版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
專題16圓錐曲線中的橢圓問題1、(2023年新課標(biāo)全國Ⅰ卷)設(shè)橢圓SKIPIF1<0的離心率分別為SKIPIF1<0.若SKIPIF1<0,則SKIPIF1<0(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】A【詳解】由SKIPIF1<0,得SKIPIF1<0,因此SKIPIF1<0,而SKIPIF1<0,所以SKIPIF1<0.故選:A2、(2023年新課標(biāo)全國Ⅱ卷)已知橢圓SKIPIF1<0的左、右焦點分別為SKIPIF1<0,SKIPIF1<0,直線SKIPIF1<0與C交于A,B兩點,若SKIPIF1<0面積是SKIPIF1<0面積的2倍,則SKIPIF1<0(
).A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】C【詳解】將直線SKIPIF1<0與橢圓聯(lián)立SKIPIF1<0,消去SKIPIF1<0可得SKIPIF1<0,因為直線與橢圓相交于SKIPIF1<0點,則SKIPIF1<0,解得SKIPIF1<0,設(shè)SKIPIF1<0到SKIPIF1<0的距離SKIPIF1<0到SKIPIF1<0距離SKIPIF1<0,易知SKIPIF1<0,則SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,解得SKIPIF1<0或SKIPIF1<0(舍去),故選:C.3、(2023年全國甲卷數(shù)學(xué)(文))設(shè)SKIPIF1<0為橢圓SKIPIF1<0的兩個焦點,點SKIPIF1<0在SKIPIF1<0上,若SKIPIF1<0,則SKIPIF1<0(
)A.1 B.2 C.4 D.5【答案】B【詳解】方法一:因為SKIPIF1<0,所以SKIPIF1<0,從而SKIPIF1<0,所以SKIPIF1<0.故選:B.方法二:因為SKIPIF1<0,所以SKIPIF1<0,由橢圓方程可知,SKIPIF1<0,所以SKIPIF1<0,又SKIPIF1<0,平方得:SKIPIF1<0,所以SKIPIF1<0.故選:B.4、(2023年全國甲卷數(shù)學(xué)(理))己知橢圓SKIPIF1<0,SKIPIF1<0為兩個焦點,O為原點,P為橢圓上一點,SKIPIF1<0,則SKIPIF1<0(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】B【詳解】方法一:設(shè)SKIPIF1<0,所以SKIPIF1<0,由SKIPIF1<0,解得:SKIPIF1<0,由橢圓方程可知,SKIPIF1<0,所以,SKIPIF1<0,解得:SKIPIF1<0,即SKIPIF1<0,因此SKIPIF1<0.故選:B.方法二:因為SKIPIF1<0①,SKIPIF1<0,即SKIPIF1<0②,聯(lián)立①②,解得:SKIPIF1<0,而SKIPIF1<0,所以SKIPIF1<0,即SKIPIF1<0.故選:B.5、【2022年全國甲卷】已知橢圓C:x2a2+y2b2=1(a>b>0)的離心率為13,AA.x218+y216【答案】B【解析】解:因為離心率e=ca=1?bA1,A2分別為B為上頂點,所以B(0,b).所以BA1所以?a2+b2故橢圓的方程為x2故選:B.
6、【2022年全國甲卷】橢圓C:x2a2+y2b2=1(a>b>0)的左頂點為A,點P,Q均在A.32 B.22 C.1【答案】A【解析】解:A?a,0設(shè)Px1,則kAP故kAP又x12a所以b2a2所以橢圓C的離心率e=c故選:A.7、【2022年新高考1卷】已知橢圓C:x2a2+y2b2=1(a>b>0),C的上頂點為A,兩個焦點為F1,F(xiàn)2,離心率為12.過F【答案】13【解析】∵橢圓的離心率為e=ca=12,∴a=2c,∴b2=a2?c2=3c2,∴橢圓的方程為x24c2+y23c2=1,即3x2+4y2?12c2=0,不妨設(shè)左焦點為F1,右焦點為F2,如圖所示,∵A判別式?