版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
2025屆湖北省黃岡市紅安二中學(xué)數(shù)學(xué)九上期末經(jīng)典模擬試題請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應(yīng)的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認(rèn)真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題(每題4分,共48分)1.已知反比例函數(shù)的圖象經(jīng)過點(1,2),則它的圖象也一定經(jīng)過()A.(1,﹣2) B.(﹣1,2) C.(﹣2,1) D.(﹣1,﹣2)2.若關(guān)于x的方程kx2﹣2x﹣1=0有實數(shù)根,則實數(shù)k的取值范圍是()A.k>﹣1 B.k<1且k≠0 C.k≥﹣1且k≠0 D.k≥﹣13.二次函數(shù)的圖象的頂點坐標(biāo)是()A. B. C. D.4.已知二次函數(shù)的圖象如圖所示,則下列結(jié)論:①;②;③當(dāng)時,:④方程有兩個大于-1的實數(shù)根.其中正確的是()A.①②③ B.①②④ C.②③④ D.①③④5.二次函數(shù),當(dāng)時,則()A. B. C. D.6.若,則函數(shù)與在同一平面直角坐標(biāo)系中的圖象大致是()A. B. C. D.7.將拋物線y=﹣3x2先向左平移1個單位長度,再向下平移2個單位長度,得到的拋物線的解析式是()A.y=﹣3(x﹣1)2﹣2 B.y=﹣3(x﹣1)2+2C.y=﹣3(x+1)2﹣2 D.y=﹣3(x+1)2+28.一條排水管的截面如圖所示,已知排水管的半徑OB=10,水面寬AB=16,則截面圓心O到水面的距離OC是()A.4 B.5 C.6 D.69.已知線段MN=4cm,P是線段MN的黃金分割點,MP>NP,那么線段MP的長度等于()A.(2+2)cm B.(2﹣2)cm C.(+1)cm D.(﹣1)cm10.有下列四種說法:①半徑確定了,圓就確定了;②直徑是弦;③弦是直徑;④半圓是弧,但弧不一定是半圓.其中,錯誤的說法有()A.1種 B.2種 C.3種 D.4種11.如圖,在銳角△ABC中,∠A=60°,∠ACB=45°,以BC為弦作⊙O,交AC于點D,OD與BC交于點E,若AB與⊙O相切,則下列結(jié)論:①∠BOD=90°;②DO∥AB;③CD=AD;④△BDE∽△BCD;⑤正確的有()A.①② B.①④⑤ C.①②④⑤ D.①②③④⑤12.在以下四個圖案中,既是軸對稱圖形,又是中心對稱圖形的是()A. B. C. D.二、填空題(每題4分,共24分)13.用配方法解一元二次方程,配方后的方程為,則n的值為______.14.已知A(x1,y1)B(x2,y2)為反比例函數(shù)圖象上的兩點,且x1<x2<0,則:y1_____y2(填“>”或“<”).15.已知兩個相似三角形的相似比為2︰5,其中較小的三角形面積是,那么另一個三角形的面積為.16.建國70周年閱兵式中,三軍女兵方隊共352人,其中領(lǐng)隊2人,方隊中,每排的人數(shù)比排數(shù)多11,則女兵方隊共有____________排,每排有__________人.17.