2025屆河南省寶豐九年級數(shù)學第一學期期末質量檢測試題含解析_第1頁
2025屆河南省寶豐九年級數(shù)學第一學期期末質量檢測試題含解析_第2頁
2025屆河南省寶豐九年級數(shù)學第一學期期末質量檢測試題含解析_第3頁
2025屆河南省寶豐九年級數(shù)學第一學期期末質量檢測試題含解析_第4頁
2025屆河南省寶豐九年級數(shù)學第一學期期末質量檢測試題含解析_第5頁
已閱讀5頁,還剩24頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領

文檔簡介

2025屆河南省寶豐九年級數(shù)學第一學期期末質量檢測試題注意事項:1.答卷前,考生務必將自己的姓名、準考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應題目的答案標號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標號?;卮鸱沁x擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結束后,將本試卷和答題卡一并交回。一、選擇題(每小題3分,共30分)1.如果,那么()A. B. C. D.2.如圖,已知:在⊙O中,OA⊥BC,∠AOB=70°,則∠ADC的度數(shù)為()A.70° B.45° C.35° D.30°3.如圖所示,線段與交于點,下列條件中能判定的是()A.,,, B.,,,C.,,, D.,,,4.已知,,是反比例函數(shù)的圖象上的三點,且,則、、的大小關系是()A. B. C. D.5.當溫度不變時,氣球內(nèi)氣體的氣壓P(單位:kPa)是氣體體積V(單位:m3)的函數(shù),下表記錄了一組實驗數(shù)據(jù):P與V的函數(shù)關系式可能是()V(單位:m3)11.522.53P(單位:kPa)96644838.432A.P=96V B.P=﹣16V+112C.P=16V2﹣96V+176 D.P=6.某個密碼鎖的密碼由三個數(shù)字組成,每個數(shù)字都是0-9這十個數(shù)字中的一個,只有當三個數(shù)字與所設定的密碼及順序完全相同,才能將鎖打開,如果僅忘記了所設密碼的最后那個數(shù)字,那么一次就能打開該密碼的概率是()A.110 B.19 C.17.“泱泱華夏,浩浩千秋.于以求之?旸谷之東.山其何輝,韞卞和之美玉……”這是武漢16歲女孩陳天羽用文言文寫70周年閱兵的觀后感.小汀州同學把這篇氣勢磅礴、文采飛揚的文章放到自己的微博上,并決定用微博轉發(fā)的方式傳播.他設計了如下的傳播規(guī)則:將文章發(fā)表在自己的微博上,再邀請n個好友轉發(fā),每個好友轉發(fā)之后,又邀請n個互不相同的好友轉發(fā),依此類推.已知經(jīng)過兩輪轉發(fā)后,共有111個人參與了宣傳活動,則n的值為()A.9 B.10 C.11 D.128.如圖是以△ABC的邊AB為直徑的半圓O,點C恰好在半圓上,過C作CD⊥AB交AB于D.已知cos∠ACD=,BC=4,則AC的長為()A.1 B. C.3 D.9.如圖,已知是的外接圓,是的直徑,是的弦,,則等于()A. B. C. D.10.如圖,在由邊長為1的小正方形組成的網(wǎng)格中,點,,,都在格點上,點在的延長線上,以為圓心,為半徑畫弧,交的延長線于點,且弧經(jīng)過點,則扇形的面積為()A. B. C. D.二、填空題(每小題3分,共24分)11.一元二次方程有一個根為,二次項系數(shù)為1,且一次項系數(shù)和常數(shù)項都是非0的有理數(shù),這個方程可以是_________.12.在中,若、滿足,則為________三角形.13.某數(shù)學興趣小組利用太陽光測量一棵樹的高度(如圖),在同一時刻,測得樹的影長為6米,小明的影長為1米,已知小明的身高為1.5米,則樹高為_________米.14.如圖,P是等邊△ABC內(nèi)的一點,若將△PAC繞點A按逆時針方向旋轉到△P'AB,則∠PAP'=_____.15.如圖,在正方形中,以為邊作等邊,延長,分別交于點,連接、、與相交于點,給出下列結論:①;②;③;④,其中正確的是__________.16.如圖,矩形中,,點是邊上一點,交于點,則長的取值范圍是____.17.函數(shù),其中是的反比例函數(shù),則的值是__________.18.如圖,在中,,,,則的長為_____.三、解答題(共66分)19.(10分)(1)解方程:(2)如圖已知⊙的直徑,弦與弦平行,它們之間的距離為7,且,求弦的長.20.(6分)(1)已知關于x的一元二次方程x2+(a+3)x+a+1=1.求證:無論a取何值,原方程總有兩個不相等的實數(shù)根:(2)已知:二次函數(shù)y=ax2+bx+c(a≠1)中的x和y滿足下表:x…﹣11123…y…31﹣11m…①觀察上表可求得m的值為;②試求出這個二次函數(shù)的解析式.21.(6分)已知:如圖,,點在射線上.求作:正方形,使線段為正方形的一條邊,且點在內(nèi)部.22.(8分)拋物線L:y=﹣x2+bx+c經(jīng)過點A(0,1),與它的對稱軸直線x=1交于點B(1)直接寫出拋物線L的解析式;(2)如圖1,過定點的直線y=kx﹣k+4(k<0)與拋物線L交于點M、N,若△BMN的面積等于1,求k的值;(3)如圖2,將拋物線L向上平移m(m>0)個單位長度得到拋物線L1,拋物線L1與y軸交于點C,過點C作y軸的垂線交拋物線L1于另一點D、F為拋物線L1的對稱軸與x軸的交點,P為線段OC上一點.若△PCD與△POF相似,并且符合條件的點P恰有2個,求m的值及相應點P的坐標.23.(8分)已知正方形ABCD中,E為對角線BD上一點,過點E作EF⊥BD交BC于點F,連接DF,G為DF的中點,連接EG,(1)如圖1,求證:EG=CG;(2)將圖1中的ΔBEF繞點B逆時針旋轉45°,如圖2,取DF的中點G,連接EG,CG.問((3)將圖1中的ΔBEF繞點B逆時計旋轉任意角度,如圖3,取DF的中點G,連接EG,CG.問(24.(8分)如圖,的三個頂點在平面直角坐標系中正方形的格點上.(1)求的值;(2)點在反比例函數(shù)的圖象上,求的值,畫出反比例函數(shù)在第一象限內(nèi)的圖象.25.(10分)定義:點P在△ABC的邊上,且與△ABC的頂點不重合.若滿足△PAB、△PBC、△PAC至少有一個三角形與△ABC相似(但不全等),則稱點P為△ABC的自相似點.如圖①,已知點A、B、C的坐標分別為(1,0)、(3,0)、(0,1).(1)若點P的坐標為(2,0),求證點P是△ABC的自相似點;(2)求除點(2,0)外△ABC所有自相似點的坐標;(3)如圖②,過點B作DB⊥BC交直線AC于點D,在直線AC上是否存在點G,使△GBD與△GBC有公共的自相似點?若存在,請舉例說明;若不存在,請說明理由.26.(10分)如圖,兩個轉盤中指針落在每個數(shù)字上的機會相等,現(xiàn)同時轉動、兩個轉盤,停止后,指針各指向一個數(shù)字.小力和小明利用這兩個轉盤做游戲,若兩數(shù)之積為非負數(shù)則小力勝;否則,小明勝.(1)畫樹狀圖或列表求出各人獲勝的概率。(2)這個游戲公平嗎?說說你的理由