=6∴CD=∴c=138,得∵DE為線段AF2的垂直平分線,根據(jù)對稱性,AD=DF2,AE=EF2,∴△ADE故答案為:13.8、【2022年新高考2卷】已知直線l與橢圓x26+y23=1在第一象限交于A,B兩點,l與x軸,y軸分別交于M【答案】x+【解析】:令A(yù)B的中點為E,因為MA=NB,所以設(shè)Ax1,y1,B所以x12所以y1+y2y1?y2令x=0得y=m,令y=0得x=?mk,即M?mk即k×m2?m2k又MN=23,即MN=m2所以直線AB:y=?22x+2故答案為:x+題組一、橢圓的離心率1-1、(2023·黑龍江大慶·統(tǒng)考一模)設(shè)SKIPIF1<0,SKIPIF1<0分別是橢圓SKIPIF1<0的左、右焦點,點P,Q在橢圓C上,若SKIPIF1<0SKIPIF1<0,且SKIPIF1<0,則橢圓C的離心率為(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】A【分析】利用數(shù)量積知識得SKIPIF1<0,然后利用第一定義及勾股定理得到a、c關(guān)系,即可求出離心率【詳解】由SKIPIF1<0,得SKIPIF1<0,則點P是以SKIPIF1<0為直徑的圓與橢圓C的交點,不妨設(shè)和點P在第一象限,如圖連接SKIPIF1<0,令SKIPIF1<0,則SKIPIF1<0,SKIPIF1<0,SKIPIF1<0.因為SKIPIF1<0,所以SKIPIF1<0,即SKIPIF1<0,得SKIPIF1<0,又SKIPIF1<0,所以SKIPIF1<0,將SKIPIF1<0代入,得SKIPIF1<0.故選:A.1-2、(2023·黑龍江·黑龍江實驗中學(xué)??家荒#┮阎獧E圓C:SKIPIF1<0的左、右焦點分別為SKIPIF1<0(-c,0),SKIPIF1<0(c,0),若橢圓C上存在一點M使得SKIPIF1<0的內(nèi)切圓半徑為SKIPIF1<0,則橢圓C的離心率的取值范圍是(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】A【分析】利用SKIPIF1<0的面積相等,得到SKIPIF1<0,得到SKIPIF1<0,消去b,整理化簡求出離心率的取值范圍.【詳解】SKIPIF1<0的面積為SKIPIF1<0.因為SKIPIF1<0的內(nèi)切圓半徑為SKIPIF1<0,所以SKIPIF1<0的面積可表示為SKIPIF1<0.所以SKIPIF1<0,所以SKIPIF1<0.因為SKIPIF1<0,所以SKIPIF1<0.兩邊平方得:SKIPIF1<0,而SKIPIF1<0,所以SKIPIF1<0,整理得:SKIPIF1<0,因為離心率SKIPIF1<0,所以SKIPIF1<0,解得:SKIPIF1<0.故選:A.1-3、(2023·江蘇南京·南京市秦淮中學(xué)??寄M預(yù)測)已知拋物線SKIPIF1<0的焦點為SKIPIF1<0,準(zhǔn)線為SKIPIF1<0.若SKIPIF1<0與雙曲線SKIPIF1<0的兩條漸近線分別交于點A和點B,且SKIPIF1<0(SKIPIF1<0為原點),則雙曲線的離心率為A.SKIPIF1<0 B.SKIPIF1<0 C.2 D.SKIPIF1<0【答案】D【分析】只需把SKIPIF1<0用SKIPIF1<0表示出來,即可根據(jù)雙曲線離心率的定義求得離心率.【詳解】拋物線SKIPIF1<0的準(zhǔn)線SKIPIF1<0的方程為SKIPIF1<0,雙曲線的漸近線方程為SKIPIF1<0,則有SKIPIF1<0∴SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,∴SKIPIF1<0.故選D.1-4、(2022·山東淄博·高三期末)已知橢圓SKIPIF1<0的右焦點為F,上頂點為B,直線BF與C相交于另一點A,點A在x軸上的射影為SKIPIF1<0,O為坐標(biāo)原點,若SKIPIF1<0,則C的離心率為()A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】A【解析】由題意得SKIPIF1<0,設(shè)SKIPIF1<0因為SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0,得SKIPIF1<0,即SKIPIF1<0,因為點SKIPIF1<0在橢圓SKIPIF1<0上,所以SKIPIF1<0,化簡得SKIPIF1<0,所以離心率SKIPIF1<0,故選:A題組二、橢圓性質(zhì)的綜合性問題2-1、(2023·江蘇蘇州·蘇州中學(xué)??寄M預(yù)測)(多選題)已知橢圓SKIPIF1<0的左,右焦點分別為SKIPIF1<0,長軸長為4,點SKIPIF1<0在橢圓SKIPIF1<0外,點SKIPIF1<0在橢圓SKIPIF1<0上,則(
