版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領
文檔簡介
初二數(shù)學下冊練習題一、實數(shù)與二次根式1.計算下列各題:(1)$\sqrt{64}3\times\sqrt{25}+2\times\sqrt{9}$(2)$(\sqrt{5}\sqrt{3})\times(\sqrt{5}+\sqrt{3})$(3)$\frac{\sqrt{45}}{\sqrt{5}}\frac{\sqrt{20}}{\sqrt{2}}$(4)$\sqrt{16}+\sqrt{49}\sqrt{81}$2.化簡下列各題:(1)$\sqrt{12}+2\sqrt{27}3\sqrt{48}$(2)$\frac{4}{3}\sqrt{3}\frac{2}{5}\sqrt{5}+\frac{3}{2}\sqrt{2}$(3)$(\sqrt{2}+\sqrt{3})^2$(4)$(\sqrt{5}\sqrt{2})^2$二、一元二次方程1.解下列方程:(1)$x^25x+6=0$(2)$2x^23x2=0$(3)$x^2+4x+4=0$(4)$x^26x+9=0$2.解下列方程組:(1)$\begin{cases}x^23x+2=0\\x2y+1=0\end{cases}$(2)$\begin{cases}2x^25x+3=0\\3x+2y7=0\end{cases}$三、不等式與不等式組1.解下列不等式:(1)$2x3>x+1$(2)$3x2<2x+4$(3)$x^25x+6\geq0$(4)$2x^23x2\leq0$2.解下列不等式組:(1)$\begin{cases}x2y>3\\2x+y\leq5\end{cases}$(2)$\begin{cases}3x2y<6\\x+4y\geq8\end{cases}$四、函數(shù)與圖象1.判斷下列函數(shù)的奇偶性:(1)$y=x^33x$(2)$y=\frac{1}{x}+2$(3)$y=x^24x+3$(4)$y=\sqrt{x^2+1}$2.求下列函數(shù)的值域:(1)$y=2x^24x+5$(2)$y=\frac{1}{x^21}$五、四邊形與多邊形1.計算下列各題:(1)在平行四邊形ABCD中,若AB=6cm,BC=8cm,求對角線AC的長度。(2)矩形的長是12cm,寬是5cm,求矩形的對角線長度。2.判斷下列說法是否正確:(1)對角線互相垂直的四邊形一定是矩形。(2)對角線互相平分的四邊形一定是平行四邊形。六、數(shù)據(jù)的初步認識1.下列數(shù)據(jù)中,哪個是眾數(shù)?(1)2,3,3,4,5,5,5,6(2)7,8,9,10,10,11,122.計算下列數(shù)據(jù)的平均數(shù):(1)10,20,30,40,50(2)1,2,3,4,5,6,7,8,9,10七、概率與統(tǒng)計(1)取出紅球(2)取出藍球或綠球150,160,155,165,170,168,162,158,164,166八、平面幾何1.在ΔABC中,AB=AC,∠BAC=40°,求∠ABC的度數(shù)。2.若直角三角形的兩條直角邊長分別為6cm和8cm,求斜邊上的高。九、邏輯推理與證明1.證明:如果兩個角的和為180°,那么這兩個角互為補角。2.證明:在等腰三角形中,底角相等。十、綜合應用題1.小明從家出發(fā)到學校,先走了2km,然后乘公交車行駛了5km,又走了1km到達學校。求小明從家到學校的平均速度(假設公交車行駛速度為60km/h)。2.某商店進行打折促銷活動,一件商品原價為200元,現(xiàn)在打8折銷售。如果小明購買這件商品,并支付了10元的郵費,求小明實際支付的總金額。3.在一個長方形操場(長50m,寬30m)的四周種植樹木,每隔5m種一棵,求共需要種植多少棵樹木。4.有一塊長方形鐵皮,長為20cm,寬為10cm,從四個角各剪去一個邊長為2cm的正方形,然后折成一個無蓋的長方體盒子。求這個盒子的體積。答案一、實數(shù)與二次根式1.計算下列各題:(1)$\sqrt{64}3\times\sqrt{25}+2\times\sqrt{9}=83\times5+2\times3=815+6=1$(2)$(\sqrt{5}\sqrt{3})\times(\sqrt{5}+\sqrt{3})=53=2$(3)$\frac{\sqrt{45}}{\sqrt{5}}\frac{\sqrt{20}}{\sqrt{2}}=32\sqrt{5}$(4)$\sqrt{16}+\sqrt{49}\sqrt{81}=4+79=2$2.化簡下列各題:(1)$\sqrt{12}+2\sqrt{27}3\sqrt{48}=2\sqrt{3}+6\sqrt{3}12\sqrt{3}=4\sqrt{3}$(2)$\frac{4}{3}\sqrt{3}\frac{2}{5}\sqrt{5}+\frac{3}{2}\sqrt{2}$(3)$(\sqrt{2}+\sqrt{3})^2=2+2\sqrt{6}+3=5+2\sqrt{6}$(4)$(\sqrt{5}\sqrt{2})^2=52\sqrt{10}+2=72\sqrt{10}$二、一元二次方程1.解下列方程:(1)$x^25x+6=0$的解為$x_1=3,x_2=2$(2)$2x^23x2=0$的解為$x_1=2,x_2=\frac{1}{2}$(3)$x^2+4x+4=0$的解為$x_1=x_2=2$(4)$x^26x+9=0$的解為$x_1=x_2=3$2.解下列方程組:(1)$\begin{cases}x^23x+2=0\\x2y+1=0\end{cases}$的解為$x_1=2,y_1=\frac{3}{2}$或$x_2=1,y_2=1$(2)$\begin{cases}2x^25x+3=0\\3x+2y7=0\end{cases}$的解為$x_1=3,y_1=\frac{1}{2}$或$x_2=\frac{1}{2},y_2=\frac{13}{4}$三、不等式與不等式組1.解下列不等式:(1)$2x3>x+1$的解為$x>4$(2)$3x2<2x+4$的解為$x<6$(3)$x^25x+6\geq0$的解為$x\leq2$或$x\geq3$(4)$2x^23x2\leq0$的解為$\frac{1}{2}\leqx\leq2$2.解下列不等式組:(1)$\begin{cases}x2y>3\\2x+y\leq5
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024年教育培訓機構(gòu)教師勞動協(xié)議
- 2024招生中介服務協(xié)議樣例
- 2024年離婚協(xié)議:不考慮財產(chǎn)分割
- 2024年不動產(chǎn)抵押借款協(xié)議
- 2024年專項設備售后服務保修協(xié)議
- 2024年房產(chǎn)買賣債務處理協(xié)議
- 2024年商業(yè)合作保證協(xié)議
- 2024年度餐飲經(jīng)營外包協(xié)議條款
- 人教版初中生物總復習
- 2024年11月紹興市2025屆高三選考科目診斷性考試(一模) 政治試卷(含答案)
- 《輸卵管絕育術(shù)》課件
- 城管行政執(zhí)法培訓講義
- 智慧城市數(shù)字孿生解決方案
- 建信融通數(shù)字證書使用承諾函范本
- 胺碘酮在急診合理應用
- 離港系統(tǒng)技術(shù)培訓
- 跨境電商交際英語(修訂版) 課件 UNIT-2-Asking-about-Products
- 非暴力溝通(完整版)
- 天翼云認證開發(fā)工程師必備考試復習題庫(高分版)-下(多選、判斷題)
- 常見詞牌介紹
- 廣東省省級政務信息化服務預算編制標準(運維服務分冊)
評論
0/150
提交評論