列SKIPIF1<0的公差為SKIPIF1<0,則SKIPIF1<0解得SKIPIF1<0,故SKIPIF1<0.(2)由(1)可得SKIPIF1<0,則SKIPIF1<0,所以SKIPIF1<0,則數(shù)列SKIPIF1<0是是等差數(shù)列,故SKIPIF1<0.因?yàn)镾KIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0或SKIPIF1<0.因?yàn)镾KIPIF1<0,所以SKIPIF1<0的最小值是10.【變式1-3】(2023·四川德陽·統(tǒng)考一模)已知首項(xiàng)為SKIPIF1<0的等比數(shù)列SKIPIF1<0的前SKIPIF1<0項(xiàng)和為SKIPIF1<0,且SKIPIF1<0成等差數(shù)列.(1)求數(shù)列SKIPIF1<0的通項(xiàng)公式;(2)求數(shù)列SKIPIF1<0的最大項(xiàng).【答案】(1)SKIPIF1<0;(2)SKIPIF1<0【解析】(1)由題意得SKIPIF1<0,設(shè)公比為SKIPIF1<0,若SKIPIF1<0,此時(shí)SKIPIF1<0,此時(shí)不滿足SKIPIF1<0;若SKIPIF1<0,則SKIPIF1<0,故SKIPIF1<0,即SKIPIF1<0,由于SKIPIF1<0,故SKIPIF1<0,解得SKIPIF1<0或1(舍去),故SKIPIF1<0;(2)SKIPIF1<0,故SKIPIF1<0,所以SKIPIF1<0,令SKIPIF1<0,SKIPIF1<0由對勾函數(shù)可知SKIPIF1<0在SKIPIF1<0上單調(diào)遞減,故當(dāng)SKIPIF1<0時(shí),SKIPIF1<0取得最大值,最大值為SKIPIF1<0,故.數(shù)列SKIPIF1<0的最大項(xiàng)為SKIPIF1<0【變式1-4】(2023·山西臨汾·??寄M預(yù)測)在數(shù)列SKIPIF1<0中,SKIPIF1<0,且SKIPIF1<0.(1)求SKIPIF1<0的通項(xiàng)公式;(2)設(shè)SKIPIF1<0為SKIPIF1<0的前n項(xiàng)和,求使得SKIPIF1<0成立的最小正整數(shù)n的值.【答案】(1)SKIPIF1<0;(2)13【解析】(1)由SKIPIF1<0可得SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0的奇數(shù)項(xiàng)以及偶數(shù)項(xiàng)均為公比為3的等比數(shù)列,由SKIPIF1<0得SKIPIF1<0,由SKIPIF1<0,則SKIPIF1<0,因此SKIPIF1<0的奇數(shù)項(xiàng)以1為首項(xiàng),3為公比的等比數(shù)列,偶數(shù)項(xiàng)以3為首項(xiàng),公比為3的等比數(shù)列,SKIPIF1<0故SKIPIF1<0,(2)SKIPIF1<0,此時(shí)SKIPIF1<0若SKIPIF1<0,則SKIPIF1<0,故SKIPIF1<0,由于SKIPIF1<0為單調(diào)遞增數(shù)列,且SKIPIF1<0,所以此時(shí)滿足SKIPIF1<0的最小的SKIPIF1<0為SKIPIF1<0,當(dāng)SKIPIF1<0為奇數(shù)時(shí),此時(shí)SKIPIF1<0,由SKIPIF1<0,則SKIPIF1<0,故SKIPIF1<0,由于SKIPIF1<0為單調(diào)遞增數(shù)列,且SKIPIF1<0,所以此時(shí)滿足SKIPIF1<0的最小的SKIPIF1<0為13,綜上可得使得SKIPIF1<0成立的最小正整數(shù)n為13【題型2分組法求數(shù)列前n項(xiàng)和】滿分技巧(1)適用范圍:某些數(shù)列的求和是將數(shù)列轉(zhuǎn)化為若干個(gè)可求和的新數(shù)列的和或差,從而求得原數(shù)列的和,注意在含有字母的數(shù)列中對字母的討論.(2)常見類型:=1\*GB3①若an=bn±cn,且{bn},{cn}為等差或等比數(shù)列;=2\*GB3②通項(xiàng)公式為an=eq\b\lc\{(\a\vs4\al\co1(bn,n為奇數(shù),,cn,n為偶數(shù)))的數(shù)列,其中數(shù)列{bn},{cn}是等比數(shù)列或等差數(shù)列.【例2】(2023·山西忻州·高三校聯(lián)考階段練習(xí))已知數(shù)列SKIPIF1<0的前n項(xiàng)和為SKIPIF1<0,SKIPIF1<0,SKIPIF1<0(SKIPIF1<0).(1)求SKIPIF1<0的通項(xiàng)公式;(2)設(shè)數(shù)列SKIPIF1<0,SKIPIF1<0滿足SKIPIF1<0,SKIPIF1<0,求數(shù)列SKIPIF1<0的前n項(xiàng)和SKIPIF1<0.