比較大?。篲____1.(填“>”、“=”或“<”)18.如圖,點、、…在反比例函數(shù)的圖象上,點、、……在反比例函數(shù)的圖象上,,且,則(為正整數(shù))的縱坐標(biāo)為______.(用含的式子表示)三、解答題(共78分)19.(8分)將正面分別寫著數(shù)字1,2,3的三張卡片(注:這三張卡片的形狀、大小、質(zhì)地、顏色等其它方面完全相同,若背面朝上放在桌面上,這三張卡片看上去無任何差別)洗勻后,背面朝上方在桌面上,甲從中隨機(jī)抽取一張卡片,記該卡片上的數(shù)字為,然后放回洗勻,背面朝上方在桌面上,再由乙從中隨機(jī)抽取一張卡片,記該卡片上的數(shù)字為,組成一數(shù)對.(1)請寫出.所有可能出現(xiàn)的結(jié)果;(2)甲、乙兩人玩游戲,規(guī)則如下:按上述要求,兩人各抽依次卡片,卡片上述資質(zhì)和為奇數(shù)則甲贏,數(shù)字之和為偶數(shù)則乙贏,你認(rèn)為這個游戲公平嗎?請說明理由.20.(8分)如圖,拋物線與軸相交于兩點,點在點的右側(cè),與軸相交于點.求點的坐標(biāo);在拋物線的對稱軸上有一點,使的值最小,求點的坐標(biāo);點為軸上一動點,在拋物線上是否存在一點,使以四點構(gòu)成的四邊形為平行四邊形?若存在,求點的坐標(biāo);若不存在,請說明理由.21.(8分)如圖,已知直線AB經(jīng)過點(0,4),與拋物線y=x2交于A,B兩點,其中點A的橫坐標(biāo)是.(1)求這條直線的函數(shù)關(guān)系式及點B的坐標(biāo).(2)在x軸上是否存在點C,使得△ABC是直角三角形?若存在,求出點C的坐標(biāo),若不存在請說明理由.(3)過線段AB上一點P,作PM∥x軸,交拋物線于點M,點M在第一象限,點N(0,1),當(dāng)點M的橫坐標(biāo)為何值時,MN+3MP的長度最大?最大值是多少?22.(10分)如圖,四邊形ABCD為矩形.(1)如圖1,E為CD上一定點,在AD上找一點F,使得矩形沿著EF折疊后,點D落在BC邊上(尺規(guī)作圖,保留作圖痕跡);(2)如圖2,在AD和CD邊上分別找點M,N,使得矩形沿著MN折疊后BC的對應(yīng)邊B'C'恰好經(jīng)過點D,且滿足B'C'⊥BD(尺規(guī)作圖,保留作圖痕跡);(3)在(2)的條件下,若AB=2,BC=4,則CN=.23.(10分)在平面直角坐標(biāo)系中,我們定義直線y=ax-a為拋物線y=ax2+bx+c(a、b、c為常數(shù),a≠0)的“衍生直線”;有一個頂點在拋物線上,另有一個頂點在y軸上的三角形為其“衍生三角形”.已知拋物線與其“衍生直線”交于A、B兩點(點A在點B的左側(cè)),與x軸負(fù)半軸交于點C.(1)填空:該拋物線的“衍生直線”的解析式為,點A的坐標(biāo)為,點B的坐標(biāo)為;(2)如圖,點M為線段CB上一動點,將△ACM以AM所在直線為對稱軸翻折,點C的對稱點為N,若△AMN為該拋物線的“衍生三角形”,求點N的坐標(biāo);(3)當(dāng)點E在拋物線的對稱軸上運動時,在該拋物線的“衍生直線”上,是否存在點F,使得以點A、C、E、F為頂點的四邊形為平行四邊形?