![高中數(shù)學-演繹推理教學設(shè)計學情分析教材分析課后反思_第1頁](http://file4.renrendoc.com/view2/M01/20/17/wKhkFmatTQiAPwobAAHglrESo7E324.jpg)
![高中數(shù)學-演繹推理教學設(shè)計學情分析教材分析課后反思_第2頁](http://file4.renrendoc.com/view2/M01/20/17/wKhkFmatTQiAPwobAAHglrESo7E3242.jpg)
![高中數(shù)學-演繹推理教學設(shè)計學情分析教材分析課后反思_第3頁](http://file4.renrendoc.com/view2/M01/20/17/wKhkFmatTQiAPwobAAHglrESo7E3243.jpg)
![高中數(shù)學-演繹推理教學設(shè)計學情分析教材分析課后反思_第4頁](http://file4.renrendoc.com/view2/M01/20/17/wKhkFmatTQiAPwobAAHglrESo7E3244.jpg)
![高中數(shù)學-演繹推理教學設(shè)計學情分析教材分析課后反思_第5頁](http://file4.renrendoc.com/view2/M01/20/17/wKhkFmatTQiAPwobAAHglrESo7E3245.jpg)
版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
《演繹推理》教學設(shè)計
教材:人民教育出版社高中數(shù)學B版選修2-2
章節(jié):第二章《推理與證明》2」《合情推理與演繹推理》2.1.2《演繹推理》
面向?qū)W生:高二年級
(一)教學目標
1.知識與技能目標:
理解演繹推理的含義,了解合情推理和演繹推理之間的聯(lián)系和差異;
掌握演繹推理的基本模式,體會它們的重要性,并能運用它們進行一些簡單的推理.
2.過程與方法目標:
結(jié)合具體實例,感受演繹推理在數(shù)學以及日常生活中的作用,養(yǎng)成言之有理,論證有據(jù)的習
慣.
3.情感態(tài)度和價值觀目標:
結(jié)合已學過的數(shù)學實例和日常生活中的實例,使學生體會數(shù)學與其他學科以及實際生活的聯(lián)
系;通過演繹推理的學習,培養(yǎng)學生嚴謹?shù)淖黠L,形成實事求是,力戒浮夸的思維習慣.
(-)教學重點和難點
教學重點:演繹推理的概念,三段論推理規(guī)則
教學難點:用“三段論”進行簡單的推理
(三)教學方法:
以教師為主導,學生為主體,以能力發(fā)展為目標,從學生的認知規(guī)律出發(fā),采用問題探究,
合作交流,啟發(fā)引導的方法指導學生學習,充分調(diào)動學生積極性,引導學生在學習過程中體
會知識的價值,感受知識的無窮魅力.
(四)教學過程
環(huán)節(jié)一情境激趣,溫故知新
問題1:由以下具體事實能得到怎樣的結(jié)論?應(yīng)用了什么推理?
學生活動:積極思考,謹慎求解,復(fù)習舊知.
設(shè)計意圖:注重情景創(chuàng)設(shè)和學習興趣培養(yǎng)
1.填入空缺數(shù)字:5,9,15,(),33,45
2.魚餌:魚竿
(a)筆:書籍(b)寫詩:筆(c)鍋鏟:炒鍋(d)電腦:手機
3.從(a)(b)(c)(d)中選出一個合適的圖案,填在問號處
OG?
GeG
Oo?
QG?e
⑻⑻同⑼
4.南之于西北,正如西之于()
(a)西北(b)東北(c)西南(d)東南
環(huán)節(jié)二互動交流,研討新知
問題2:引例:(以下推理是哪種推理?是我們學過的歸納推理或類比推理嗎?)
所有的平行四邊形對角線互相平分,
菱形是平行四邊形,
菱形的對角線互相平分.
學生活動:發(fā)現(xiàn)問題,尋找解決問題的出路,自主學習.
