2022-2023學(xué)年云南省陸良縣八中數(shù)學(xué)高三上期末聯(lián)考試題含解析_第1頁(yè)
2022-2023學(xué)年云南省陸良縣八中數(shù)學(xué)高三上期末聯(lián)考試題含解析_第2頁(yè)
2022-2023學(xué)年云南省陸良縣八中數(shù)學(xué)高三上期末聯(lián)考試題含解析_第3頁(yè)
2022-2023學(xué)年云南省陸良縣八中數(shù)學(xué)高三上期末聯(lián)考試題含解析_第4頁(yè)
2022-2023學(xué)年云南省陸良縣八中數(shù)學(xué)高三上期末聯(lián)考試題含解析_第5頁(yè)
已閱讀5頁(yè),還剩14頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

2022-2023學(xué)年高三上數(shù)學(xué)期末模擬試卷注意事項(xiàng):1.答題前,考生先將自己的姓名、準(zhǔn)考證號(hào)填寫(xiě)清楚,將條形碼準(zhǔn)確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書(shū)寫(xiě),字體工整、筆跡清楚。3.請(qǐng)按照題號(hào)順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書(shū)寫(xiě)的答案無(wú)效;在草稿紙、試題卷上答題無(wú)效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.已知函數(shù),其中,記函數(shù)滿足條件:為事件,則事件發(fā)生的概率為A. B.C. D.2.已知隨機(jī)變量的分布列是則()A. B. C. D.3.已知數(shù)列是公差為的等差數(shù)列,且成等比數(shù)列,則()A.4 B.3 C.2 D.14.已知函數(shù),,若,對(duì)任意恒有,在區(qū)間上有且只有一個(gè)使,則的最大值為()A. B. C. D.5.用數(shù)學(xué)歸納法證明1+2+3+?+n2=n4A.k2+1C.k2+16.設(shè),,則()A. B. C. D.7.小張家訂了一份報(bào)紙,送報(bào)人可能在早上之間把報(bào)送到小張家,小張離開(kāi)家去工作的時(shí)間在早上之間.用表示事件:“小張?jiān)陔x開(kāi)家前能得到報(bào)紙”,設(shè)送報(bào)人到達(dá)的時(shí)間為,小張離開(kāi)家的時(shí)間為,看成平面中的點(diǎn),則用幾何概型的公式得到事件的概率等于()A. B. C. D.8.已知函數(shù)(),若函數(shù)在上有唯一零點(diǎn),則的值為()A.1 B.或0 C.1或0 D.2或09.已知函數(shù),則下列判斷錯(cuò)誤的是()A.的最小正周期為 B.的值域?yàn)镃.的圖象關(guān)于直線對(duì)稱 D.的圖象關(guān)于點(diǎn)對(duì)稱10.已知拋物線的焦點(diǎn)為,若拋物線上的點(diǎn)關(guān)于直線對(duì)稱的點(diǎn)恰好在射線上,則直線被截得的弦長(zhǎng)為()A. B. C. D.11.設(shè)全集,集合,,則集合()A. B. C. D.12.設(shè)正項(xiàng)等比數(shù)列的前n項(xiàng)和為,若,,則公比()A. B.4 C. D.2二、填空題:本題共4小題,每小題5分,共20分。13.已知集合,若,則__________.14.若函數(shù)在區(qū)間上有且僅有一個(gè)零點(diǎn),則實(shí)數(shù)的取值范圍有___________.15.已知的終邊過(guò)點(diǎn),若,則__________.16.拋物線上到其焦點(diǎn)距離為5的點(diǎn)有_______個(gè).三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)已知函數(shù).(1)當(dāng)時(shí),解關(guān)于的不等式;(2)若對(duì)任意,都存在,使得不等式成立,求實(shí)數(shù)的取值范圍.18.(12分)已知函數(shù).(1)求不等式的解集;(2)設(shè)的最小值為,正數(shù),滿足,證明:.19.(12分)在中,內(nèi)角的對(duì)邊分別為,且(1)求;(2)若,且面積的最大值為,求周長(zhǎng)的取值范圍.20.(12分)已知拋物線,直線與交于,兩點(diǎn),且.(1)求的值;(2)如圖,過(guò)原點(diǎn)的直線與拋物線交于點(diǎn),與直線交于點(diǎn),過(guò)點(diǎn)作軸的垂線交拋物線于點(diǎn),證明:直線過(guò)定點(diǎn).21.(12分)在直角坐標(biāo)系中,曲線的參數(shù)方程為(為參數(shù)).以為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系,直線的極坐標(biāo)方程為(),將曲線向左平移2個(gè)單位長(zhǎng)度得到曲線.(1)求曲線的普通方程和極坐標(biāo)方程;(2)設(shè)直線與曲線交于兩點(diǎn),求的取值范圍.22.(10分)已知函數(shù),其中e為自然對(duì)數(shù)的底數(shù).(1)討論函數(shù)的單調(diào)性;(2)用表示中較大者,記函數(shù).若函數(shù)在上恰有2個(gè)零點(diǎn),求實(shí)數(shù)a的取值范圍.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、D【解析】