若存在,請直接寫出點E、F的坐標(biāo);若不存在,請說明理由.24.(10分)閱讀以下材料,并按要求完成相應(yīng)地任務(wù):萊昂哈德·歐拉(LeonhardEuler)是瑞士數(shù)學(xué)家,在數(shù)學(xué)上經(jīng)常見到以他的名字命名的重要常數(shù),公式和定理,下面是歐拉發(fā)現(xiàn)的一個定理:在△ABC中,R和r分別為外接圓和內(nèi)切圓的半徑,O和I分別為其外心和內(nèi)心,則.如圖1,⊙O和⊙I分別是△ABC的外接圓和內(nèi)切圓,⊙I與AB相切分于點F,設(shè)⊙O的半徑為R,⊙I的半徑為r,外心O(三角形三邊垂直平分線的交點)與內(nèi)心I(三角形三條角平分線的交點)之間的距離OI=d,則有d2=R2﹣2Rr.下面是該定理的證明過程(部分):延長AI交⊙O于點D,過點I作⊙O的直徑MN,連接DM,AN.∵∠D=∠N,∠DMI=∠NAI(同弧所對的圓周角相等),∴△MDI∽△ANI,∴,∴①,如圖2,在圖1(隱去MD,AN)的基礎(chǔ)上作⊙O的直徑DE,連接BE,BD,BI,IF,∵DE是⊙O的直徑,∴∠DBE=90°,∵⊙I與AB相切于點F,∴∠AFI=90°,∴∠DBE=∠IFA,∵∠BAD=∠E(同弧所對圓周角相等),∴△AIF∽△EDB,∴,∴②,任務(wù):(1)觀察發(fā)現(xiàn):,(用含R,d的代數(shù)式表示);(2)請判斷BD和ID的數(shù)量關(guān)系,并說明理由;(3)請觀察式子①和式子②,并利用任務(wù)(1),(2)的結(jié)論,按照上面的證明思路,完成該定理證明的剩余部分;(4)應(yīng)用:若△ABC的外接圓的半徑為5cm,內(nèi)切圓的半徑為2cm,則△ABC的外心與內(nèi)心之間的距離為cm.25.(12分)已知二次函數(shù)y=ax2+bx+3的圖象經(jīng)過點(-3,0),(2,-5).(1)試確定此二次函數(shù)的解析式;(2)請你判斷點P(-2,3)是否在這個二次函數(shù)的圖象上?26.(1)計算:(2)若關(guān)于的方程有兩個相等的實數(shù)根,求的值.
參考答案一、選擇題(每題4分,共48分)1、D【分析】根據(jù)反比例函數(shù)圖象和性質(zhì)即可解答.先判斷出反比例函數(shù)圖象的一分支所在象限,即可得到另一分支所在象限.【詳解】解:由于點(1,2)在第一象限,則反比例函數(shù)的一支在第一象限,另一支必過第三象限.第三象限內(nèi)點的坐標(biāo)符號為(﹣,﹣)故選:D.【點睛】此題主要考查反比例函數(shù)的圖像與性質(zhì),解題的關(guān)鍵是熟知反比例函數(shù)圖像的對稱性.2、C【分析】根據(jù)根的判別式()即可求出答案.【詳解】由題意可知:∴∵∴且,故選:C.【點睛】本題考查了根的判別式的應(yīng)用,因為存在實數(shù)根,所以根的判別式成立,以此求出實數(shù)k的取值范圍.3、B【分析】根據(jù)二次函數(shù)的性質(zhì),用配方法求出二次函數(shù)頂點式,再得出頂點坐標(biāo)即可.【詳解】解:∵拋物線
=(x+1)2+3
∴拋物線的頂點坐標(biāo)是:(?1,3).