設(shè)計意圖:重視知識發(fā)生、發(fā)展過程開展教學.
演繹推理
概念:__________________________________________________________
演繹推理是由—到的推理;
問題3:由學生舉出生活或者各科學習中,演繹推理的例子
學生活動:積極思考,踴躍發(fā)言
設(shè)計意圖:通過舉例,加深對演繹推理概念的理解
問題4:演繹推理中經(jīng)常使用的推理規(guī)則是什么?
“三段論”是演繹推理的一般模式,包括:
⑴大前提一_________________________
⑵小前提--_________________________
⑶結(jié)論一___________________________
環(huán)節(jié)三概念辨析,思維升華
問題5:如何用集合的觀點理解三段論推理?
學生活動:積極思考,踴躍發(fā)言
設(shè)計意圖:通過變式演練,加深對演繹推理概念的辨析,深刻理解演繹推理的本質(zhì)
所有的平行四邊形(A)對角線互相平分(P),---A是P
菱形(B)是平行四邊形(A),--一B是A
菱形(B)的對角線互相平分(P).-B是P
環(huán)節(jié)四延伸課堂,豐富學識
學生活動:從數(shù)學史發(fā)展背景了解三段論及演繹推理
設(shè)計意圖:延伸課堂,豐富學識,加強對數(shù)學文化的了解
環(huán)節(jié)五課堂練習,鞏固所學
練習1:將下列演繹推理寫成三段論形式,并指出大,小前提及結(jié)論
(1)太陽系大行星以橢圓軌道繞太陽運行,海王星是太陽系的大行星,海王星以橢圓形軌道繞
太陽運行.
(2)函數(shù)),=如優(yōu)是周期函數(shù).
練習2:下列推理是否正確,說明理由?
(1)自然數(shù)是整數(shù),3是自然數(shù),3是整數(shù).
(2)整數(shù)是自然數(shù),-3是整數(shù),-3是自然數(shù).
(3)自然數(shù)是整數(shù),-3是自然數(shù),-3是整數(shù).
(4)自然數(shù)是整數(shù),-3是整數(shù),-3是自然數(shù).
練習3:演繹推理在生活中的應(yīng)用
(1)中國的大學分布于中國各地,北京大學是中國的大學,所以北京大學分布于中國各地。
(2)有一次,德國著名詩人歌德在公園里散步。在一條能讓一個人通過的小道上,他遇到
了一位自負傲慢的批評家。兩人越走越近?!拔沂菑膩聿唤o蠢貨讓路的!”批評家先開口道。
“我卻正好相反!”歌德說完,笑著退到路旁。
環(huán)節(jié)六概念應(yīng)用,鞏固深化
問題6:(1)如何應(yīng)用演繹推理證明數(shù)學問題?(2)對三道例題你有何反思總結(jié)?
學生活動:分組討論,合作交流,可采用由學生代表到黑板示范板書及投影筆記形式,展示
做題過程.
設(shè)計意圖:演繹推理在證明數(shù)學問題時對學生而言并不陌生,現(xiàn)在只是對其重新梳理,讓學
生明白嚴格的邏輯推理過程在科學建設(shè)中的理論化和系統(tǒng)化的作用.培養(yǎng)學生養(yǎng)成言之有理,
論證有據(jù)的習慣.
例1.空間四邊形ABCD中,點E,尸是的中點,判斷與面BCD的位置關(guān)系,并證明.
例2.觀察log23>kg2log34>log43log45>log54
你能做出什么猜想,并證明.