【答案】(1)SKIPIF1<0;(2)SKIPIF1<0【解析】(1)由題意可得SKIPIF1<0(SKIPIF1<0),兩式作差,得SKIPIF1<0(SKIPIF1<0),則SKIPIF1<0(SKIPIF1<0),當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,即SKIPIF1<0,將SKIPIF1<0代入,解得SKIPIF1<0,則SKIPIF1<0,適合SKIPIF1<0(SKIPIF1<0),所以SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0是以SKIPIF1<0為首項(xiàng),SKIPIF1<0為公比的等比數(shù)列,所以SKIPIF1<0.(2)由(1得)SKIPIF1<0,SKIPIF1<0.故SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0.【變式2-1】(2023·江蘇無錫·高三校聯(lián)考階段練習(xí))已知數(shù)列SKIPIF1<0的前SKIPIF1<0項(xiàng)和為SKIPIF1<0,且SKIPIF1<0.(1)求數(shù)列SKIPIF1<0的通項(xiàng)公式;(2)求數(shù)列SKIPIF1<0的前SKIPIF1<0項(xiàng)和SKIPIF1<0.【答案】(1)SKIPIF1<0;(2)SKIPIF1<0【解析】(1)由SKIPIF1<0①當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,所以SKIPIF1<0當(dāng)SKIPIF1<0時(shí),SKIPIF1<0②①②式相減得SKIPIF1<0,即SKIPIF1<0兩邊同除以SKIPIF1<0得,SKIPIF1<0,又SKIPIF1<0,所以數(shù)列SKIPIF1<0是以SKIPIF1<0為首項(xiàng),SKIPIF1<0為公差的等差數(shù)列,SKIPIF1<0,則SKIPIF1<0(2)SKIPIF1<0,可知數(shù)列SKIPIF1<0是以SKIPIF1<0為首項(xiàng),SKIPIF1<0為公差的等差數(shù)列,可知數(shù)列SKIPIF1<0是以SKIPIF1<0為首項(xiàng),SKIPIF1<0為公比的等比數(shù)列,SKIPIF1<0SKIPIF1<0SKIPIF1<0【變式2-2】(2023·江西貴溪·高三貴溪市實(shí)驗(yàn)中學(xué)校聯(lián)考階段練習(xí))已知數(shù)列SKIPIF1<0的前SKIPIF1<0項(xiàng)和為SKIPIF1<0,SKIPIF1<0,等比數(shù)列SKIPIF1<0的公比為SKIPIF1<0,SKIPIF1<0.(1)求數(shù)列SKIPIF1<0的通項(xiàng)公式;(2)令SKIPIF1<0,求數(shù)列SKIPIF1<0的前10項(xiàng)和.【答案】(1)SKIPIF1<0,SKIPIF1<0;(2)SKIPIF1<0【解析】(1)當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,等比數(shù)列SKIPIF1<0的公比為SKIPIF1<0,則有SKIPIF1<0,由SKIPIF1<0,可得SKIPIF1<0.當(dāng)SKIPIF1<0時(shí),SKIPIF1<0.經(jīng)檢驗(yàn),當(dāng)SKIPIF1<0時(shí),SKIPIF1<0滿足上式,所以SKIPIF1<0.(2)SKIPIF1<0,設(shè)SKIPIF1<0的前10項(xiàng)和為SKIPIF1<0,SKIPIF1<0SKIPIF1<0SKIPIF1<0.【變式2-3】(2023·廣東廣州·統(tǒng)考模擬預(yù)測)設(shè)數(shù)列SKIPIF1<0的前n項(xiàng)和為SKIPIF1<0,且SKIPIF1<0.(1)求數(shù)列SKIPIF1<0的通項(xiàng)公式;(2)若數(shù)列SKIPIF1<0滿足SKIPIF1<0,求數(shù)列SKIPIF1<0的前2n項(xiàng)和SKIPIF1<0.【答案】(1)SKIPIF1<0;(2)SKIPIF1<0【解析】(1)依題意,SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,所以SKIPIF1<0,所以數(shù)列SKIPIF1<0是首項(xiàng)為SKIPIF1<0,公比為SKIPIF1<0的等比數(shù)列,所以SKIPIF1<0,SKIPIF1<0也符合.所以SKIPIF1<0.