故選B.【點睛】此題主要考查了利用配方法求二次函數(shù)頂點式以及求頂點坐標(biāo),此題型是考查重點,應(yīng)熟練掌握.4、B【分析】①由二次函數(shù)的圖象開口方向知道a<0,與y軸交點知道c>0,由此即可確定ac的符號;②由于二次函數(shù)圖象與x軸有兩個交點即有兩個不相等的實數(shù)根,由此即可判定的符號;③根據(jù)圖象知道當(dāng)x<0時,y不一定小于0,由此即可判定此結(jié)論是否正確;④根據(jù)圖象與x軸交點的情況即可判定是否正確.【詳解】解:∵圖象開口向下,∴a<0,∵圖象與y軸交于正半軸,則c>0,∴ac<0,故選項①正確;∵二次函數(shù)圖象與x軸有兩個交點即有兩個不相等的實數(shù)根,即,故選項②正確;③當(dāng)x<0時,有部分圖象在y的上半軸即函數(shù)值y不一定小于0,故選項③錯誤;④利用圖象與x軸交點都大于-1,故方程有兩個大于-1的實數(shù)根,故選項④正確;故選:B.【點睛】本題主要考查了圖象與二次函數(shù)系數(shù)之間的關(guān)系,二次函數(shù)與方程之間的轉(zhuǎn)換,會利用特殊值代入法求得特殊的式子,如:當(dāng)時,,然后根據(jù)圖象判斷其值.5、D【分析】因為=,對稱軸x=1,函數(shù)開口向下,分別求出x=-1和x=1時的函數(shù)值即可;【詳解】∵=,∴當(dāng)x=1時,y有最大值5;當(dāng)x=-1時,y==1;當(dāng)x=2時,y==4;∴當(dāng)時,;故選D.【點睛】本題主要考查了二次函數(shù)的性質(zhì),掌握二次函數(shù)的性質(zhì)是解題的關(guān)鍵.6、B【分析】根據(jù)及正比例函數(shù)與反比例函數(shù)圖象的特點,可以從和兩方面分類討論得出答案.【詳解】∵,∴分兩種情況:
(1)當(dāng)時,正比例函數(shù)數(shù)的圖象過原點、第一、三象限,反比例函數(shù)圖象在第二、四象限,無此選項;
(2)當(dāng)時,正比例函數(shù)的圖象過原點、第二、四象限,反比例函數(shù)圖象在第一、三象限,選項B符合.
故選:B.【點睛】本題主要考查了反比例函數(shù)的圖象性質(zhì)和正比例函數(shù)的圖象性質(zhì),解題的關(guān)鍵是掌握它們的性質(zhì).7、C【分析】根據(jù)“左加右減、上加下減”的原則進(jìn)行解答即可.【詳解】解:將拋物線y=﹣3x1向左平移1個單位所得直線解析式為:y=﹣3(x+1)1;再向下平移1個單位為:y=﹣3(x+1)1﹣1,即y=﹣3(x+1)1﹣1.故選C.【點睛】此題主要考查了二次函數(shù)圖象與幾何變換,要求熟練掌握平移的規(guī)律:左加右減,上加下減.8、D【解析】試題解析:∵OC⊥AB,OC過圓心O點,在中,由勾股定理得:故選D.點睛:垂直于弦的直徑平分弦并且平分弦所對的兩條弧.9、B【解析】根據(jù)黃金分割的定義進(jìn)行作答.【詳解】由黃金分割的定義知,,又MN=4,所以,MP=22.所以答案選B.【點睛】本題考查了黃金分割的定義,熟練掌握黃金分割的定義是本題解題關(guān)鍵.10、B【分析】根據(jù)弦的定義、弧的定義、以及確定圓的條件即可解決.【詳解】解:圓確定的條件是確定圓心與半徑,是假命題,故此說法錯誤;直徑是弦,直徑是圓內(nèi)最長的弦,是真命題,故此說法正確;弦是直徑,只有過圓心的弦才是直徑,是假命題,故此說法錯誤;④半圓是弧,但弧不一定是半圓,圓的任意一條直徑的兩個端點把圓分成兩條弧,每一條弧都叫半圓,所以半圓是?。劝雸A大的弧是優(yōu)弧,比半圓小的弧是劣弧,不是所有的弧都是半圓,是真命題,故此說法正確.