例3.證明函數(shù)/(x)=x6-x3+x2-x+1的值恒為正數(shù)
環(huán)節(jié)七課堂總結(jié),整體認識
總結(jié):演繹推理與合情推理的區(qū)別與聯(lián)系
合情才隹理
演繹推理
歸納推理類比推理
區(qū)推理形式
別推理結(jié)論
聯(lián)系
學生活動:在對所學知識熟悉理解的情況下,完成對推理知識的總結(jié)。
設(shè)計意圖:使學生再次認識到觀察,歸納,類比,猜想,嚴謹論證,是人們認識,研究客觀
世界的思維之路。
環(huán)節(jié)八課外延伸,布置作業(yè)
問題7:推理是人的一種思維方式,它不僅在數(shù)學中有著不可替代的重要作用,而且在物
理,政治,經(jīng)濟,軍事,歷史醫(yī)學等各個領(lǐng)域都有著廣泛的應(yīng)用,你知道演繹推理有哪些重
要貢獻嗎?
學生活動:感受知識的無窮魅力.
設(shè)計意圖:讓同學們可以初步感受到演繹推理的意義和價值.
作業(yè):1、課本P34:練習A練習B2、探究生活中的演繹推理實例
《演繹推理》學情分析
教材:人民教育出版社高中數(shù)學B版選修2-2
章節(jié):第二章《推理與證明》2.1《合情推理與演繹推理》2.1.2《演繹推理》
面向?qū)W生:高二年級
學情分析:
本章節(jié)是《推理與證明》,學生首先學習了解了合情推理,繼而學習演繹推理。是對知
識的升華。推理與證明貫穿于每一個章節(jié),每一個知識點。推理與證明的學習,有利于培養(yǎng)
學生的邏輯思維能力,形成和發(fā)展理性思維,通過本章學習,是對以前所學知識點的總結(jié)和
歸納。
學習本節(jié)課知識要準確把握概念,理解合情推理與演繹推理的聯(lián)系與區(qū)別,提高自己的
邏輯思維能力,形成審慎思維的習慣,體會數(shù)學嚴謹之美。
《演繹推理》效果分析
教材:人民教育出版社高中數(shù)學B版選修2-2
章節(jié):第二章《推理與證明》21《合情推理與演繹推理》2.1.2《演繹推理》
面向?qū)W生:高二年級
效果分析:
通過課后對所學知識進行進一步的評測,學生對知識的掌握還不夠深入,對含參的題
目中的驗證過程,分類討論思想還體會不夠,個別學生未很好地掌握。
通過測評,學生成績?nèi)缦卤恚▽W生成績不公開,姓名處以序號代替):
姓名成績姓名成績
1881692
2861788
3791887
4921984
5852087
6832173
7782285
8862394
9882482
10932586
11862676
12892789
13792893
14962981
15653086
根據(jù)以上測評,需要進一步加強的地方是:體會演繹推理在解題中的應(yīng)用,言之有理,
論證有據(jù)。加強對含參題目的練習和指導。
《演繹推理》教材分析
教材:人民教育出版社高中數(shù)學B版選修2-2
章節(jié):第二章《推理與證明》2.1《合情推理與演繹推理》2.1.2《演繹推理》
面向?qū)W生:高二年級
教材分析:
高中數(shù)學中,推理與證明貫穿于每一個章節(jié),每一個知識點。推理與證明的學習,有
利于培養(yǎng)學生的邏輯思維能力,形成和發(fā)展理性思維,通過本章學習,是對以前所學知識點
的總結(jié)和歸納。所以,這部分知識在整個高中數(shù)學中有著特別重要的地位。
合情推理具有猜想和發(fā)現(xiàn)新結(jié)論、探究和提供解決問題思路的作用;演繹推理具有證明
結(jié)論,整理和構(gòu)建知識體系的作用,是公理體系中的基本推理方法。
在日常生活、科技實踐中,人們需要進行各種各樣的推理,通過本章的學習,去體會和
