江蘇省南通市通州區(qū)金北學(xué)校2022-2023學(xué)年九年級數(shù)學(xué)第一學(xué)期期末經(jīng)典試題含解析_第1頁
江蘇省南通市通州區(qū)金北學(xué)校2022-2023學(xué)年九年級數(shù)學(xué)第一學(xué)期期末經(jīng)典試題含解析_第2頁
江蘇省南通市通州區(qū)金北學(xué)校2022-2023學(xué)年九年級數(shù)學(xué)第一學(xué)期期末經(jīng)典試題含解析_第3頁
江蘇省南通市通州區(qū)金北學(xué)校2022-2023學(xué)年九年級數(shù)學(xué)第一學(xué)期期末經(jīng)典試題含解析_第4頁
江蘇省南通市通州區(qū)金北學(xué)校2022-2023學(xué)年九年級數(shù)學(xué)第一學(xué)期期末經(jīng)典試題含解析_第5頁
已閱讀5頁,還剩19頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

2022-2023學(xué)年九上數(shù)學(xué)期末模擬試卷注意事項1.考試結(jié)束后,請將本試卷和答題卡一并交回.2.答題前,請務(wù)必將自己的姓名、準考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請認真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應(yīng)選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題(每小題3分,共30分)1.小明隨機地在如圖正方形及其內(nèi)部區(qū)域投針,則針扎到陰影區(qū)域的概率是()A. B. C. D.2.如圖,已知⊙O的內(nèi)接正六邊形ABCDEF的邊長為6,則弧BC的長為()A.2π B.3π C.4π D.π3.如圖,點()是反比例函數(shù)上的動點,過分別作軸,軸的垂線,垂足分別為,.隨著的增大,四邊形的面積()A.增大 B.減小 C.不確定 D.不變4.如圖,是一個幾何體的三視圖,則這個幾何體是()A.長方體 B.圓柱體 C.球體 D.圓錐體5.如圖,以△ABC的三條邊為邊,分別向外作正方形,連接EF,GH,DJ,如果△ABC的面積為8,則圖中陰影部分的面積為()A.28 B.24 C.20 D.166.如圖所示的網(wǎng)格是正方形網(wǎng)格,則sinA的值為()A. B. C. D.7.下列圖案中,是中心對稱圖形的是()A. B. C. D.8.如圖,在矩形中,,,以為直徑作.將矩形繞點旋轉(zhuǎn),使所得矩形的邊與相切,切點為,邊與相交于點,則的長為()A.2.5 B.1.5 C.3 D.49.如圖,在△ABC中,DE∥BC,,BC=12,則DE的長是()A.3 B.4 C.5 D.610.如圖,在四邊形中,,對角線、交于點有以下四個結(jié)論其中始終正確的有()①;②;③;④A.1個 B.2個 C.3個 D.4個二、填空題(每小題3分,共24分)11.如圖,的對角線交于O,點E為DC中點,AC=10cm,△OCE的周長為18cm,則的周長為____________.12.如圖,直線y1=x+2與雙曲線y2=交于A(2,m)、B(﹣6,n)兩點.則當y1≤y2時,x的取值范圍是______.13.已知一段公路的坡度為1:20,沿著這條公路前進,若上升的高度為2m,則前進了________米14.已知二次函數(shù)y=x2﹣4x+3,當a≤x≤a+5時,函數(shù)y的最小值為﹣1,則a的取值范圍是_______.15.