(2)由(1)得SKIPIF1<0,所以SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0.【變式2-4】(2023·山東濰坊·統(tǒng)考模擬預(yù)測)已知數(shù)列SKIPIF1<0的前SKIPIF1<0項(xiàng)和為SKIPIF1<0,且滿足SKIPIF1<0,SKIPIF1<0.(1)求數(shù)列SKIPIF1<0的通項(xiàng)公式;(2)設(shè)數(shù)列SKIPIF1<0滿足SKIPIF1<0,求數(shù)列SKIPIF1<0的前SKIPIF1<0項(xiàng)和SKIPIF1<0.【答案】(1)SKIPIF1<0;(2)SKIPIF1<0【解析】(1)因?yàn)镾KIPIF1<0,SKIPIF1<0時(shí),SKIPIF1<0,兩式相減得SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,相乘得SKIPIF1<0,所以SKIPIF1<0,當(dāng)SKIPIF1<0時(shí)符合上式,所以SKIPIF1<0;(2)SKIPIF1<0,當(dāng)SKIPIF1<0為奇數(shù)時(shí)SKIPIF1<0,SKIPIF1<0SKIPIF1<0SKIPIF1<0.【題型3并項(xiàng)法求數(shù)列前n項(xiàng)和】滿分技巧一個(gè)數(shù)列的前n項(xiàng)和中,可兩兩結(jié)合求解,則稱之為并項(xiàng)求和.形如an=(-1)nf(n)類型,可采用兩項(xiàng)合并求解.例如,SKIPIF1<0.【例3】(2023·陜西西安·高三??茧A段練習(xí))若數(shù)列SKIPIF1<0的通項(xiàng)公式是SKIPIF1<0,則該數(shù)列的前100項(xiàng)之和為.【答案】100【解析】因?yàn)镾KIPIF1<0,所以SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,所以該數(shù)列的前100項(xiàng)之和為SKIPIF1<0.【變式3-1】(2023·河北邯鄲·統(tǒng)考模擬預(yù)測)已知數(shù)列SKIPIF1<0的前SKIPIF1<0項(xiàng)和為SKIPIF1<0,且滿足SKIPIF1<0.(1)求數(shù)列SKIPIF1<0的通項(xiàng)公式;(2)若數(shù)列SKIPIF1<0,求數(shù)列SKIPIF1<0的前SKIPIF1<0項(xiàng)和SKIPIF1<0.【答案】(1)SKIPIF1<0;(2)SKIPIF1<0【解析】(1)因?yàn)镾KIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,則SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0不成立,所以SKIPIF1<0.(2)由(1)可得SKIPIF1<0,所以SKIPIF1<0SKIPIF1<0SKIPIF1<0.【變式3-2】(2023·廣東廣州·高三統(tǒng)考階段練習(xí))記SKIPIF1<0為等差數(shù)列SKIPIF1<0的前n項(xiàng)和,已知SKIPIF1<0,SKIPIF1<0.(1)求SKIPIF1<0的通項(xiàng)公式;(2)記SKIPIF1<0,求數(shù)列SKIPIF1<0的前23項(xiàng)的和SKIPIF1<0.【答案】(1)SKIPIF1<0;(2)SKIPIF1<0【解析】(1)設(shè)等差數(shù)列公差為d,則SKIPIF1<0,解得SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0.(2)由(1)可得:SKIPIF1<0,則SKIPIF1<0,可得SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0,所以SKIPIF1<0.【變式3-3】(2023·湖南邵陽·高三校聯(lián)考階段練習(xí))已知數(shù)列SKIPIF1<0的前n項(xiàng)和為SKIPIF1<0,且SKIPIF1<0,SKIPIF1<0.(1)求數(shù)列SKIPIF1<0的通項(xiàng)公式;(2)若SKIPIF1<0,求數(shù)列SKIPIF1<0的前SKIPIF1<0項(xiàng)和SKIPIF1<0.【答案】(1)SKIPIF1<0;(2)SKIPIF1<0【解析】(1)由已知可得SKIPIF1<0,則SKIPIF1<0,上述等式累加可得SKIPIF1<0,所以,SKIPIF1<0,故當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,SKIPIF1<0也滿足SKIPIF1<0,故對任意的SKIPIF1<0,SKIPIF1<0.