感受邏輯證明在數(shù)學和日常生活中的作用,養(yǎng)成言之有理、論證有據(jù)的習慣。
《演繹推理》評測練習
教材:人民教育出版社高中數(shù)學B版選修2-2
章節(jié):第二章《推理與證明》2.1《合情推理與演繹推理》2.1.2《演繹推理》
面向?qū)W生:高二年級
一、選擇題
1.有這樣一段演繹推理是這樣的“有些有理數(shù)是真分數(shù),整數(shù)是有理數(shù),則整數(shù)是真分數(shù)”
結(jié)論顯然是錯誤的,是因為()
A.大前提錯誤B.小前提錯誤C.推理形式錯誤D.非以上錯誤
2.函數(shù)丫=公2+1的圖像與直線y=x相切,則()
A.—B.—C.—D.1
842
3.拋物線x?=4y上一點A的縱坐標為4,則點A與拋物線焦點的距離為()
A.2B.3C.4D.5
4.有一段演繹推理是這樣的:“直線平行于平面,則平行于平面內(nèi)所有直線;已知直線匕0平
面a,直線au平面a,直線h〃平面a,則直線?!ㄖ本€a”的結(jié)論顯然是錯誤的,這
是因為
A.大前提錯誤B.小前提錯誤C.推理形式錯誤D.非以上錯誤
5.函數(shù)/(無)=0?+X+1有極值的充要條件是()
A.<7>0:B.a>0;C.a<0;D.tz<0
二、填空題
6.函數(shù)y=f(x)在(0,2)上是增函數(shù),函數(shù)y=f(x+2)是偶函數(shù),則f(1),f(2.5),f(3.5)
的大小關(guān)系是.
7.函數(shù)/(%)=2?+3ax2+3云+8c在%=1及%=2處取得極值,則a=_,b=
三、解答題
\—CI
8.已知函數(shù)/(X)=-------l(aeR).
x
(I)當a=-1時,求曲線y=/(x)在點(2,/(2))處的切線方程;
(II)當時,討論)(x)的單調(diào)性.
9.如圖,在直四棱柱ABCD-A|B]C|D|中,底面ABCD為等腰梯形,AB〃CD,AB=4,BC=CD=2,AA
尸2,E、E?分別是棱AD、AA1的中點
(I)設(shè)F是棱AB的中點,證明:直線EE//平面FCC1;
(II)證明:平面DiAC_L平面BBiCiC.
答案:l.C2.B3.D4.A5.C6.f(2.5)>f(l)>f(3.5)7.-3,4
8.證明:(I)在直四棱柱ABCD-A|B]C1D]中,取AB的中點F”
連接AJ),GR,CFi,因為AB=4,CD=2,且AB〃CD,
所以CD?AR,ARCD為平行四邊形,所以CF//AJ),
又因為E、E1分別是棱AD、AA1的中點,所以EEM/AD
所以CF//EE”又因為E&仁平面FCC1,C£u平面FCC「
所以直線EE"/平面FCC「
(II)連接AC,在直棱柱中,CC」平面ABCD,ACu平面ABCD,
所以CC-AC,因為底面ABCD為等腰梯形,AB=4,BC=2,
F是棱AB的中點,所以CF=CB=BF,ABCF為正三角形,
NBCF=60°,Z\ACF為等腰三角形,且NAC尸=30。
所以AC±BC,又因為BC與CG都在平面BBiCiC內(nèi)且交于點C,
所以ACJ_平面BBiCiC,而ACu平面DiAC,
所以平面DiACJ_平面BBiCiC.
,2
9.解:(I)當〃二-1時,/(x)=lnx+x+——l,xG(0,+oo),
x
4-X—2
所以f\x)=——--,xe(0,+oo)因此,f(2)=1,
x
即曲線y=/*)在點(2,/(2))處的切線斜率為1?
又/(2)=山2+2,所以曲線
y=/(x)在點(2,7(2))處的切線方程翔-(ln2+2)=x—2,
即x->'+In2=0.
