版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
2022-2023學(xué)年高三上數(shù)學(xué)期末模擬試卷注意事項:1.答題前,考生先將自己的姓名、準(zhǔn)考證號碼填寫清楚,將條形碼準(zhǔn)確粘貼在條形碼區(qū)域內(nèi)。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.在中,點D是線段BC上任意一點,,,則()A. B.-2 C. D.22.已知函數(shù)滿足=1,則等于()A.- B. C.- D.3.定義:表示不等式的解集中的整數(shù)解之和.若,,,則實數(shù)的取值范圍是A. B. C. D.4.已知等差數(shù)列的前n項和為,,則A.3 B.4 C.5 D.65.函數(shù)的部分圖象如圖所示,則()A.6 B.5 C.4 D.36.已知函數(shù)的最小正周期為的圖象向左平移個單位長度后關(guān)于軸對稱,則的單調(diào)遞增區(qū)間為()A. B.C. D.7.我們熟悉的卡通形象“哆啦A夢”的長寬比為.在東方文化中通常稱這個比例為“白銀比例”,該比例在設(shè)計和建筑領(lǐng)域有著廣泛的應(yīng)用.已知某電波塔自下而上依次建有第一展望臺和第二展望臺,塔頂?shù)剿椎母叨扰c第二展望臺到塔底的高度之比,第二展望臺到塔底的高度與第一展望臺到塔底的高度之比皆等于“白銀比例”,若兩展望臺間高度差為100米,則下列選項中與該塔的實際高度最接近的是()A.400米 B.480米C.520米 D.600米8.已知定義在上的函數(shù)滿足,且在上是增函數(shù),不等式對于恒成立,則的取值范圍是A. B. C. D.9.一個正三角形的三個頂點都在雙曲線的右支上,且其中一個頂點在雙曲線的右頂點,則實數(shù)的取值范圍是()A. B. C. D.10.已知直線與直線則“”是“”的()A.充分不必要條件 B.必要不充分條件C.充分必要條件 D.既不充分也不必要條件11.已知橢圓,直線與直線相交于點,且點在橢圓內(nèi)恒成立,則橢圓的離心率取值范圍為()A. B. C. D.12.拋物線的準(zhǔn)線與軸的交點為點,過點作直線與拋物線交于、兩點,使得是的中點,則直線的斜率為()A. B. C.1 D.二、填空題:本題共4小題,每小題5分,共20分。13.3張獎券分別標(biāo)有特等獎、一等獎和二等獎.甲、乙兩人同時各抽取1張獎券,兩人都未抽得特等獎的概率是__________.14.已知全集,集合則_____.15.過直線上一動點向圓引兩條切線MA,MB,切點為A,B,若,則四邊形MACB的最小面積的概率為________.16.驗證碼就是將一串隨機產(chǎn)生的數(shù)字或符號,生成一幅圖片,圖片里加上一些干擾象素(防止),由用戶肉眼識別其中的驗證碼信息,輸入表單提交網(wǎng)站驗證,驗證成功后才能使用某項功能.很多網(wǎng)站利用驗證碼技術(shù)來防止惡意登錄,以提升網(wǎng)絡(luò)安全.在抗疫期間,某居民小區(qū)電子出入證的登錄驗證碼由0,1,2,…,9中的五個數(shù)字隨機組成.將中間數(shù)字最大,然后向兩邊對稱遞減的驗證碼稱為“鐘型驗證碼”(例如:如14532,12543),已知某人收到了一個“鐘型驗證碼”,則該驗證碼的中間數(shù)字是7的概率為__________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知數(shù)列的各項均為正數(shù),為其前n項和,對于任意的滿足關(guān)系式.