由得,分別以為橫縱坐標(biāo)建立如圖所示平面直角坐標(biāo)系,由圖可知,.2、C【解析】

利用分布列求出,求出期望,再利用期望的性質(zhì)可求得結(jié)果.【詳解】由分布列的性質(zhì)可得,得,所以,,因此,.故選:C.【點(diǎn)睛】本題考查離散型隨機(jī)變量的分布列以及期望的求法,是基本知識(shí)的考查.3、A【解析】

根據(jù)等差數(shù)列和等比數(shù)列公式直接計(jì)算得到答案.【詳解】由成等比數(shù)列得,即,已知,解得.故選:.【點(diǎn)睛】本題考查了等差數(shù)列,等比數(shù)列的基本量的計(jì)算,意在考查學(xué)生的計(jì)算能力.4、C【解析】

根據(jù)的零點(diǎn)和最值點(diǎn)列方程組,求得的表達(dá)式(用表示),根據(jù)在上有且只有一個(gè)最大值,求得的取值范圍,求得對(duì)應(yīng)的取值范圍,由為整數(shù)對(duì)的取值進(jìn)行驗(yàn)證,由此求得的最大值.【詳解】由題意知,則其中,.又在上有且只有一個(gè)最大值,所以,得,即,所以,又,因此.①當(dāng)時(shí),,此時(shí)取可使成立,當(dāng)時(shí),,所以當(dāng)或時(shí),都成立,舍去;②當(dāng)時(shí),,此時(shí)取可使成立,當(dāng)時(shí),,所以當(dāng)或時(shí),都成立,舍去;③當(dāng)時(shí),,此時(shí)取可使成立,當(dāng)時(shí),,所以當(dāng)時(shí),成立;綜上所得的最大值為.故選:C【點(diǎn)睛】本小題主要考查三角函數(shù)的零點(diǎn)和最值,考查三角函數(shù)的性質(zhì),考查化歸與轉(zhuǎn)化的數(shù)學(xué)思想方法,考查分類討論的數(shù)學(xué)思想方法,屬于中檔題.5、C【解析】

首先分析題目求用數(shù)學(xué)歸納法證明1+1+3+…+n1=n4【詳解】當(dāng)n=k時(shí),等式左端=1+1+…+k1,當(dāng)n=k+1時(shí),等式左端=1+1+…+k1+k1+1+k1+1+…+(k+1)1,增加了項(xiàng)(k1+1)+(k1+1)+(k1+3)+…+(k+1)1.故選:C.【點(diǎn)睛】本題主要考查數(shù)學(xué)歸納法,屬于中檔題./6、D【解析】

集合是一次不等式的解集,分別求出再求交集即可【詳解】,,則故選【點(diǎn)睛】本題主要考查了一次不等式的解集以及集合的交集運(yùn)算,屬于基礎(chǔ)題.7、D【解析】

這是幾何概型,畫(huà)出圖形,利用面積比即可求解.【詳解】解:事件發(fā)生,需滿足,即事件應(yīng)位于五邊形內(nèi),作圖如下:故選:D【點(diǎn)睛】考查幾何概型,是基礎(chǔ)題.8、C【解析】

求出函數(shù)的導(dǎo)函數(shù),當(dāng)時(shí),只需,即,令,利用導(dǎo)數(shù)求其單調(diào)區(qū)間,即可求出參數(shù)的值,當(dāng)時(shí),根據(jù)函數(shù)的單調(diào)性及零點(diǎn)存在性定理可判斷;【詳解】解:∵(),∴,∴當(dāng)時(shí),由得,則在上單調(diào)遞減,在上單調(diào)遞增,所以是極小值,∴只需,即.令,則,∴函數(shù)在上單調(diào)遞增.∵,∴;當(dāng)時(shí),,函數(shù)在上單調(diào)遞減,∵,,函數(shù)在上有且只有一個(gè)零點(diǎn),∴的值是1或0.故選:C【點(diǎn)睛】本題考查利用導(dǎo)數(shù)研究函數(shù)的零點(diǎn)問(wèn)題,零點(diǎn)存在性定理的應(yīng)用,屬于中檔題.9、D【解析】