如圖,圓心都在x軸正半軸上的半圓O1,半圓O2,…,半圓On與直線l相切.設(shè)半圓O1,半圓O2,…,半圓On的半徑分別是r1,r2,…,rn,則當直線l與x軸所成銳角為30°,且r1=1時,r2018=________.16.關(guān)于的方程有一個根,則另一個根________.17.已知△ABC中,∠BAC=90°,用尺規(guī)過點A作一條直線,使其將△ABC分成兩個相似的三角形,其作法不正確的是_______.(填序號)18.如圖是拋物線圖象的一部分,拋物線的頂點坐標為,與軸的一個交點為,點和點均在直線上.①;②;③拋物線與軸的另一個交點時;④方程有兩個不相等的實數(shù)根;⑤;⑥不等式的解集為.上述六個結(jié)論中,其中正確的結(jié)論是_____________.(填寫序號即可)三、解答題(共66分)19.(10分)某網(wǎng)店打出促銷廣告:最潮新款服裝30件,每件售價300元,若一次性購買不超過10件時,售價不變;若一次性購買超過10件時,每多買2件,所買的每件服裝的售價均降低6元.已知該服裝成本是每件200元.設(shè)顧客一次性購買服裝x件時,該網(wǎng)店從中獲利y元.(1)求y與x的函數(shù)關(guān)系式,并寫出自變量x的取值范圍.(2)顧客一次性購買多少件時,該網(wǎng)店從中獲利最多,并求出獲利的最大值?20.(6分)如圖,△ABC中,AB=AC,BE⊥AC于E,D是BC中點,連接AD與BE交于點F,求證:△AFE∽△BCE.21.(6分)已知:二次函數(shù)y=x2+bx+c經(jīng)過原點,且當x=2時函數(shù)有最小值;直線AC解析式為y=kx-4,且與拋物線相交于B、C.(1)求二次函數(shù)解析式;(2)若S△AOB∶S△BOC=1:3,求直線AC的解析式;(3)在(2)的條件下,點E為線段BC上一動點(不與B、C重合),過E作x軸的垂線交拋物線于F、交x軸于G,是否存在點E,使△BEF和△CGE相似?若存在,請求出所有點E的坐標;若不存在,請說明理由.22.(8分)化簡:23.(8分)在如圖的小正方形網(wǎng)格中,每個小正方形的邊長均為,格點(頂點是網(wǎng)格線的交點)的三個頂點坐標分別是,以為位似中心在網(wǎng)格內(nèi)畫出的位似圖△A1B1C1,使與的相似比為,并計算出的面積.24.(8分)如圖,在矩形ABCD中,E是邊CD的中點,點M是邊AD上一點(與點A,D不重合),射線ME與BC的延長線交于點N.(1)求證:△MDE≌△NCE;(2)過點E作EF//CB交BM于點F,當MB=MN時,求證:AM=EF.25.(10分)為了了解班級學(xué)生數(shù)學(xué)課前預(yù)習的具體情況,鄭老師對本班部分學(xué)生進行了為期一個月的跟蹤調(diào)查,他將調(diào)查結(jié)果分為四類:A:很好;B:較好;C:一般;D:不達標,并將調(diào)查結(jié)果繪制成以下兩幅不完整的統(tǒng)計圖,請你根據(jù)統(tǒng)計圖解答下列問題:(1)C類女生有名,D類男生有名,將上面條形統(tǒng)計圖補充完整;(2)扇形統(tǒng)計圖中“課前預(yù)習不達標”對應(yīng)的圓心角度數(shù)是;(3)為了共同進步,鄭老師想從被調(diào)查的A類和D類學(xué)生中各隨機機抽取一位同學(xué)進行“一幫一”互助學(xué)習,請用畫樹狀圖或列表的方法求出所選兩位同學(xué)恰好是一男一女同學(xué)的概率,26.(10分)如圖,已知正方形的邊長為,點是對角線上一點,連接,將線段繞點順時針旋轉(zhuǎn)至的位置,連接、.(1)求證:;(2)當點在什么位置時,的面積最大?并說明理由.