(1)求數(shù)列的通項公式;(2)設(shè)數(shù)列的通項公式是,前n項和為,求證:對于任意的正數(shù)n,總有.18.(12分)如圖,在四棱錐中,底面是直角梯形,,,,是正三角形,,是的中點.(1)證明:;(2)求直線與平面所成角的正弦值.19.(12分)如圖,在四棱錐中,平面平面ABCD,,,底面ABCD是邊長為2的菱形,點E,F(xiàn)分別為棱DC,BC的中點,點G是棱SC靠近點C的四等分點.求證:(1)直線平面EFG;(2)直線平面SDB.20.(12分)在直角坐標(biāo)系中,曲線的參數(shù)方程為(為參數(shù)),以原點為極點,以軸正半軸為極軸,建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.(1)求曲線的普通方程與曲線的直角坐標(biāo)方程;(2)設(shè)為曲線上位于第一,二象限的兩個動點,且,射線交曲線分別于,求面積的最小值,并求此時四邊形的面積.21.(12分)在考察疫情防控工作中,某區(qū)衛(wèi)生防控中心提出了“要堅持開展愛國衛(wèi)生運動,從人居環(huán)境改善、飲食習(xí)慣、社會心理健康、公共衛(wèi)生設(shè)施等多個方面開展,特別是要堅決杜絕食用野生動物的陋習(xí),提倡文明健康、綠色環(huán)保的生活方式”的要求.某小組通過問卷調(diào)查,隨機收集了該區(qū)居民六類日常生活習(xí)慣的有關(guān)數(shù)據(jù).六類習(xí)慣是:(1)衛(wèi)生習(xí)慣狀況類;(2)垃圾處理狀況類;(3)體育鍛煉狀況類;(4)心理健康狀況類;(5)膳食合理狀況類;(6)作息規(guī)律狀況類.經(jīng)過數(shù)據(jù)整理,得到下表:衛(wèi)生習(xí)慣狀況類垃圾處理狀況類體育鍛煉狀況類心理健康狀況類膳食合理狀況類作息規(guī)律狀況類有效答卷份數(shù)380550330410400430習(xí)慣良好頻率0.60.90.80.70.650.6假設(shè)每份調(diào)查問卷只調(diào)查上述六類狀況之一,各類調(diào)查是否達到良好標(biāo)準(zhǔn)相互獨立.(1)從小組收集的有效答卷中隨機選取1份,求這份試卷的調(diào)查結(jié)果是膳食合理狀況類中習(xí)慣良好者的概率;(2)從該區(qū)任選一位居民,試估計他在“衛(wèi)生習(xí)慣狀況類、體育鍛煉狀況類、膳食合理狀況類”三類習(xí)慣方面,至少具備兩類良好習(xí)慣的概率;(3)利用上述六類習(xí)慣調(diào)查的排序,用“”表示任選一位第k類受訪者是習(xí)慣良好者,“”表示任選一位第k類受訪者不是習(xí)慣良好者().寫出方差,,,,,的大小關(guān)系.22.(10分)已知函數(shù)f(x)=x-2a-x-a(Ⅰ)若f(1)>1,求a的取值范圍;(Ⅱ)若a<0,對?x,y∈-∞,a,都有不等式f(x)≤(y+2020)+
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、A【解析】
設(shè),用表示出,求出的值即可得出答案.【詳解】設(shè)由,,.故選:A【點睛】本題考查了向量加法、減法以及數(shù)乘運算,需掌握向量加法的三角形法則以及向量減法的幾何意義,屬于基礎(chǔ)題.2、C【解析】
設(shè)的最小正周期為,可得,則,再根據(jù)得,又,則可求出,進而可得.【詳解】解:設(shè)的最小正周期為,因為,所以,所以,所以,又,所以當(dāng)時,,,因為,整理得,因為,,,則所以.故選:C.【點睛】本題考查三角形函數(shù)的周期性和對稱性,考查學(xué)生分析能力和計算能力,是一道難度較大的題目.3、D【解析】