其中錯誤說法的是①③兩個.故選B.【點睛】本題考查弦與直徑的區(qū)別,弧與半圓的區(qū)別,及確定圓的條件,不要將弦與直徑、弧與半圓混淆.11、C【解析】根據(jù)同弧所對的圓周角等于它所對圓心角的一半,由圓周角∠ACB=45°得到圓心角∠BOD=90°,進(jìn)而得到的度數(shù)為90°,故選項①正確;又因OD=OB,所以△BOD為等腰直角三角形,由∠A和∠ACB的度數(shù),利用三角形的內(nèi)角和定理求出∠ABC=180°-60°-45°=75°,由AB與圓切線,根據(jù)切線的性質(zhì)得到∠OBA為直角,求出∠CBO=∠OBA-∠ABC=90°-75°=15°,由根據(jù)∠BOE為直角,求出∠OEB=180°-∠BOD-∠OBE=180°-90°-15°=75°,根據(jù)內(nèi)錯角相等,得到OD∥AB,故選項②正確;由D不一定為AC中點,即CD不一定等于AD,而選項③不一定成立;又由△OBD為等腰三角形,故∠ODB=45°,又∠ACB=45°,等量代換得到兩個角相等,又∠CBD為公共角,根據(jù)兩對對應(yīng)角相等的兩三角形相似得到△BDE∽△BCD,故④正確;連接OC,由相似三角形性質(zhì)和平行線的性質(zhì),得比例,由BD=OD,等量代換即可得到BE等=DE,故選項⑤正確.綜上,正確的結(jié)論有4個.
故選C.點睛:此題考查了相似三角形的判定與性質(zhì),圓周角定理,切線的性質(zhì),等腰直角三角形的性質(zhì)以及等邊三角形的性質(zhì),熟練掌握性質(zhì)與定理是解本題的關(guān)鍵.12、B【分析】旋轉(zhuǎn)180后能夠與原圖形完全重合即是中心對稱圖形,根據(jù)軸對稱圖形與中心對稱圖形的概念求解.【詳解】A、不是軸對稱圖形,是中心對稱圖形,不合題意;B、是軸對稱圖形,也是中心對稱圖形,符合題意;C、是軸對稱圖形,不是中心對稱圖形,不合題意;D、是軸對稱圖形,不是中心對稱圖形,不合題意.故選:B.【點睛】本題考查了中心對稱圖形與軸對稱圖形的概念.軸對稱圖形的關(guān)鍵是尋找對稱軸,圖形兩部分折疊后可重合,中心對稱圖形是要尋找對稱中心,旋轉(zhuǎn)180度后兩部分重合.二、填空題(每題4分,共24分)13、7【分析】根據(jù)配方法,先移項,然后兩邊同時加上4,即可求出n的值.【詳解】解:∵,∴,∴,∴,∴;故答案為:7.【點睛】本題考查了配方法解一元二次方程,解題的關(guān)鍵是熟練掌握配方法的步驟.14、<【解析】先根據(jù)反比例函數(shù)的解析式判斷出該函數(shù)圖象所在的象限及在每一象限內(nèi)的增減性,再由x1<x1<0可判斷出A(x1,y1)B(x1,y1)所在的象限,故可得出結(jié)論.【詳解】∵反比例函數(shù)y=?中k=-3<0,∴其函數(shù)圖象在二、四象限,且在每一象限內(nèi)y隨x的增大而增大,∵x1<x1<0,∴A、B兩點均在第二象限,∴y1<y1.故答案為:<.【點睛】本題考查的是反比例函數(shù)圖象上點的坐標(biāo)特點,根據(jù)題意判斷出A、B所在的象限是解答此題的關(guān)鍵.15、25【解析】試題解析:∵兩個相似三角形的相似比為2:5,∴面積的比是4:25,∵小三角形的面積為4,∴大三角形的面積為25.故答案為25.點睛:相似三角形的面積比等于相似比的平方.16、14;1【分析】先設(shè)三軍女兵方隊共有排,則每排有()人,根據(jù)三軍女兵方隊共352人可列方程求解即可.【詳解】設(shè)三軍女兵方隊共有排,則每排有()人,根據(jù)題意得:
,
整理,得.
解得:(不合題意,舍去),
則(人).