(2)因?yàn)镾KIPIF1<0,故數(shù)列SKIPIF1<0為等差數(shù)列,則SKIPIF1<0,所以,SKIPIF1<0,對任意的SKIPIF1<0,則SKIPIF1<0,當(dāng)SKIPIF1<0為偶數(shù)時(shí),設(shè)SKIPIF1<0,則SKIPIF1<0,則SKIPIF1<0;當(dāng)SKIPIF1<0為奇數(shù)時(shí),設(shè)SKIPIF1<0,則SKIPIF1<0,則SKIPIF1<0,綜上所述,SKIPIF1<0.【變式3-4】(2023·重慶·高三重慶一中??茧A段練習(xí))已知數(shù)列SKIPIF1<0滿足SKIPIF1<0,SKIPIF1<0,且SKIPIF1<0.(1)求證:數(shù)列SKIPIF1<0為等比數(shù)列;(2)若SKIPIF1<0,求數(shù)列SKIPIF1<0的前n項(xiàng)的和SKIPIF1<0.【答案】(1)證明見解析;(2)SKIPIF1<0【解析】(1)SKIPIF1<0,且SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,且SKIPIF1<0,SKIPIF1<0,故數(shù)列SKIPIF1<0是以SKIPIF1<0為首項(xiàng),SKIPIF1<0為公比的等比數(shù)列.(2)由(1)知,SKIPIF1<0,則有SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,各式相加得SKIPIF1<0,又SKIPIF1<0,則SKIPIF1<0,SKIPIF1<0,則當(dāng)SKIPIF1<0為奇數(shù)時(shí),SKIPIF1<0SKIPIF1<0;當(dāng)SKIPIF1<0為偶數(shù)時(shí),SKIPIF1<0SKIPIF1<0;綜上所述,SKIPIF1<0.【題型4逆序相加法求數(shù)列前n項(xiàng)和】滿分技巧如果一個(gè)數(shù)列{an}的前n項(xiàng)中首末兩端等“距離”的兩項(xiàng)的和相等或等于同一個(gè)常數(shù),那么求這個(gè)數(shù)列的前n項(xiàng)和即可用倒序相加法,如等差數(shù)列的前n項(xiàng)和公式即是用此法推導(dǎo)的.【例4】(2023·重慶·高三重慶一中??茧A段練習(xí))已知SKIPIF1<0為正項(xiàng)等比數(shù)列,且SKIPIF1<0,若函數(shù)SKIPIF1<0,則SKIPIF1<0()A.2023B.2024C.SKIPIF1<0D.1012【答案】A【解析】因?yàn)镾KIPIF1<0為正項(xiàng)等比數(shù)列,且SKIPIF1<0,所以SKIPIF1<0,由SKIPIF1<0可得SKIPIF1<0,所以SKIPIF1<0,所以設(shè)SKIPIF1<0,則SKIPIF1<0,所以兩式相加可得:SKIPIF1<0,故SKIPIF1<0,故選:A.【變式4-1】(2023·山東濰坊·高三安丘市第一中學(xué)??茧A段練習(xí))已知函數(shù)SKIPIF1<0,數(shù)列SKIPIF1<0為等比數(shù)列,SKIPIF1<0,且SKIPIF1<0,利用課本中推導(dǎo)等差數(shù)列前SKIPIF1<0項(xiàng)和的公式的方法,則SKIPIF1<0()A.SKIPIF1<0B.2017C.4034D.8068【答案】C【解析】用倒序相加法:令SKIPIF1<0①則也有SKIPIF1<0②由SKIPIF1<0,SKIPIF1<0,即有SKIPIF1<0,可得:SKIPIF1<0,于是由①②兩式相加得SKIPIF1<0,所以SKIPIF1<0.故選:C【變式4-2】(2023·全國·本溪高中校聯(lián)考模擬預(yù)測)“數(shù)學(xué)王子”高斯是近代數(shù)學(xué)奠基者之一,他的數(shù)學(xué)研究幾乎遍及所有領(lǐng)域,在數(shù)論?代數(shù)學(xué)?非歐幾何?復(fù)變函數(shù)和微分幾何等方面都作出了開創(chuàng)性的貢獻(xiàn).我們高中階段也學(xué)習(xí)過很多高斯的數(shù)學(xué)理論,比如高斯函數(shù)?倒序相加法?最小二乘法等等.已知某數(shù)列的通項(xiàng)SKIPIF1<0,則SKIPIF1<0()A.SKIPIF1<0B.SKIPIF1<0C.SKIPIF1<0D.SKIPIF1<0【答案】D【解析】SKIPIF1<0當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,即SKIPIF1<0.故選:D.