參考答案一、選擇題(每小題3分,共30分)1、D【分析】根據(jù)幾何概型的意義,求出圓的面積,再求出正方形的面積,算出其比值即可.【詳解】解:設(shè)正方形的邊長為2a,則圓的半徑為a,則圓的面積為:,正方形的面積為:,∴針扎到陰影區(qū)域的概率是,故選:D.【點睛】本題考查幾何概型的求法:首先根據(jù)題意將代數(shù)關(guān)系用面積表示出來,一般用陰影區(qū)域表示所求事件(A);然后計算陰影區(qū)域的面積和總面積的比,這個比即事件(A)發(fā)生的概率.2、A【分析】連接OC、OB,求出圓心角∠AOB的度數(shù),再利用弧長公式解答即可.【詳解】解:連接OC、OB∵六邊形ABCDEF為正六邊形,∴∠COB==60°,∵OA=OB∴△OBC是等邊三角形,∴OB=OC=BC=6,弧BC的長為:.故選:A.【點睛】此題考查了扇形的弧長公式與多邊形的性質(zhì)相結(jié)合,構(gòu)思巧妙,利用了正六邊形的性質(zhì),解題的關(guān)鍵是掌握扇形的弧長公式.3、D【分析】由長方形的面積公式可得出四邊形的面積為mn,再根據(jù)點Q在反比例函數(shù)圖象上,可知,從而可判斷面積的變化情況.【詳解】∵點∴四邊形的面積為,∵點()是反比例函數(shù)上的動點∴四邊形的面積為定值,不會發(fā)生改變故選:D.【點睛】本題主要考查反比例函數(shù)比例系數(shù)的幾何意義,掌握反比例函數(shù)比例系數(shù)的幾何意義是解題的關(guān)鍵.4、B【分析】根據(jù)三視圖的規(guī)律解答:主視圖表示由前向后觀察的物體的視圖;左視圖表示在側(cè)面由左向右觀察物體的視圖,俯視圖表示由上向下觀察物體的視圖,由此解答即可.【詳解】解:∵該幾何體的主視圖和左視圖都為長方形,俯視圖為圓∴這個幾何體為圓柱體故答案是:B.【點睛】本題主要考察簡單幾何體的三視圖,熟練掌握簡單幾何體的三視圖是解題的關(guān)鍵.5、B【分析】過E作EM⊥FA交FA的延長線于M,過C作CN⊥AB交AB的延長線于N,根據(jù)全等三角形的性質(zhì)得到EM=CN,于是得到S△AEF=S△ABC=8,同理S△CDJ=S△BHG=S△ABC=8,于是得到結(jié)論.【詳解】解:過E作EM⊥FA交FA的延長線于M,過C作CN⊥AB交AB的延長線于N,∴∠M=∠N=90°,∠EAM+∠MAC=∠MAC+∠CAB=90°,∴∠EAM=∠CAB∵四邊形ACDE、四邊形ABGF是正方形,∴AC=AE,AF=AB,∴∠EAM≌△CAN,∴EM=CN,∵AF=AB,∴S△AEF=AF?EM,S△ABC=AB?CN=8,∴S△AEF=S△ABC=8,同理S△CDJ=S△BHG=S△ABC=8,∴圖中陰影部分的面積=3×8=24,故選:B.【點睛】本題主要考查了正方形的性質(zhì),全等三角形判定和性質(zhì),正確的作輔助線是解題的關(guān)鍵.6、C【分析】設(shè)正方形網(wǎng)格中的小正方形的邊長為1,連接格點BC,AD,過C作CE⊥AB于E,解直角三角形即可得到結(jié)論.【詳解】解:設(shè)正方形網(wǎng)格中的小正方形的邊長為1,連接格點BC,AD,過C作CE⊥AB于E,∵,BC=2,AD=,∵S△ABC=AB?CE=BC?AD,∴CE=,∴,故選:C.【點睛】本題考查了解直角三角形的問題,掌握解直角三角形的方法以及銳角三角函數(shù)的定義是解題的關(guān)鍵.7、C【解析】根據(jù)中心對稱圖形的概念即可得出答案.【詳解】A選項中,不是中心對稱圖形,故該選項錯誤;B選項中,是軸對稱圖形,不是中心對稱圖形,故該選項錯誤;C選項中,是中心對稱圖形,故該選項正確;D選項中,不是中心對稱圖形,故該選項錯誤.