)A.橢圓SKIPIF1<0的離心率的取值范圍是SKIPIF1<0B.當(dāng)橢圓SKIPIF1<0的離心率為SKIPIF1<0時,SKIPIF1<0的取值范圍是SKIPIF1<0C.存在點SKIPIF1<0使得SKIPIF1<0D.SKIPIF1<0的最小值為2【答案】ABC【分析】根據(jù)點SKIPIF1<0在橢圓SKIPIF1<0外,即可求出SKIPIF1<0的取值范圍,即可求出離心率的取值范圍,從而判斷A;根據(jù)離心率求出SKIPIF1<0,則SKIPIF1<0,即可判斷B;設(shè)上頂點SKIPIF1<0,得到SKIPIF1<0,即可判斷C;根據(jù)SKIPIF1<0利用基本不等式判斷D.【詳解】由題意得SKIPIF1<0,又點SKIPIF1<0在橢圓SKIPIF1<0外,則SKIPIF1<0,解得SKIPIF1<0,所以橢圓SKIPIF1<0的離心率SKIPIF1<0,即橢圓SKIPIF1<0的離心率的取值范圍是SKIPIF1<0,故A正確;當(dāng)SKIPIF1<0時,SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0的取值范圍是SKIPIF1<0,即SKIPIF1<0,故B正確;設(shè)橢圓的上頂點為SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,由于SKIPIF1<0,所以存在點SKIPIF1<0使得SKIPIF1<0,故C正確;SKIPIF1<0,當(dāng)且僅當(dāng)SKIPIF1<0時,等號成立,又SKIPIF1<0,所以SKIPIF1<0,故D不正確.故選:ABC2-2、(2022·河北張家口·高三期末)(多選題)已知SKIPIF1<0為橢圓SKIPIF1<0的左?右焦點,直線SKIPIF1<0與橢圓SKIPIF1<0交于SKIPIF1<0兩點,過點SKIPIF1<0向SKIPIF1<0軸作垂線,垂足為SKIPIF1<0,則()A.橢圓SKIPIF1<0的離心率為SKIPIF1<0B.四邊形SKIPIF1<0的周長一定是SKIPIF1<0C.點SKIPIF1<0與焦點重合時,四邊形SKIPIF1<0的面積最大D.直線SKIPIF1<0的斜率為SKIPIF1<0【答案】ABD【解析】由SKIPIF1<0的方程可得離心率為SKIPIF1<0,故A正確;由橢圓定義可知,SKIPIF1<0,同理,SKIPIF1<0,所以四邊形SKIPIF1<0的周長一定是SKIPIF1<0,故B正確;四邊形SKIPIF1<0的面積SKIPIF1<0,當(dāng)點SKIPIF1<0與焦點重合時,SKIPIF1<0,此時四邊形SKIPIF1<0的面積SKIPIF1<0,故C錯誤;設(shè)SKIPIF1<0,故SKIPIF1<0,則SKIPIF1<0,故D正確.故選:ABD2-3、(2022·山東德州·高三期末)(多選題)已知橢圓SKIPIF1<0的左?右焦點分別為SKIPIF1<0,SKIPIF1<0,過點SKIPIF1<0的直線l交橢圓于A,B兩點,若SKIPIF1<0的最大值為5,則下列說法正確的是()A.橢圓的短軸長為SKIPIF1<0 B.當(dāng)SKIPIF1<0最大時,SKIPIF1<0C.橢圓離心率為SKIPIF1<0 D.SKIPIF1<0面積最大值為SKIPIF1<0【答案】BC【解析】由題意:SKIPIF1<0,根據(jù)橢圓的定義可知,SKIPIF1<0,則SKIPIF1<0的最大值為5,根據(jù)橢圓的性質(zhì)可知:當(dāng)SKIPIF1<0軸時,SKIPIF1<0最小,此時SKIPIF1<0最大,如圖:將SKIPIF1<0代入橢圓方程得:SKIPIF1<0,則SKIPIF1<0.所以短軸長為SKIPIF1<0,A錯誤;此時SKIPIF1<0,B正確;SKIPIF1<0,C正確;對D,設(shè)SKIPIF1<0,SKIPIF1<0,代入橢圓方程得:SKIPIF1<0,則SKIPIF1<0,所以SKIPIF1<0,記SKIPIF1<0,于是SKIPIF1<0,由對勾函數(shù)的圖象和性質(zhì)可知:函數(shù)SKIPIF1<0在SKIPIF1<0上是增函數(shù),則函數(shù)SKIPIF1<0在SKIPIF1<0上是減函數(shù).于是,當(dāng)u=1,即t=0時,SKIPIF1<0面積最大值為SKIPIF1<0.故D錯誤.故選:BC.1、(2022·湖北·恩施土家族苗族高中高三期末)曲線SKIPIF1<0的方程是SKIPIF1<0,則曲線SKIPIF1<0的形狀是()A.圓 B.橢圓 C.線段 D.直線【答案】B【解析】方程表示動點SKIPIF1<0到兩定點SKIPIF1<0的距離之和為4.而SKIPIF1<0SKIPIF1<0,因此SKIPIF1<0的軌跡是以SKIPIF1<0為焦點的橢圓.故選:B.2、(2022·江蘇如皋期初考試)橢圓SKIPIF1<0與SKIPIF1<0關(guān)系為()A.