由題意得,表示不等式的解集中整數(shù)解之和為6.當(dāng)時,數(shù)形結(jié)合(如圖)得的解集中的整數(shù)解有無數(shù)多個,解集中的整數(shù)解之和一定大于6.當(dāng)時,,數(shù)形結(jié)合(如圖),由解得.在內(nèi)有3個整數(shù)解,為1,2,3,滿足,所以符合題意.當(dāng)時,作出函數(shù)和的圖象,如圖所示.若,即的整數(shù)解只有1,2,3.只需滿足,即,解得,所以.綜上,當(dāng)時,實數(shù)的取值范圍是.故選D.4、C【解析】
方法一:設(shè)等差數(shù)列的公差為,則,解得,所以.故選C.方法二:因為,所以,則.故選C.5、A【解析】
根據(jù)正切函數(shù)的圖象求出A、B兩點的坐標(biāo),再求出向量的坐標(biāo),根據(jù)向量數(shù)量積的坐標(biāo)運算求出結(jié)果.【詳解】由圖象得,令=0,即=kπ,k=0時解得x=2,令=1,即,解得x=3,∴A(2,0),B(3,1),∴,∴.故選:A.【點睛】本題考查正切函數(shù)的圖象,平面向量數(shù)量積的運算,屬于綜合題,但是難度不大,解題關(guān)鍵是利用圖象與正切函數(shù)圖象求出坐標(biāo),再根據(jù)向量數(shù)量積的坐標(biāo)運算可得結(jié)果,屬于簡單題.6、D【解析】
先由函數(shù)的周期和圖象的平移后的函數(shù)的圖象性質(zhì)得出函數(shù)的解析式,從而得出的解析式,再根據(jù)正弦函數(shù)的單調(diào)遞增區(qū)間得出函數(shù)的單調(diào)遞增區(qū)間,可得選項.【詳解】因為函數(shù)的最小正周期是,所以,即,所以,的圖象向左平移個單位長度后得到的函數(shù)解析式為,由于其圖象關(guān)于軸對稱,所以,又,所以,所以,所以,因為的遞增區(qū)間是:,,由,,得:,,所以函數(shù)的單調(diào)遞增區(qū)間為().故選:D.【點睛】本題主要考查正弦型函數(shù)的周期性,對稱性,單調(diào)性,圖象的平移,在進行圖象的平移時,注意自變量的系數(shù),屬于中檔題.7、B【解析】
根據(jù)題意,畫出幾何關(guān)系,結(jié)合各線段比例可先求得第一展望臺和第二展望臺的距離,進而由比例即可求得該塔的實際高度.【詳解】設(shè)第一展望臺到塔底的高度為米,塔的實際高度為米,幾何關(guān)系如下圖所示:由題意可得,解得;且滿足,故解得塔高米,即塔高約為480米.故選:B【點睛】本題考查了對中國文化的理解與簡單應(yīng)用,屬于基礎(chǔ)題.8、A【解析】
根據(jù)奇偶性定義和性質(zhì)可判斷出函數(shù)為偶函數(shù)且在上是減函數(shù),由此可將不等式化為;利用分離變量法可得,求得的最大值和的最小值即可得到結(jié)果.【詳解】為定義在上的偶函數(shù),圖象關(guān)于軸對稱又在上是增函數(shù)在上是減函數(shù),即對于恒成立在上恒成立,即的取值范圍為:本題正確選項:【點睛】本題考查利用函數(shù)的奇偶性和單調(diào)性求解函數(shù)不等式的問題,涉及到恒成立問題的求解;解題關(guān)鍵是能夠利用函數(shù)單調(diào)性將函數(shù)值的大小關(guān)系轉(zhuǎn)化為自變量的大小關(guān)系,從而利用分離變量法來處理恒成立問題.9、D【解析】