故選C【點睛】本題主要考查中心對稱圖形,掌握中心對稱圖形的概念是解題的關(guān)鍵.8、D【分析】連接OE,延長EO交CD于點G,作于點H,通過旋轉(zhuǎn)的性質(zhì)和添加的輔助線得到四邊形和都是矩形,利用勾股定理求出的長度,最后利用垂徑定理即可得出答案.【詳解】連接OE,延長EO交CD于點G,作于點H則∵矩形ABCD繞點C旋轉(zhuǎn)所得矩形為∴四邊形和都是矩形,∵四邊形都是矩形即故選:D.【點睛】本題主要考查矩形的性質(zhì),勾股定理及垂徑定理,掌握矩形的性質(zhì),勾股定理及垂徑定理是解題的關(guān)鍵.9、B【解析】試題解析:在△ABC中,DE∥BC,故選B.10、C【分析】根據(jù)相似三角形的判定定理、三角形的面積公式判斷即可.【詳解】解:∵AB∥CD,∴△AOB∽△COD,①正確;∵∠ADO不一定等于∠BCO,∴△AOD與△ACB不一定相似,②錯誤;∴,③正確;∵△ABD與△ABC等高同底,∴,∵,∴,④正確;故選C.【點睛】本題主要考查了相似三角形的判定與性質(zhì),掌握相似三角形的判定與性質(zhì)是解題的關(guān)鍵.二、填空題(每小題3分,共24分)11、【分析】先利用平行四邊形的性質(zhì)得AO=OC,再利用三角形中位線定理得出BC=2OE,然后根據(jù)AC=10cm,△OCE的周長為18cm,可求得BC+CD,即可求得的周長.【詳解】∵的對角線交于O,點E為DC中點,∴EO是△DBC的中位線,AO=CO,CD=2CE,∴BC=2OE,∵AC=10cm,∴CO=5cm,∵△OCE的周長為18cm,∴EO+CE=18?5=13(cm),∴BC+CD=26cm,∴?ABCD的周長是52cm.故答案為:52cm.【點睛】本題主要考查平行四邊形的性質(zhì)、三角形中位線定理,熟練掌握平行四邊形的性質(zhì)和三角形中位線定理是解答本題的關(guān)鍵.12、x≤﹣6或0<x≤1【解析】當y1≤y1時,x的取值范圍就是當y1的圖象與y1重合以及y1的圖象落在y1圖象的下方時對應(yīng)的x的取值范圍.【詳解】根據(jù)圖象可得當y1≤y1時,x的取值范圍是:x≤-6或0<x≤1.故答案為x≤-6或0<x≤1.【點睛】本題考查了反比例函數(shù)與一次函數(shù)圖象的交點問題,理解當y1≤y1時,求x的取值范圍就是求當y1的圖象與y1重合以及y1的圖象落在y1圖象的下方時對應(yīng)的x的取值范圍,解答此題時,采用了“數(shù)形結(jié)合”的數(shù)學(xué)思想.13、.【分析】利用垂直高度,求出水平寬度,利用勾股定理求解即可.【詳解】解:如圖所示:根據(jù)題意,在Rt△ABC中,BC=2m,,解得AC=40m,根據(jù)勾股定理m.故答案為:.【點睛】此題主要考查解直角三角形的應(yīng)用,勾股定理.理解坡度坡角的定義,由勾股定理得出AB是解決問題的關(guān)鍵.14、﹣3≤a≤1【分析】求得對稱軸,然后分三種情況討論即可求得.【詳解】解:∵二次函數(shù)y=x1﹣4x+3=(x﹣1)1﹣1,∴對稱軸為直線x=1,當a<1<a+5時,則在a≤x≤a+5范圍內(nèi),x=1時有最小值﹣1,當a≥1時,則在a≤x≤a+5范圍內(nèi),x=a時有最小值﹣1,∴a1﹣4a+3=﹣1,解得a=1,當a+5≤1時,則在a≤x≤a+5范圍內(nèi),x=a+5時有最小值﹣1,∴(a+5)1﹣4(a+5)+3=﹣1,解得a=﹣3,∴a的取值范圍是﹣3≤a≤1,故答案為:﹣3≤a≤1.【點睛】本題考查了二次函數(shù)的最值,熟練掌握二次函數(shù)的性質(zhì)是解題的關(guān)鍵.15、1【解析】分別作O1A⊥l,O2B⊥l,O3C⊥l,如圖,