有相等的長軸長 B.有相等的離心率C.有相同的焦點 D.有相等的焦距【答案】D【解析】由題意,對于橢圓EQ\F(x\S(2),25)+\F(y\S(2),9)=1,焦點在x軸上,a=5,b=3,所以c=EQ\R(,25-9)=4,則離心率e=EQ\F(c,a)=EQ\F(4,5),對于橢圓EQ\F(x\S(2),9-k)+\F(y\S(2),25-k)=1,因為25-k>9-k>0,所以焦點在y軸上,a=EQ\R(,25-k)≠5,b=EQ\R(,9-k)≠3,所以c=EQ\R(,25-k-(9-k))=4,則離心率e=EQ\F(c,a)=EQ\F(4,\R(,25-k))≠EQ\F(4,5),故選項D正確,其他選項錯誤;所以答案選D.3、(2022·山師大附中高三模擬)已知橢圓SKIPIF1<0(a>b>0)上有一點A,它關(guān)于原點的對稱點為B,點F為橢圓的右焦點,且AF⊥BF,設(shè)SKIPIF1<0,且SKIPIF1<0,則該橢圓的離心率e的取值范圍為()A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0【答案】A【解析】如圖所示,設(shè)橢圓的左焦點為SKIPIF1<0,連接SKIPIF1<0,SKIPIF1<0.則四邊形SKIPIF1<0為矩形.因此SKIPIF1<0.SKIPIF1<0.所以SKIPIF1<0,SKIPIF1<0.SKIPIF1<0.SKIPIF1<0SKIPIF1<0,SKIPIF1<0SKIPIF1<0,SKIPIF1<0SKIPIF1<0,SKIPIF1<0SKIPIF1<0,其中SKIPIF1<0,SKIPIF1<0SKIPIF1<0.SKIPIF1<0.故選:A.4、(2023·黑龍江大慶·統(tǒng)考一模)設(shè)SKIPIF1<0,SKIPIF1<0分別是橢圓SKIPIF1<0的左、右焦點,點P,Q在橢圓C上,若SKIPIF1<0SKIPIF1<0,且SKIPIF1<0,則橢圓C的離心率為(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】A【分析】利用數(shù)量積知識得SKIPIF1<0,然后利用第一定義及勾股定理得到a、c關(guān)系,即可求出離心率【詳解】由SKIPIF1<0,得SKIPIF1<0,則點P是以SKIPIF1<0為直徑的圓與橢圓C的交點,不妨設(shè)和點P在第一象限,如圖連接SKIPIF1<0,令SKIPIF1<0,則SKIPIF1<0,SKIPIF1<0,SKIPIF1<0.因為SKIPIF1<0,所以SKIPIF1<0,即SKIPIF1<0,得SKIPIF1<0,又SKIPIF1<0,所以SKIPIF1<0,將SKIPIF1<0代入,得SKIPIF1<0.故選:A.5、(2023·黑龍江·黑龍江實驗中學(xué)??家荒#┮阎獧E圓C:SKIPIF1<0的左、右焦點分別為SKIPIF1<0(-c,0),SKIPIF1<0(c,0),若橢圓C上存在一點M使得
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 觸電急救課件
- 蘇教版江蘇省南京市2023-2024學(xué)年高二上學(xué)期期末模擬數(shù)學(xué)試題
- 環(huán)境問題 課件
- 貝殼課件席慕蓉
- 第四講 有趣的動物(看圖寫話教學(xué))-二年級語文上冊(統(tǒng)編版)
- 自然拼讀課件
- 意大利地圖課件
- 西京學(xué)院《語言程序設(shè)計》2022-2023學(xué)年期末試卷
- 西京學(xué)院《數(shù)字化與網(wǎng)絡(luò)化制造》2021-2022學(xué)年期末試卷
- 譯林牛津英語7年級上冊7AUnit3ReadingⅡ
- TD-T 1041-2013 土地整治工程質(zhì)量檢驗與評定規(guī)程
- 文化差異與跨文化交際知到章節(jié)答案智慧樹2023年鄭州大學(xué)
- 基恩士FS-N18N放大器常用調(diào)試說明書
- 保潔人員排班表
- 2023年安徽省交通控股集團招聘筆試題庫及答案解析
- 領(lǐng)導(dǎo)在班組長會上的講話(5篇)
- LY/T 1956-2011縣級林地保護利用規(guī)劃編制技術(shù)規(guī)程
- GB/T 30842-2014高壓試驗室電磁屏蔽效能要求與測量方法
- GB/T 20399-2006自然保護區(qū)總體規(guī)劃技術(shù)規(guī)程
- 簡單折紙筆筒制作
- 九年級化學(xué)上冊復(fù)習(xí)課件(1-7單元)(2)第五單元復(fù)習(xí)課件
評論
0/150
提交評論