【變式4-3】(2023·全國·高三專題練習(xí))已知數(shù)列SKIPIF1<0的前n項(xiàng)和為SKIPIF1<0,且SKIPIF1<0,設(shè)函數(shù)SKIPIF1<0,則SKIPIF1<0.【答案】SKIPIF1<0/SKIPIF1<0【解析】∵SKIPIF1<0①,∴當(dāng)SKIPIF1<0時(shí),SKIPIF1<0②,①-②得SKIPIF1<0,∴SKIPIF1<0;當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,∴SKIPIF1<0,此時(shí)SKIPIF1<0仍然成立,∴SKIPIF1<0.∴當(dāng)n=1時(shí),SKIPIF1<0;當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,當(dāng)n=1時(shí),上式也成立,故SKIPIF1<0SKIPIF1<0.由于SKIPIF1<0,設(shè)SKIPIF1<0SKIPIF1<0則SKIPIF1<0SKIPIF1<0,∴SKIPIF1<0.【變式4-4】(2023·云南·高三云南師大附中??茧A段練習(xí))已知數(shù)列SKIPIF1<0滿足:SKIPIF1<0(SKIPIF1<0),數(shù)列SKIPIF1<0滿足SKIPIF1<0.(1)求數(shù)列SKIPIF1<0的通項(xiàng)公式;(2)求SKIPIF1<0.【答案】(1)SKIPIF1<0;(2)SKIPIF1<0【解析】(1)當(dāng)SKIPIF1<0時(shí),SKIPIF1<0;當(dāng)SKIPIF1<0時(shí),SKIPIF1<0①,SKIPIF1<0②,①-②得:SKIPIF1<0,∴SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,∴SKIPIF1<0.(2)∵SKIPIF1<0,∴SKIPIF1<0SKIPIF1<0∴SKIPIF1<0①,SKIPIF1<0②,又∵SKIPIF1<0∴①+②得:SKIPIF1<0∴SKIPIF1<0.【題型5錯(cuò)位相減法求數(shù)列前n項(xiàng)和】滿分技巧1、解題步驟2、注意解題“3關(guān)鍵”①要善于識別題目類型,特別是等比數(shù)列公比為負(fù)數(shù)的情形.②在寫出“Sn”與“qSn”的表達(dá)式時(shí)應(yīng)特別注意將兩式“錯(cuò)項(xiàng)對齊”以便下一步準(zhǔn)確寫出“Sn-qSn”的表達(dá)式.③在應(yīng)用錯(cuò)位相減法求和時(shí),若等比數(shù)列的公比為參數(shù),應(yīng)分公比q=1和q≠1兩種情況求解.3、等差乘等比數(shù)列求和,令SKIPIF1<0,可以用錯(cuò)位相減法.SKIPIF1<0①SKIPIF1<0②SKIPIF1<0得:SKIPIF1<0.整理得:SKIPIF1<0.【例5】(2023·江蘇鹽城·高三鹽城中學(xué)校聯(lián)考階段練習(xí))已知數(shù)列SKIPIF1<0滿足SKIPIF1<0,SKIPIF1<0,且數(shù)列SKIPIF1<0是等差數(shù)列.(1)求數(shù)列SKIPIF1<0的通項(xiàng)公式;(2)求數(shù)列SKIPIF1<0的前SKIPIF1<0項(xiàng)和SKIPIF1<0.【答案】(1)SKIPIF1<0;(2)SKIPIF1<0【解析】(1)SKIPIF1<0是等差數(shù)列,記其公差為SKIPIF1<0,則有SKIPIF1<0,SKIPIF1<0,SKIPIF1<0;(2)SKIPIF1<0,則SKIPIF1<0,則SKIPIF1<0SKIPIF1<0,SKIPIF1<0.【變式5-1】(2023·青海·校聯(lián)考模擬預(yù)測)已知數(shù)列SKIPIF1<0滿足SKIPIF1<0.(1)求SKIPIF1<0的通項(xiàng)公式;(2)設(shè)SKIPIF1<0,求數(shù)列SKIPIF1<0的前SKIPIF1<0項(xiàng)和SKIPIF1<0.【答案】(1)SKIPIF1<0;(2)SKIPIF1<0【解析】(1)當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,由已知,SKIPIF1<0,①當(dāng)SKIPIF1<0,SKIPIF1<0,②①SKIPIF1<0②,得SKIPIF1<0,得SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,成立,綜上可知,SKIPIF1<0;(2)由(1)可知,SKIPIF1<0,則SKIPIF1<0,SKIPIF1<0,SKIPIF1<0SKIPIF1<0,兩式相減得SKIPIF1<0,即SKIPIF1<0,所以SKIPIF1<0【變式5-2】(2023·山東泰安·高三統(tǒng)考期中)已知數(shù)列SKIPIF1<0的前n項(xiàng)和為SKIPIF1<0,SKIPIF1<0且SKIPIF1<0,SKIPIF1<0.