∵半圓O1,半圓O2,…,半圓On與直線L相切,

∴O1A=r1,O2B=r2,O3C=r3,

∵∠AOO1=30°,

∴OO1=2O1A=2r1=2,

在Rt△OO2B中,OO2=2O2B,即2+1+r2=2r2,

∴r2=3,

在Rt△OO2C中,OO3=2O2C,即2+1+2×3++r3=2r3,

∴r3=9=32,

同理可得r4=27=33,

所以r2018=1.

故答案為1.點睛:找規(guī)律題需要記憶常見數(shù)列1,2,3,4……n1,3,5,7……2n-12,4,6,8……2n2,4,8,16,32……1,4,9,16,25……2,6,12,20……n(n+1)一般題目中的數(shù)列是利用常見數(shù)列變形而來,其中后一項比前一項多一個常數(shù),是等差數(shù)列,列舉找規(guī)律.后一項是前一項的固定倍數(shù),則是等比數(shù)列,列舉找規(guī)律.16、2【分析】由根與系數(shù)的關(guān)系,根據(jù)兩根之和為計算即可.【詳解】∵關(guān)于的方程有一個根,

解得:;

故答案為:.【點睛】本題考查了一元二次方程根與系數(shù)的關(guān)系,熟記根與系數(shù)的關(guān)系的結(jié)構(gòu)是解題的關(guān)鍵.17、③【分析】根據(jù)過直線外一點作這條直線的垂線,及線段中垂線的做法,圓周角定理,分別作出直角三角形斜邊上的垂線,根據(jù)直角三角形斜邊上的垂線,把原直角三角形分成了兩個小直角三角形,圖中的三個直角三角形式彼此相似的;即可作出判斷.【詳解】①、在角∠BAC內(nèi)作作∠CAD=∠B,交BC于點D,根據(jù)余角的定義及等量代換得出∠B+∠BAD=90°,進而得出AD⊥BC,根據(jù)直角三角形斜邊上的垂線,把原直角三角形分成了兩個小直角三角形,圖中的三個直角三角形式彼此相似的;②、以點A為圓心,略小于AB的長為半徑,畫弧,交線段BC兩點,再分別以這兩點為圓心,大于兩交點間的距離為半徑畫弧,兩弧相交于一點,過這一點與A點作直線,該直線是BC的垂線;根據(jù)直角三角形斜邊上的垂線,把原直角三角形分成了兩個小直角三角形,圖中的三個直角三角形是彼此相似的;③、以點B為圓心BA的長為半徑畫弧,交BC于點E,再以E點為圓心,AB的長為半徑畫弧,在BC的另一側(cè)交前弧于一點,過這一點及A點作直線,該直線不一定是BE的垂線;從而就不能保證兩個小三角形相似;④、以AB為直徑作圓,該圓交BC于點D,根據(jù)圓周角定理,過AD兩點作直線該直線垂直于BC,根據(jù)直角三角形斜邊上的垂線,把原直角三角形分成了兩個小直角三角形,圖中的三個直角三角形式彼此相似的;故答案為:③.【點睛】此題主要考查了相似變換以及相似三角形的判定,正確掌握相似三角形的判定方法是解題關(guān)鍵.18、①④【分析】①由對稱軸x=1判斷;②根據(jù)圖象確定a、b、c的符號;③根據(jù)對稱軸以及B點坐標,通過對稱性得出結(jié)果;③根據(jù)的判別式的符號確定;④比較x=1時得出y1的值與x=4時得出y2值的大小即可;⑤由圖象得出,拋物線總在直線的下面,即y2>y1時x的取值范圍即可.【詳解】解:①因為拋物線的頂點坐標A(1,3),所以對稱軸為:x=1,則-=1,2a+b=0,故①正確;