故答案為:14,1.【點睛】本題考查了一元二次方程的應(yīng)用,解題關(guān)鍵是要讀懂題目的意思,根據(jù)題目給出的條件,找出合適的等量關(guān)系,列出方程,再求解.17、>.【解析】先求出1=,再比較即可.【詳解】∵12=9<10,∴>1,故答案為>.【點睛】本題考查了實數(shù)的大小比較和算術(shù)平方根的應(yīng)用,用了把根號外的因式移入根號內(nèi)的方法.18、【分析】先證明是等邊三角形,求出的坐標(biāo),作高線,再證明是等邊三角形,作高線,設(shè),根據(jù),解方程可得等邊三角形的邊長和的縱坐標(biāo),同理依次得出結(jié)論,并總結(jié)規(guī)律:發(fā)現(xiàn)點、、…在軸的上方,縱坐標(biāo)為正數(shù),點、、……在軸的下方,縱坐標(biāo)為負(fù)數(shù),可以利用來解決這個問題.【詳解】過作軸于,∵,,是等邊三角形,,,和,過作軸于,∵,是等邊三角形,設(shè),則,中,,,∵,解得:(舍),,,,即的縱坐標(biāo)為;過作軸于,同理得:是等邊三角形,設(shè),則,中,,,∵,解得:(舍),;,,即的縱坐標(biāo)為;…(為正整數(shù))的縱坐標(biāo)為:;故答案為;【點睛】本題考查了待定系數(shù)法求反比例函數(shù)解析式,等邊三角形的性質(zhì)和判定,直角三角形度角的性質(zhì),勾股定理,反比例函數(shù)圖象上點的坐標(biāo)特征,并與方程相結(jié)合解決問題.三、解答題(共78分)19、(1)見解析;(2)不公平,理由見解析【解析】(1)利用枚舉法解決問題即可;(2)求出數(shù)字之和為奇數(shù)的概率,數(shù)字之和為偶數(shù)的概率即可判斷.【詳解】(1)由題設(shè)可知,所有可能出現(xiàn)的結(jié)果如下:,,,,,,,,共9種;(2)兩人各抽一次卡片,卡片上數(shù)字之和為奇數(shù)有4種可能,所以(甲贏);卡片上數(shù)字之和為偶數(shù)有5種可能,所以(乙贏).∵,∴乙贏的可能性大一些,故這個游戲不公平.【點睛】本題考查游戲公平性,概率等知識,解題的關(guān)鍵是熟練掌握基本知識,屬于中考常考題型.20、(1),;(2);(3)點的坐標(biāo)為,或.【分析】(1)把y=0代入函數(shù)解析式,解方程可求得A、B兩點的坐標(biāo);把x=0代入函數(shù)解析式可求得C點的坐標(biāo).
(2)連接BC,交對稱軸于P,P即為使PB+PC的值最小,設(shè)直線BC的解析式,把B、C的坐標(biāo)代入即可求得系數(shù),進(jìn)而求得解析式,令x=2時,即可求得P的坐標(biāo);
(3)分兩種情況:
①當(dāng)存在的點N在x軸的上方時,根據(jù)對稱性可得點N的坐標(biāo)為(4,);
②當(dāng)存在的點N在x軸下方時,作輔助線,構(gòu)建三角形全等,證明得,即N點的縱坐標(biāo)為-,列方程可得N的坐標(biāo).【詳解】(1)當(dāng)時,當(dāng)時,,化簡,得.解得.連接,交對稱軸于點,連接.點和點關(guān)于拋物線的對稱軸對稱,.要使的值最小,則應(yīng)使的值最小,所以與對稱軸的交點使得的值最小.設(shè)的解析式為.將代入,可得,解得,拋物線的對稱軸為直線當(dāng)時,,①當(dāng)在軸上方,此時,且.則四邊形是平行四邊形.②當(dāng)在軸下方;作,交于點.如果四邊形是平行四邊形...又,.當(dāng)時,,綜上所述,點的坐標(biāo)為,或.【點睛】本題考查了待定系數(shù)法求二次函數(shù)解析式.