先將函數(shù)化為,再由三角函數(shù)的性質(zhì),逐項(xiàng)判斷,即可得出結(jié)果.【詳解】可得對(duì)于A,的最小正周期為,故A正確;對(duì)于B,由,可得,故B正確;對(duì)于C,正弦函數(shù)對(duì)稱軸可得:解得:,當(dāng),,故C正確;對(duì)于D,正弦函數(shù)對(duì)稱中心的橫坐標(biāo)為:解得:若圖象關(guān)于點(diǎn)對(duì)稱,則解得:,故D錯(cuò)誤;故選:D.【點(diǎn)睛】本題考查三角恒等變換,三角函數(shù)的性質(zhì),熟記三角函數(shù)基本公式和基本性質(zhì),考查了分析能力和計(jì)算能力,屬于基礎(chǔ)題.10、B【解析】

由焦點(diǎn)得拋物線方程,設(shè)點(diǎn)的坐標(biāo)為,根據(jù)對(duì)稱可求出點(diǎn)的坐標(biāo),寫(xiě)出直線方程,聯(lián)立拋物線求交點(diǎn),計(jì)算弦長(zhǎng)即可.【詳解】拋物線的焦點(diǎn)為,則,即,設(shè)點(diǎn)的坐標(biāo)為,點(diǎn)的坐標(biāo)為,如圖:∴,解得,或(舍去),∴∴直線的方程為,設(shè)直線與拋物線的另一個(gè)交點(diǎn)為,由,解得或,∴,∴,故直線被截得的弦長(zhǎng)為.故選:B.【點(diǎn)睛】本題主要考查了拋物線的標(biāo)準(zhǔn)方程,簡(jiǎn)單幾何性質(zhì),點(diǎn)關(guān)于直線對(duì)稱,屬于中檔題.11、C【解析】∵集合,,∴點(diǎn)睛:本題是道易錯(cuò)題,看清所問(wèn)問(wèn)題求并集而不是交集.12、D【解析】

由得,又,兩式相除即可解出.【詳解】解:由得,又,∴,∴,或,又正項(xiàng)等比數(shù)列得,∴,故選:D.【點(diǎn)睛】本題主要考查等比數(shù)列的性質(zhì)的應(yīng)用,屬于基礎(chǔ)題.二、填空題:本題共4小題,每小題5分,共20分。13、1【解析】

分別代入集合中的元素,求出值,再結(jié)合集合中元素的互異性進(jìn)行取舍可解.【詳解】依題意,分別令,,,由集合的互異性,解得,則.故答案為:【點(diǎn)睛】本題考查集合元素的特性:確定性、互異性、無(wú)序性.確定集合中元素,要注意檢驗(yàn)集合中的元素是否滿足互異性.14、或【解析】

函數(shù)的零點(diǎn)方程的根,求出方程的兩根為,,從而可得或,即或.【詳解】函數(shù)在區(qū)間的零點(diǎn)方程在區(qū)間的根,所以,解得:,,因?yàn)楹瘮?shù)在區(qū)間上有且僅有一個(gè)零點(diǎn),所以或,即或.【點(diǎn)睛】本題考查函數(shù)的零點(diǎn)與方程根的關(guān)系,在求含絕對(duì)值方程時(shí),要注意對(duì)絕對(duì)值內(nèi)數(shù)的正負(fù)進(jìn)行討論.15、【解析】

】由題意利用任意角的三角函數(shù)的定義,求得的值.【詳解】∵的終邊過(guò)點(diǎn),若,.即答案為-2.【點(diǎn)睛】本題主要考查任意角的三角函數(shù)的定義和誘導(dǎo)公式,屬基礎(chǔ)題.16、2【解析】

設(shè)符合條件的點(diǎn),由拋物線的定義可得,即可求解.【詳解】設(shè)符合條件的點(diǎn),則,所以符合條件的點(diǎn)有2個(gè).故答案為:2【點(diǎn)睛】本題考查拋物線的定義的應(yīng)用,考查拋物線的焦半徑.三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17、(1);(2).【解析】

(1)分類討論去絕對(duì)值號(hào),然后解不等式即可.(2)因?yàn)閷?duì)任意,都存在,使得不等式成立,等價(jià)于,根據(jù)絕對(duì)值不等式易求,根據(jù)二次函數(shù)易求,然后解不等式即可.【詳解】解:(1)當(dāng)時(shí),,則當(dāng)時(shí),由得,,解得;當(dāng)時(shí),恒成立;當(dāng)時(shí),由得,,解得.所以的解集為(2)對(duì)任意,都存在,得成立,等價(jià)于.因?yàn)?,所以,且|,①當(dāng)時(shí),①式等號(hào)成立,即.又因?yàn)椋诋?dāng)時(shí),②式等號(hào)成立,即.所以,即即的取值范圍為:.【點(diǎn)睛】知識(shí):考查含兩個(gè)絕對(duì)值號(hào)的不等式的解法;恒成立問(wèn)題和存在性問(wèn)題求參變數(shù)的范圍問(wèn)題;能力:分析問(wèn)題和解決問(wèn)題的能力以及運(yùn)算求解能力;中檔題.18、(1)(2)證明見(jiàn)解析【解析】