②∵拋物線開口向下,∴a<0,∵對稱軸在y軸右側(cè),∴b>0,∵拋物線與y軸交于正半軸,∴c>0,∴abc<0,故②不正確;

③∵拋物線對稱軸為x=1,拋物線與x軸的交點B的坐標為(4,0),∴根據(jù)對稱性可得,拋物線與x軸的另一個交點坐標為(-2,0),故③不正確;④∵拋物線與x軸有兩個交點,∴b2-4ac>0,∴的判別式,=b2-4a(c+3)=b2-4ac-12a,又a<0,∴-12a>0,∴=b2-4ac-12a>0,故④正確;⑤當x=-1時,y1=a-b+c>0;當x=4時,y2=4m+n=0,∴a-b+c>4m+n,故⑤不正確;

⑥由圖象得:的解集為x<1或x>4;故⑥不正確;

則其中正確的有:①④.

故答案為:①④.【點睛】本題選項較多,比較容易出錯,因此要認真理解題意,明確以下幾點是關(guān)鍵:①通常2a+b的值都是利用拋物線的對稱軸來確定;②拋物線與x軸的交點個數(shù)確定其△的值,即b2-4ac的值:△=b2-4ac>0時,拋物線與x軸有2個交點;△=b2-4ac=0時,拋物線與x軸有1個交點;△=b2-4ac<0時,拋物線與x軸沒有交點;③知道對稱軸和拋物線的一個交點,利用對稱性可以求與x軸的另一交點.三、解答題(共66分)19、(1)y=100x(的整數(shù))y=x(的整數(shù));(2)購買22件時,該網(wǎng)站獲利最多,最多為1408元.【分析】(1)根據(jù)題意可得出銷售量乘以每臺利潤進而得出總利潤;(2)根據(jù)一次函數(shù)和二次函數(shù)的性質(zhì)求得最大利潤.【詳解】(1)當?shù)恼麛?shù)時,y與x的關(guān)系式為y=100x;當?shù)恼麛?shù)時,,y=(的整數(shù)),∴y與x的關(guān)系式為:y=100x(的整數(shù)),y=x(的整數(shù))(2)當(的整數(shù)),y=100x,當x=10時,利潤有最大值y=1000元;當10?x≤30時,y=,∵a=-3<0,拋物線開口向下,∴y有最大值,當x=時,y取最大值,因為x為整數(shù),根據(jù)對稱性得:當x=22時,y有最大值=1408元?1000元,所以顧客一次性購買22件時,該網(wǎng)站獲利最多.【點睛】本題考查分段函數(shù)及一次函數(shù)和二次函數(shù)的性質(zhì),利用函數(shù)性質(zhì)求最值是解答此題的重要途徑,自變量x的取值范圍及取值要求是解答此題的關(guān)鍵之處.20、證明詳見解析.【解析】試題分析:根據(jù)等腰三角形的性質(zhì),由AB=AC,D是BC中點得到AD⊥BC,易得∠ADC=∠BEC=90°,再證明∠FAD=∠CBE,于是根據(jù)有兩組角對應(yīng)相等的兩個三角形相似即可得到結(jié)論.試題解析:證明:∵AB=AC,D是BC中點,∴AD⊥BC,∴∠ADC=90°,∴∠FAE+∠AFE=90°,∵BE⊥AC,∴∠BEC=90°,∴∠CBE+∠BFD=90°,∵∠AFE=∠BFD,∴∠FAD=∠CBE,∴△AFE∽△BCE.考點:相似三角形的判定.21、(1)y=x2-4x;(2)直線AC的解析式為y=x-4;(1)存在,E點坐標為E(1.-1)或E(2,-2).