1—Q
(II)因為f(x)=]nx-ax-^--------1,
x
g、ig/\[ci-\ax2——a
所以f(X)=---ClH-----=--------;------XG(0,4-QO),
XXX
令g(x)=ax2-x+l-。,xG(0,+oo),
(1)當a=OH寸,Zz(x)=—x+1,xw(0,-+oo)
所以,當xw(0,l)時,/z(x)〉O,此時/'(x)<0,函數(shù)/(x)單調(diào)遞減;
當xe(L+oo)時,h(x)<0,此時尸(幻〉0,函數(shù)f(x)單調(diào)遞
(2)當awOHl由f'(x)=O
即ax2-x+1—a=(),解得玉=1,=--1
一a
①當。=g時,玉=wM(x)NO恒成立,
此時尸(x)40,函數(shù)/(x)在(0,+8)上單調(diào)遞減;
②當0<。<2時,
2a
Xe(0,1)時,h(x)>0,此時/>'a)<0,函物(x)單調(diào)遞減;
Xe(1」—1)時,〃(幻<0,此時/'(x)>0,函數(shù)/Xx)單調(diào)遞增;
a
—1,+s)時,〃(x)>0,此時/'(x)<0,函數(shù)/(x)單調(diào)遞減;
a
③當a<0時,由于工―1<0
a
xG(0,1)時,/?(x)>0,此時f\x)<0,函數(shù)/(x)單調(diào)遞減;
XG(1,+O0)時,/i(x)<0,止匕時/'(x)>0,函數(shù)/(X)單調(diào)遞增。
綜上所述:
當a4()時,函數(shù)/(X)在(0,1)上單調(diào)遞減;
函數(shù)/(X)在(1,+8)上單調(diào)遞增;
當a=g時,函數(shù)/(x)在(0,+8)上單調(diào)遞減;
當0<a<;時,函數(shù)/(x)在(0,1)上單調(diào)遞減;
函數(shù)/(x)在(1,工-1)上單調(diào)遞增;
a
函數(shù)/(X)在(L-l,+oo)上單調(diào)遞減,
《演繹推理》課后反思
教材:人民教育出版社高
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 《大學物理(下冊)》課件-第16章
- 融資融券業(yè)務(wù)操作方法及技巧介紹
- 2025年全球及中國自主機器人街道吸塵器行業(yè)頭部企業(yè)市場占有率及排名調(diào)研報告
- 2025年全球及中國商店可視化工具行業(yè)頭部企業(yè)市場占有率及排名調(diào)研報告
- 2025年全球及中國數(shù)通硅光芯片行業(yè)頭部企業(yè)市場占有率及排名調(diào)研報告
- 2025年全球及中國固體葡萄糖漿行業(yè)頭部企業(yè)市場占有率及排名調(diào)研報告
- 2025年全球及中國房屋裝修和翻新行業(yè)頭部企業(yè)市場占有率及排名調(diào)研報告
- 2025年全球及中國立式高溫反應(yīng)釜行業(yè)頭部企業(yè)市場占有率及排名調(diào)研報告
- 2025年全球及中國輸注穿刺耗材行業(yè)頭部企業(yè)市場占有率及排名調(diào)研報告
- 2025年全球及中國微波波導衰減器行業(yè)頭部企業(yè)市場占有率及排名調(diào)研報告
- 《中國心力衰竭診斷和治療指南(2024)》解讀完整版
- 《檔案管理課件》課件
- 2025年中考物理終極押題猜想(新疆卷)(全解全析)
- 脛骨骨折的護理查房
- 抽水蓄能電站項目建設(shè)管理方案
- 電動工具培訓課件
- 《智能網(wǎng)聯(lián)汽車智能傳感器測試與裝調(diào)》電子教案
- 視頻會議室改造方案
- 【中考真題】廣東省2024年中考語文真題試卷
- GB/T 32399-2024信息技術(shù)云計算參考架構(gòu)
- 2025年湖南省長沙市中考數(shù)學模擬試卷(附答案解析)
評論
0/150
提交評論