軸對稱的性質(zhì)、平行四邊形的判定、三角形全等的性質(zhì)和判定等知識,難度適中,第2問解題的關(guān)鍵是熟練掌握平行四邊形的判定,采用分類討論的思想和數(shù)形結(jié)合的思想解決問題.21、(1)直線y=x+4,點B的坐標(biāo)為(8,16);(2)點C的坐標(biāo)為(﹣,0),(0,0),(6,0),(32,0);(3)當(dāng)M的橫坐標(biāo)為6時,MN+3PM的長度的最大值是1.【解析】(1)首先求得點A的坐標(biāo),然后利用待定系數(shù)法確定直線的解析式,從而求得直線與拋物線的交點坐標(biāo);(2)分若∠BAC=90°,則AB2+AC2=BC2;若∠ACB=90°,則AB2=AC2+BC2;若∠ABC=90°,則AB2+BC2=AC2三種情況求得m的值,從而確定點C的坐標(biāo);(3)設(shè)M(a,a2),得MN=a2+1,然后根據(jù)點P與點M縱坐標(biāo)相同得到x=,從而得到MN+3PM=﹣a2+3a+9,確定二次函數(shù)的最值即可.【詳解】(1)∵點A是直線與拋物線的交點,且橫坐標(biāo)為-2,,A點的坐標(biāo)為(-2,1),設(shè)直線的函數(shù)關(guān)系式為y=kx+b,將(0,4),(-2,1)代入得解得∴y=x+4∵直線與拋物線相交,解得:x=-2或x=8,
當(dāng)x=8時,y=16,
∴點B的坐標(biāo)為(8,16);(2)存在.∵由A(-2,1),B(8,16)可求得AB2==325.設(shè)點C(m,0),同理可得AC2=(m+2)2+12=m2+4m+5,BC2=(m-8)2+162=m2-16m+320,①若∠BAC=90°,則AB2+AC2=BC2,即325+m2+4m+5=m2-16m+320,解得m=-;②若∠ACB=90°,則AB2=AC2+BC2,即325=m2+4m+5+m2-16m+320,解得m=0或m=6;③若∠ABC=90°,則AB2+BC2=AC2,即m2+4m+5=m2-16m+320+325,解得m=32,∴點C的坐標(biāo)為(-,0),(0,0),(6,0),(32,0)(3)設(shè)M(a,a2),則MN=,又∵點P與點M縱坐標(biāo)相同,∴x+4=a2,∴x=,∴點P的橫坐標(biāo)為,∴MP=a-,∴MN+3PM=a2+1+3(a-)=-a2+3a+9=-(a-6)2+1,∵-2≤6≤8,∴當(dāng)a=6時,取最大值1,∴當(dāng)M的橫坐標(biāo)為6時,MN+3PM的長度的最大值是122、(1)圖見解析(2)圖見解析(3)【分析】(1)以點E為圓心,以DE長為半徑畫弧,交BC于點D′,連接DD′,作DD′的垂直平分線交AD于點F即可;(2)先作射線BD,然后過點D作BD的垂線與BC的延長線交于點H,作∠BHD的角平分線交CD于點N,交AD于點M,在HD上截取HC′=HC,然后在射線C′D上截取C′B′=BC,此時的M、N即為滿足條件的點;(3)在(2)的條件下,根據(jù)AB=2,BC=4,即可求出CN的長.【詳解】(1)如圖,點F為所求;(2)如圖,折痕MN、矩形A’B’C’D’為所求;(3)在(2)的條件下,∵AB=2,BC=4,∴BD=2,∵BD⊥B′C′,∴BD⊥A′D′,得矩形DGD′C′.∴DG=C′D′=2,∴BG=2?2設(shè)CN的長為x,CD′=y(tǒng).則C′N=x,D′N=2?x,BD′=4?y,∴(4?y)2=y(tǒng)2+(2?2)2,解得y=?1.(2?x)2=x2+(?1)2解得x=.故答案為:.【點睛】本題考查了作圖?