【分析】(1)根據(jù)二次函數(shù)y=x2+bx+c經(jīng)過原點可知c=0,當x=2時函數(shù)有最小值可知對稱軸是x=2,故可求出b,即可求解;(2)連接OB,OC,過點C作CD⊥y軸于D,過點B作BE⊥y軸于E,根據(jù)得到,,由EB∥DC,對應(yīng)線段成比例得到,再聯(lián)立y=kx-4與y=x2-4x得到方程kx-4=x2-4x,即x2-(k+4)x+4=0,求出x1,x2,根據(jù)x1,x2之間的關(guān)系得到關(guān)于k的方程即可求解;(1)根據(jù)(1)(2)求出A,B,C的坐標,設(shè)E(m,m-4)(1<m<4)則G(m,0)、F(m,m2-4m),根據(jù)題意分∠EFB=90°和∠EBF=90°,分別找到圖形特點進行列式求解.【詳解】解:(1)∵二次函數(shù)y=x2+bx+c經(jīng)過原點,∴c=0∵當x=2時函數(shù)有最小值∴,∴b=-4,c=0,∴y=x2-4x;(2)如圖,連接OB,OC,過點C作CD⊥y軸于D,過點B作BE⊥y軸于E,∵∴∴∵EB∥DC∴∵y=kx-4交y=x2-4x于B、C∴kx-4=x2-4x,即x2-(k+4)x+4=0∴,或∵xB<xC∴EB=xB=,DC=xC=∴4?=解得k=-9(不符題意,舍去)或k=1∴k=1∴直線AC的解析式為y=x-4;(1)存在.理由如下:由題意得∠EGC=90°,∵直線AC的解析式為y=x-4∴A(0,-4),C(4,0)聯(lián)立兩函數(shù)得,解得或∴B(1,-1)設(shè)E(m,m-4)(1<m<4)則G(m,0)、F(m,m2-4m)①如圖,當∠EFB=90°,即CG//BF時,△BFE∽△CGE.此時F點縱坐標與B點縱坐標相等.∴F(m,-1)即m2-4m=-1解得m=1(舍去)或m=1∴F(1,-1)故此時E(1,-1)②如圖當∠EBF=90°,△FBE∽△CGE∵C(4,0),A(0,4)∴OA=OC∴∠GCE=45°=∠BEF=∠BFE過B點做BH⊥EF,則H(m,-1)∴BH=m-1又∵∠GCE=45°=∠BEF=∠BFE∴△BEF是等腰直角三角形,又BH⊥EF∴EH=HF,EF=2BH∴(m-4)-(m2-4m)=2(m-1)解得m1=1(舍去)m2=2∴E(2,-2)綜上,E點坐標為E(1.-1)或E(2,-2).【點睛】此題主要考查二次函數(shù)的圖像及幾何綜合,解題的關(guān)鍵是熟知二次函數(shù)的圖像與性質(zhì)、平行線分線段成比例、相似三角形及等腰三角形的性質(zhì).22、【分析】根據(jù)特殊角的三角函數(shù)值與二次根式的運算法則即可求解.【詳解】解:原式====.【點睛】此題主要考查實數(shù)的運算,解題的關(guān)鍵是熟知特殊角的三角函數(shù)值.23、畫圖見解析,的面積為1.【分析】先找出各頂點的對應(yīng)頂點A1、B1、C1,然后用線段順次連接即可得到,用割補法可以求出的面積.【詳解】如圖所示:,即為所求,的面積為:.【點睛】本題考查了作圖-位似變換:①確定位似中心;②分別連接并延長位似中心和能代表原圖的關(guān)鍵點;③根據(jù)位似比,確定能代表所作的位似圖形的關(guān)鍵點;④順次連接上述各點,得到放大或縮小的圖形.24、(1)見解析;(2)見解析.【分析】(1)由平行線的性質(zhì)得出∠DME=∠CNE,∠MDE=∠ECN,可證明△MDE≌△NCE(AAS);(2)過點M作MG⊥BN于點G,由等腰三角形的性質(zhì)得出BG=BN=BN,由中位線定理得出EF=BN,則可得出結(jié)論.【詳解】解:(1)證明:∵四邊形ABCD為矩形,∴AD//BC,∴∠DME=∠CNE,∠MDE=∠ECN,∵E為CD的中點,∴DE=CE,∴△

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論