(1)求SKIPIF1<0;(2)記SKIPIF1<0,求數(shù)列SKIPIF1<0的前n項(xiàng)和.【答案】(1)SKIPIF1<0;(2)SKIPIF1<0【解析】(1)SKIPIF1<0,SKIPIF1<0,又SKIPIF1<0,SKIPIF1<0.SKIPIF1<0數(shù)列SKIPIF1<0是公差為2,首項(xiàng)為SKIPIF1<0的等差數(shù)列.SKIPIF1<0,即SKIPIF1<0.當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,SKIPIF1<0,故SKIPIF1<0.(2)SKIPIF1<0時(shí),SKIPIF1<0SKIPIF1<0時(shí),SKIPIF1<0.設(shè)SKIPIF1<0的前n項(xiàng)和為SKIPIF1<0,則SKIPIF1<0,SKIPIF1<0.SKIPIF1<0SKIPIF1<0SKIPIF1<0.SKIPIF1<0(SKIPIF1<0)當(dāng)SKIPIF1<0時(shí),也符合,所以SKIPIF1<0【變式5-3】(2023·海南·校聯(lián)考模擬預(yù)測)已知數(shù)列SKIPIF1<0的前SKIPIF1<0項(xiàng)和為SKIPIF1<0,且SKIPIF1<0.(1)求SKIPIF1<0;(2)若SKIPIF1<0,求數(shù)列SKIPIF1<0的前SKIPIF1<0項(xiàng)和SKIPIF1<0.【答案】(1)SKIPIF1<0;(2)SKIPIF1<0【解析】(1)依題意,SKIPIF1<0,故SKIPIF1<0,故SKIPIF1<0是以2為公差的等差數(shù)列.而SKIPIF1<0,又SKIPIF1<0,解得SKIPIF1<0,故SKIPIF1<0的首項(xiàng)為3,則SKIPIF1<0,則SKIPIF1<0.(2)由(1)可知,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0;當(dāng)SKIPIF1<0時(shí),SKIPIF1<0SKIPIF1<0也滿足該式,故SKIPIF1<0,故SKIPIF1<0,則SKIPIF1<0,SKIPIF1<0兩式相減得,SKIPIF1<0,SKIPIF1<0故SKIPIF1<0【變式5-4】(2023·江蘇南京·高三期末)已知數(shù)列SKIPIF1<0滿足SKIPIF1<0,且對任意SKIPIF1<0都有SKIPIF1<0SKIPIF1<0.(1)設(shè)SKIPIF1<0,證明:SKIPIF1<0是等差數(shù)列;(2)設(shè)SKIPIF1<0,求數(shù)列SKIPIF1<0的前SKIPIF1<0項(xiàng)和SKIPIF1<0.【答案】(1)證明見解析;(2)SKIPIF1<0【解析】(1)因?yàn)閷θ我釹KIPIF1<0都有SKIPIF1<0,所以以SKIPIF1<0替換SKIPIF1<0得,SKIPIF1<0,則SKIPIF1<0,由SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0是公差為SKIPIF1<0的等差數(shù)列;(2)令SKIPIF1<0得,SKIPIF1<0,即SKIPIF1<0,則SKIPIF1<0,所以由(1)得,SKIPIF1<0是以SKIPIF1<0為首項(xiàng),公差為SKIPIF1<0的等差數(shù)列,所以SKIPIF1<0,即SKIPIF1<0.由SKIPIF1<0,令SKIPIF1<0可得,SKIPIF1<0,則SKIPIF1<0,由SKIPIF1<0得,SKIPIF1<0.當(dāng)SKIPIF1<0時(shí),SKIPIF1<0;當(dāng)SKIPIF1<0時(shí),SKIPIF1<0①,則SKIPIF1<0②,SKIPIF1<0得,SKIPIF1<0,所以SKIPIF1<0,綜上,SKIPIF1<0.【題型6裂項(xiàng)相消法求數(shù)列前n項(xiàng)和】滿分技巧1、用裂項(xiàng)法求和的裂項(xiàng)原則及規(guī)律(1)裂項(xiàng)原則:一般是前邊裂幾項(xiàng),后邊就裂幾項(xiàng),直到發(fā)現(xiàn)被消去項(xiàng)的規(guī)律為止.(2)消項(xiàng)規(guī)律:消項(xiàng)后前邊剩幾項(xiàng),后邊就剩幾項(xiàng),前邊剩第幾項(xiàng),后邊就剩倒數(shù)第幾項(xiàng).