因為雙曲線分左右支,所以,根據(jù)雙曲線和正三角形的對稱性可知:第一象限的頂點坐標(biāo)為,,將其代入雙曲線可解得.【詳解】因為雙曲線分左右支,所以,根據(jù)雙曲線和正三角形的對稱性可知:第一象限的頂點坐標(biāo)為,,將其代入雙曲線方程得:,即,由得.故選:.【點睛】本題考查了雙曲線的性質(zhì),意在考查學(xué)生對這些知識的理解掌握水平.10、B【解析】
利用充分必要條件的定義可判斷兩個條件之間的關(guān)系.【詳解】若,則,故或,當(dāng)時,直線,直線,此時兩條直線平行;當(dāng)時,直線,直線,此時兩條直線平行.所以當(dāng)時,推不出,故“”是“”的不充分條件,當(dāng)時,可以推出,故“”是“”的必要條件,故選:B.【點睛】本題考查兩條直線的位置關(guān)系以及必要不充分條件的判斷,前者應(yīng)根據(jù)系數(shù)關(guān)系來考慮,后者依據(jù)兩個條件之間的推出關(guān)系,本題屬于中檔題.11、A【解析】
先求得橢圓焦點坐標(biāo),判斷出直線過橢圓的焦點.然后判斷出,判斷出點的軌跡方程,根據(jù)恒在橢圓內(nèi)列不等式,化簡后求得離心率的取值范圍.【詳解】設(shè)是橢圓的焦點,所以.直線過點,直線過點,由于,所以,所以點的軌跡是以為直徑的圓.由于點在橢圓內(nèi)恒成立,所以橢圓的短軸大于,即,所以,所以雙曲線的離心率,所以.故選:A【點睛】本小題主要考查直線與直線的位置關(guān)系,考查動點軌跡的判斷,考查橢圓離心率的取值范圍的求法,屬于中檔題.12、B【解析】
設(shè)點、,設(shè)直線的方程為,由題意得出,將直線的方程與拋物線的方程聯(lián)立,列出韋達定理,結(jié)合可求得的值,由此可得出直線的斜率.【詳解】由題意可知點,設(shè)點、,設(shè)直線的方程為,由于點是的中點,則,將直線的方程與拋物線的方程聯(lián)立得,整理得,由韋達定理得,得,,解得,因此,直線的斜率為.故選:B.【點睛】本題考查直線斜率的求解,考查直線與拋物線的綜合問題,涉及韋達定理設(shè)而不求法的應(yīng)用,考查運算求解能力,屬于中等題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
利用排列組合公式進行計算,再利用古典概型公式求出不是特等獎的兩張的概率即可.【詳解】解:3張獎券分別標(biāo)有特等獎、一等獎和二等獎,甲、乙兩人同時各抽取1張獎券,則兩人同時抽取兩張共有:種排法排除特等獎外兩人選兩張共有:種排法.故兩人都未抽得特等獎的概率是:故答案為:【點睛】本題主要考查古典概型的概率公式的應(yīng)用,是基礎(chǔ)題.14、【解析】
根據(jù)補集的定義求解即可.【詳解】解:.故答案為.【點睛】本題主要考查了補集的運算,屬于基礎(chǔ)題.15、.【解析】
先求圓的半徑,四邊形的最小面積,轉(zhuǎn)化為的最小值為,求出切線長的最小值,再求的距離也就是圓心到直線的距離,可解得的取值范圍,利用幾何概型即可求得概率.【詳解】由圓的方程得,所以圓心為,半徑為,四邊形的面積,若四邊形的最小面積,所以的最小值為,而,即的最小值,此時最小為圓心到直線的距離,此時,因為,所以,所以的概率為.【點睛】本題考查直線與圓的位置關(guān)系,及與長度有關(guān)的幾何概型,考查了學(xué)生分析問題的能力,難度一般.16、【解析】