(1)將表示為分段函數(shù)的形式,由此求得不等式的解集.(2)利用絕對(duì)值三角不等式求得的最小值,利用分析法,結(jié)合基本不等式,證得不等式成立.【詳解】(1),不等式,即或或,即有或或,所以所求不等式的解集為.(2),,因?yàn)?,,所以要證,只需證,即證,因?yàn)椋灾灰C,即證,即證,因?yàn)椋灾恍枳C,因?yàn)椋猿闪?,所?【點(diǎn)睛】本小題主要考查絕對(duì)值不等式的解法,考查分析法證明不等式,考查基本不等式的運(yùn)用,屬于中檔題.19、(1)(2)【解析】

(1)利用二倍角公式及三角形內(nèi)角和定理,將化簡(jiǎn)為,求出的值,結(jié)合,求出A的值;(2)寫(xiě)出三角形的面積公式,由其最大值為求出.由余弦定理,結(jié)合,,求出的范圍,注意.進(jìn)而求出周長(zhǎng)的范圍.【詳解】解:(1)整理得解得或(舍去)又;(2)由題意知,又,,又周長(zhǎng)的取值范圍是【點(diǎn)睛】本題考查了二倍角余弦公式,三角形面積公式,余弦定理的應(yīng)用,求三角形的周長(zhǎng)的范圍問(wèn)題.屬于中檔題.20、(1);(2)見(jiàn)解析【解析】

(1)聯(lián)立直線和拋物線,消去可得,求出,,再代入弦長(zhǎng)公式計(jì)算即可.(2)由(1)可得,設(shè),計(jì)算直線的方程為,代入求出,即可求出,再代入拋物線方程,求出,最后計(jì)算直線的斜率,求出直線的方程,化簡(jiǎn)可得到恒過(guò)的定點(diǎn).【詳解】(1)由,消去可得,設(shè),,則,.,解得或(舍去),.(2)證明:由(1)可得,設(shè),所以直線的方程為,當(dāng)時(shí),,則,代入拋物線方程,可得,,所以直線的斜率,直線的方程為,整理可得,故直線過(guò)定點(diǎn).【點(diǎn)睛】本題第一問(wèn)考查直線與拋物線相交的弦長(zhǎng)問(wèn)題,需熟記弦長(zhǎng)公式.第二問(wèn)考查直線方程和直線恒過(guò)定點(diǎn)問(wèn)題,需有較強(qiáng)的計(jì)算能力,屬于難題.21、(1)的極坐標(biāo)方程為,普通方程為;(2)【解析】

(1)根據(jù)三角函數(shù)恒等變換可得,,可得曲線的普通方程,再運(yùn)用圖像的平移得依題意得曲線的普通方程為,利用極坐標(biāo)與平面直角坐標(biāo)互化的公式可得方程;(2)法一:將代入曲線的極坐標(biāo)方程得,運(yùn)用韋達(dá)定理可得,根據(jù),可求得的范圍;法二:設(shè)直線的參數(shù)方程為(為參數(shù),為直線的傾斜角),代入曲線的普通方程得,運(yùn)用韋達(dá)定理可得,根據(jù),可求得的范圍;【詳解】(1),,即曲線的普通方程為,依題意得曲線的普通方程為,令,得曲線的極坐標(biāo)方程為;(2)法一:將代入曲線的極坐標(biāo)方程得,則,,,異號(hào),,,;法二:設(shè)直線的參數(shù)方程為(為參數(shù),為直線的傾斜角),代入曲線的普通方程得,則,,,異號(hào),,.【點(diǎn)睛】本題考查參數(shù)方程與普通方程,極坐標(biāo)方程與平面直角坐標(biāo)方程之間的轉(zhuǎn)化,求解幾何量的取值范圍,關(guān)鍵在于明確極坐標(biāo)系中極徑和極角的幾何含義,直線的參數(shù)方程,參數(shù)的幾何意義,屬于中檔題.22、(1)函數(shù)的單調(diào)遞增區(qū)間為和,單調(diào)遞減區(qū)間為;(2).【解析】

(1)由題可得,結(jié)合的范圍判斷的正負(fù),即可求解;(2)結(jié)合導(dǎo)數(shù)及函數(shù)的零點(diǎn)的判定定理,分類討論進(jìn)行求解【詳解】(1),①當(dāng)時(shí),,∴函數(shù)在內(nèi)單調(diào)遞增;②當(dāng)時(shí),令,解得或,當(dāng)或

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論