【注意】利用裂項(xiàng)相消法求和時(shí),既要注意檢驗(yàn)通項(xiàng)公式裂項(xiàng)前后是否等價(jià),又要注意求和時(shí),正負(fù)項(xiàng)相消消去了哪些項(xiàng),保留了哪些項(xiàng),切不可漏寫未被消去的項(xiàng).2、裂項(xiàng)相消法中常見的裂項(xiàng)技巧(1)(2)(3)(4)(5)(6)(7)【例6】(2023·四川南充·統(tǒng)考一模)已知數(shù)列SKIPIF1<0是首項(xiàng)為2的等比數(shù)列,公比SKIPIF1<0,且SKIPIF1<0是SKIPIF1<0和SKIPIF1<0的等差中項(xiàng).(1)求SKIPIF1<0的通項(xiàng)公式;(2)設(shè)數(shù)列SKIPIF1<0滿足SKIPIF1<0,求SKIPIF1<0的前2023項(xiàng)和SKIPIF1<0.【答案】(1)SKIPIF1<0;(2)SKIPIF1<0【解析】(1)SKIPIF1<0數(shù)列SKIPIF1<0是首項(xiàng)為2的等比數(shù)列,SKIPIF1<0是SKIPIF1<0和SKIPIF1<0的等差中項(xiàng),SKIPIF1<0SKIPIF1<0,即SKIPIF1<0,SKIPIF1<0SKIPIF1<0,SKIPIF1<0,SKIPIF1<0SKIPIF1<0,解得SKIPIF1<0或SKIPIF1<0(舍),SKIPIF1<0SKIPIF1<0;(2)SKIPIF1<0SKIPIF1<0,SKIPIF1<0SKIPIF1<0,SKIPIF1<0SKIPIF1<0的前2023項(xiàng)和SKIPIF1<0.【變式6-1】(2023·江蘇鎮(zhèn)江·高三??茧A段練習(xí))已知數(shù)列SKIPIF1<0的前n項(xiàng)和為SKIPIF1<0,SKIPIF1<0是n、SKIPIF1<0的等差中項(xiàng),SKIPIF1<0.(1)證明:SKIPIF1<0是等比數(shù)列;(2)設(shè)SKIPIF1<0,數(shù)列SKIPIF1<0的前n項(xiàng)和SKIPIF1<0,證明:SKIPIF1<0.【答案】(1)證明見解析;(2)證明見解析【解析】(1)因?yàn)镾KIPIF1<0是SKIPIF1<0的等差中項(xiàng),所以SKIPIF1<0,所以SKIPIF1<0,兩式相減可得:SKIPIF1<0,所以SKIPIF1<0,又SKIPIF1<0,所以SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0是首項(xiàng)為SKIPIF1<0,公比為SKIPIF1<0的等比數(shù)列;(2)由(1)可知SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0,因?yàn)镾KIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0.【變式6-2】(2023·福建莆田·高三莆田第四中學(xué)校考階段練習(xí))已知數(shù)列SKIPIF1<0前SKIPIF1<0項(xiàng)和為SKIPIF1<0,且滿足SKIPIF1<0.(1)求數(shù)列SKIPIF1<0的通項(xiàng)公式;(2)設(shè)SKIPIF1<0,求證:SKIPIF1<0.【答案】(1)SKIPIF1<0,SKIPIF1<0;(2)證明見解析.【解析】(1)由已知SKIPIF1<0,SKIPIF1<0時(shí),SKIPIF1<0,此時(shí)SKIPIF1<0也適合上式,所以SKIPIF1<0,SKIPIF1<0;(2)由(1)SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0SKIPIF1<0.【變式6-3】(2023·廣東珠?!じ呷楹J械谝恢袑W(xué)??计谀┮阎?xiàng)數(shù)列SKIPIF1<0的前SKIPIF1<0項(xiàng)和為SKIPIF1<0,SKIPIF1<0,且當(dāng)SKIPIF1<0時(shí)SKIPIF1<0.(1)求數(shù)列SKIPIF1<0的通項(xiàng)公式;(2)若數(shù)列SKIPIF1<0滿足SKIPIF1<0,數(shù)列SKIPIF1<0的前SKIPIF1<0項(xiàng)和為SKIPIF1<0,試比較SKIPIF1<0與SKIPIF1<0的大小,并加以證明.【答案】(1)SKIPIF1<0;(2)SKIPIF1<0,證明見解析【解析】(1)因?yàn)镾KIPIF1<0時(shí)SKIPIF1<0,數(shù)列SKIPIF1<0為正項(xiàng)數(shù)列,所以SKIPIF1<0.由累加法得SKIPIF1<0,又SKIPIF1<0,所以SKIPIF1<0,即SKIPIF1<0,故當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,因此SKIPIF1<0.