首先判斷出中間號碼的所有可能取值,由此求得基本事件的總數(shù)以及中間數(shù)字是的事件數(shù),根據(jù)古典概型概率計算公式計算出所求概率.【詳解】根據(jù)“鐘型驗證碼”中間數(shù)字最大,然后向兩邊對稱遞減,所以中間的數(shù)字可能是.當(dāng)中間是時,其它個數(shù)字可以是,選其中兩個排在左邊(排法唯一),另外兩個排在右邊(排法唯一),所以方法數(shù)有種.當(dāng)中間是時,其它個數(shù)字可以是,選其中兩個排在左邊(排法唯一),另外兩個排在右邊(排法唯一),所以方法數(shù)有種.當(dāng)中間是時,其它個數(shù)字可以是,選其中兩個排在左邊(排法唯一),另外兩個排在右邊(排法唯一),所以方法數(shù)有種.當(dāng)中間是時,其它個數(shù)字可以是,選其中兩個排在左邊(排法唯一),另外兩個排在右邊(排法唯一),所以方法數(shù)有種.當(dāng)中間是時,其它個數(shù)字可以是,選其中兩個排在左邊(排法唯一),另外兩個排在右邊(排法唯一),所以方法數(shù)有種.當(dāng)中間是時,其它個數(shù)字可以是,選其中兩個排在左邊(排法唯一),另外兩個排在右邊(排法唯一),所以方法數(shù)有種.所以該驗證碼的中間數(shù)字是7的概率為.故答案為:【點睛】本小題主要考查古典概型概率計算,考查分類加法計數(shù)原理、分類乘法計數(shù)原理的應(yīng)用,考查運算求解能力,屬于中檔題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)(2)證明見解析【解析】
(1)根據(jù)公式得到,計算得到答案.(2),根據(jù)裂項求和法計算得到,得到證明.【詳解】(1)由已知得時,,故.故數(shù)列為等比數(shù)列,且公比.又當(dāng)時,,..(2)..【點睛】本題考查了數(shù)列通項公式和證明數(shù)列不等式,意在考查學(xué)生對于數(shù)列公式方法的綜合應(yīng)用.18、(1)見證明;(2)【解析】
(1)設(shè)是的中點,連接、,先證明是平行四邊形,再證明平面,即(2)以為坐標(biāo)原點,的方向為軸的正方向,建空間直角坐標(biāo)系,分別計算各個點坐標(biāo),計算平面法向量,利用向量的夾角公式得到直線與平面所成角的正弦值.【詳解】(1)證明:設(shè)是的中點,連接、,是的中點,,,,,,,是平行四邊形,,,,,,,,由余弦定理得,,,,平面,,;(2)由(1)得平面,,平面平面,過點作,垂足為,平面,以為坐標(biāo)原點,的方向為軸的正方向,建立如圖的空間直角坐標(biāo)系,則,,,,設(shè)是平面的一個法向量,則,,令,則,,,直線與平面所成角的正弦值為.【點睛】本題考查了線面垂直,線線垂直,利用空間直角坐標(biāo)系解決線面夾角問題,意在考查學(xué)生的空間想象能力和計算能力.19、(1)見解析(2)見解析【解析】
(1)連接AC、BD交于點O,交EF于點H,連接GH,再證明即可.(2)證明與即可.【詳解】(1)連接AC、BD交于點O,交EF于點H,連接GH,所以O(shè)為AC的中點,H為OC的中點,由E、F為DC、BC的中點,再由題意可得,所以在三角形CAS中,平面EFG,平面EFG,所以直線平面EFG.(2)在中,,,,由余弦定理得,,即,解得,由勾股定理逆定理可知,因為側(cè)面底面ABCD,由面面垂直的性質(zhì)定理可知平面ABCD,所以,因為底面ABCD是菱形,所以,因為,所以平面SDB.【點睛】本題考查線面平行與垂直的證明.需要根據(jù)題意利用等比例以及余弦定理勾股定理等證明.屬于中檔題.20、(1);(2)面積的最小值為;四邊形的面積為【解析】