復(fù)雜作圖、矩形的性質(zhì)、翻折變換,解決本題的關(guān)鍵是掌握矩形的性質(zhì).23、(1);(-2,);(1,0);(2)N點的坐標(biāo)為(0,),(0,);(3)E(-1,-)、F(0,)或E(-1,),F(xiàn)(-4,)【分析】(1)由拋物線的“衍生直線”知道二次函數(shù)解析式的a即可;(2)過A作AD⊥y軸于點D,則可知AN=AC,結(jié)合A點坐標(biāo),則可求出ON的長,可求出N點的坐標(biāo);(3)分別討論當(dāng)AC為平行四邊形的邊時,當(dāng)AC為平行四邊形的對角線時,求出滿足條件的E、F坐標(biāo)即可【詳解】(1)∵,a=,則拋物線的“衍生直線”的解析式為;聯(lián)立兩解析式求交點,解得或,∴A(-2,),B(1,0);(2)如圖1,過A作AD⊥y軸于點D,在中,令y=0可求得x=-3或x=1,∴C(-3,0),且A(-2,),∴AC=由翻折的性質(zhì)可知AN=AC=,∵△AMN為該拋物線的“衍生三角形”,∴N在y軸上,且AD=2,在Rt△AND中,由勾股定理可得DN=,∵OD=,∴ON=或ON=,∴N點的坐標(biāo)為(0,),(0,);(3)①當(dāng)AC為平行四邊形的邊時,如圖2,過F作對稱軸的垂線FH,過A作AK⊥x軸于點K,則有AC∥EF且AC=EF,∴∠ACK=∠EFH,在△ACK和△EFH中∴△ACK≌△EFH,∴FH=CK=1,HE=AK=,∵拋物線的對稱軸為x=-1,∴F點的橫坐標(biāo)為0或-2,∵點F在直線AB上,∴當(dāng)F點的橫坐標(biāo)為0時,則F(0,),此時點E在直線AB下方,∴E到y(tǒng)軸的距離為EH-OF=-=,即E的縱坐標(biāo)為-,∴E(-1,-);當(dāng)F點的橫坐標(biāo)為-2時,則F與A重合,不合題意,舍去;②當(dāng)AC為平行四邊形的對角線時,∵C(-3,0),且A(-2,),∴線段AC的中點坐標(biāo)為(-2.5,),設(shè)E(-1,t),F(xiàn)(x,y),則x-1=2×(-2.5),y+t=,∴x=-4,y=-t,-t=-×(-4)+,解得t=,∴E(-1,),F(xiàn)(-4,);綜
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年度個人商鋪租賃合同(含裝修補(bǔ)償條款)3篇
- 二零二五年度建筑塔吊租賃及勞務(wù)分包施工合同
- 2025民法典合同編修訂版修訂咨詢合同3篇
- 2025年度個人擔(dān)保業(yè)務(wù)合同模板2篇
- 二零二五年度文化旅游項目派遣員工勞動合同及文化交流協(xié)議4篇
- 養(yǎng)老院物業(yè)管理勞務(wù)合同范本(二零二五年度)3篇
- 2025年度美食城檔口租賃合同參考范本3篇
- 2025年度個人獨資企業(yè)股權(quán)轉(zhuǎn)讓合同范本與法律風(fēng)險分析3篇
- 二零二五年度木工班組職業(yè)健康與安全協(xié)議合同3篇
- 2025年度農(nóng)業(yè)設(shè)施搭棚種植技術(shù)服務(wù)合同3篇
- 肺炎臨床路徑
- 外科手術(shù)鋪巾順序
- 創(chuàng)新者的窘境讀書課件
- 綜合素質(zhì)提升培訓(xùn)全面提升個人綜合素質(zhì)
- 如何克服高中生的社交恐懼癥
- 聚焦任務(wù)的學(xué)習(xí)設(shè)計作業(yè)改革新視角
- 移動商務(wù)內(nèi)容運營(吳洪貴)任務(wù)三 APP的品牌建立與價值提供
- 電子競技范文10篇
- 食堂服務(wù)質(zhì)量控制方案與保障措施
- VI設(shè)計輔助圖形設(shè)計(2022版)
- 眼科學(xué)??己喆痤}
評論
0/150
提交評論