(2)SKIPIF1<0.證明如下:由題意及(1)可得SKIPIF1<0,故SKIPIF1<0,SKIPIF1<0.兩式相減,得SKIPIF1<0,得SKIPIF1<0.由于SKIPIF1<0,故SKIPIF1<0,所以SKIPIF1<0.【變式6-4】(2023·河北保定·高三校聯(lián)考階段練習(xí))設(shè)SKIPIF1<0為數(shù)列SKIPIF1<0的前SKIPIF1<0項(xiàng)和,SKIPIF1<0.(1)求數(shù)列SKIPIF1<0的通項(xiàng)公式;(2)設(shè)SKIPIF1<0,證明:SKIPIF1<0.【答案】(1)SKIPIF1<0;(2)證明見解析.【解析】(1)當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,兩式相減得SKIPIF1<0,則SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,又當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,則SKIPIF1<0,顯然SKIPIF1<0符合SKIPIF1<0,所以數(shù)列SKIPIF1<0的通項(xiàng)公式是SKIPIF1<0.(2)由(1)知,SKIPIF1<0,所以SKIPIF1<0SKIPIF1<0.【題型7含絕對值數(shù)列的前n項(xiàng)和】【例7】(2023·湖北武漢·統(tǒng)考模擬預(yù)測)已知SKIPIF1<0是數(shù)列SKIPIF1<0的前SKIPIF1<0項(xiàng)和,SKIPIF1<0,SKIPIF1<0.(1)求數(shù)列SKIPIF1<0的通項(xiàng)公式;(2)若SKIPIF1<0,求數(shù)列SKIPIF1<0的前SKIPIF1<0項(xiàng)和SKIPIF1<0.【答案】(1)SKIPIF1<0;(2)SKIPIF1<0【解析】(1)由SKIPIF1<0,則SKIPIF1<0,兩式相減得:SKIPIF1<0,整理得:SKIPIF1<0,即SKIPIF1<0時(shí),SKIPIF1<0,所以SKIPIF1<0時(shí),SKIPIF1<0,又SKIPIF1<0時(shí),SKIPIF1<0,得SKIPIF1<0,也滿足上式.故SKIPIF1<0.(2)由(1)可知:SKIPIF1<0.記SKIPIF1<0,設(shè)數(shù)列SKIPIF1<0的前SKIPIF1<0項(xiàng)和SKIPIF1<0.當(dāng)SKIPIF1<0時(shí),SKIPIF1<0;當(dāng)SKIPIF1<0時(shí),SKIPIF1<0SKIPIF1<0綜上:SKIPIF1<0【變式7-1】(2023·遼寧丹東·高三校聯(lián)考階段練習(xí))已知等差數(shù)列SKIPIF1<0的公差為整數(shù),SKIPIF1<0,設(shè)其前n項(xiàng)和為SKIPIF1<0,且SKIPIF1<0是公差為SKIPIF1<0的等差數(shù)列.(1)求數(shù)列SKIPIF1<0的通項(xiàng)公式;(2)若SKIPIF1<0,求數(shù)列SKIPIF1<0的前n項(xiàng)和SKIPIF1<0.【答案】(1)SKIPIF1<0;(2)SKIPIF1<0【解析】(1)設(shè)SKIPIF1<0的公差為SKIPIF1<0,依題意得SKIPIF1<0,所以SKIPIF1<0,即SKIPIF1<0,化簡得SKIPIF1<0,解得SKIPIF1<0或SKIPIF1<0(舍去),SKIPIF1<0,所以SKIPIF1<0經(jīng)檢驗(yàn)滿足題意.(2)依題意得,SKIPIF1<0,SKIPIF1<0,其前SKIPIF1<0項(xiàng)和SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,SKIPIF1<0,故SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,故SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0所以SKIPIF1<0.【變式7-2】(2023·重慶·高三重慶市第七中學(xué)校??茧A段練習(xí))已知SKIPIF1<0是正項(xiàng)等比數(shù)列.SKIPIF1<0,且SKIPIF1<0,(1)求SKIPIF1<0的通項(xiàng)公式;(2)當(dāng)SKIPIF1<0為遞增數(shù)列,設(shè)SKIPIF1<0,求數(shù)列SKIPIF1<0

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論