(1)將曲線消去參數(shù)即可得到的普通方程,將,代入曲線的極坐標(biāo)方程即可;(2)由(1)得曲線的極坐標(biāo)方程,設(shè),,,利用方程可得,再利用基本不等式得,即可得,根據(jù)題意知,進而可得四邊形的面積.【詳解】(1)由曲線的參數(shù)方程為(為參數(shù))消去參數(shù)得曲線的極坐標(biāo)方程為,即,所以,曲線的直角坐標(biāo)方程.(2)依題意得的極坐標(biāo)方程為設(shè),,,則,,故,當(dāng)且僅當(dāng)(即)時取“=”,故,即面積的最小值為.此時,故所求四邊形的面積為.【點睛】本題考查了極坐標(biāo)方程化為直角坐標(biāo)方程、參數(shù)方程化為普通方程、點到直線的距離公式、三角函數(shù)的單調(diào)性,考查了推理能力與計算能力,屬于中檔題.21、(1)(2)(3)【解析】
(1)設(shè)“選取的試卷的調(diào)查結(jié)果是膳食合理狀況類中習(xí)慣良好者“的事件為,根據(jù)古典概型求出即可;(2)設(shè)該區(qū)“衛(wèi)生習(xí)慣狀況良好者“,“體育鍛煉狀況良好者“、“膳食合理狀況良好者”事件分別為,,,設(shè)事件為“該居民在“衛(wèi)生習(xí)慣狀況類、體育鍛煉狀況類、膳食合理狀況類”三類習(xí)慣方面,至少具備兩類良好習(xí)慣“,則(E),求出即可;(3)根據(jù)題意,寫出即可.【詳解】(1)設(shè)“選取的試卷的調(diào)查結(jié)果是膳食合理狀況類中習(xí)慣良好者“的事件為,有效問卷共有(份,其中受訪者中膳食合理習(xí)慣良好的人數(shù)是人,故(A);(2)設(shè)該區(qū)“衛(wèi)
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025智慧城市PPP項目合同
- 上海戲劇學(xué)院《電工電子技術(shù)A2》2023-2024學(xué)年第一學(xué)期期末試卷
- 上海外國語大學(xué)《模擬電子技術(shù)B》2023-2024學(xué)年第一學(xué)期期末試卷
- 上海體育大學(xué)《教育視頻制作》2023-2024學(xué)年第一學(xué)期期末試卷
- 上海現(xiàn)代化工職業(yè)學(xué)院《軟件案例分析》2023-2024學(xué)年第一學(xué)期期末試卷
- 冬奧項目學(xué)習(xí)報告范文
- 上海師范大學(xué)天華學(xué)院《現(xiàn)代工程圖學(xué)》2023-2024學(xué)年第一學(xué)期期末試卷
- 上海商學(xué)院《智能計算》2023-2024學(xué)年第一學(xué)期期末試卷
- 2025醫(yī)院醫(yī)用耗材買賣合同
- 課題申報書:多源不確定下廢棄物管理系統(tǒng)優(yōu)化研究-以系統(tǒng)韌性與物質(zhì)再生為視角
- 電子汽車衡-課件
- 小學(xué)四年級口語交際練習(xí)題-四年級下冊口語交際
- 《思想道德與法治》 機考題庫
- 學(xué)校體育特色課程
- 國防教育ppt國防教育資料國防教育課件
- GB/T 912-2008碳素結(jié)構(gòu)鋼和低合金結(jié)構(gòu)鋼熱軋薄鋼板和鋼帶
- 爐后QC外觀檢驗培訓(xùn)
- 汽車電線產(chǎn)品標(biāo)準(zhǔn)簡介
- eNSP簡介及操作課件
- 最新北師大版五年級數(shù)學(xué)上冊《第五單元復(fù)習(xí)》優(yōu)質(zhì)教學(xué)課件
- 茶葉加工工(高級)復(fù)習(xí)題(三級)考試復(fù)習(xí)題庫(匯總版)
評論
0/150
提交評論