參考答案一、選擇題(每小題3分,共30分)1、B【詳解】根據(jù)二次根式的性質,由此可知2-a≥0,解得a≤2.故選B【點睛】此題主要考查了二次根式的性質,解題關鍵是明確被開方數(shù)的符號,然后根據(jù)性質可求解.2、C【分析】先根據(jù)垂徑定理得出=,再由圓周角定理即可得出結論.【詳解】解:∵OA⊥BC,∠AOB=70°,∴=,∴∠ADC=∠AOB=35°.故選C.【點睛】本題考查的是圓周角定理,熟知在同圓或等圓中,同弧或等弧所對的圓周角相等,都等于這條弧所對的圓心角的一半是解答此題的關鍵.3、C【解析】根據(jù)平行線分線段成比例的推論:如果一條直線截三角形的兩邊(或兩邊的延長線)所得的對應線段成比例,那么這條直線平行于三角形的第三邊,逐項判斷即可得答案.【詳解】A.∵∴不能判定,故本選項不符合題意;B.無法判斷,則不能判定,故本選項不符合題意;C.∵,,,∴∴故本選項符合題意;D.∵∴不能判定,故本選項不符合題意;故選C.【點睛】本題考查平行線分線段成比例的推論,熟練掌握此推論判定平行是解題的關鍵.4、C【分析】先根據(jù)反比例函數(shù)y=的系數(shù)2>0判斷出函數(shù)圖象在一、三象限,在每個象限內(nèi),y隨x的增大而減小,再根據(jù)x1<x2<0<x3,判斷出y1、y2、y3的大小.【詳解】解:函數(shù)大致圖象如圖,∵k>0,則圖象在第一、三象限,在每個象限內(nèi),y隨x的增大而減小,又∵x1<x2<0<x3,∴y2<y1<y3.故選C.【點睛】本題考查了反比例函數(shù)圖象上點的坐標特征.5、D【解析】試題解析:觀察發(fā)現(xiàn):故P與V的函數(shù)關系式為故選D.點睛:觀察表格發(fā)現(xiàn)從而確定兩個變量之間的關系即可.6、A【解析】試題分析:根據(jù)題意可知總共有10種等可能的結果,一次就能打開該密碼的結果只有1種,所以P(一次就能打該密碼)=,故答案選A.考點:概率.7、B【分析】根據(jù)傳播規(guī)則結合經(jīng)過兩輪轉發(fā)后共有111個人參與了宣傳活動,即可得出關于n的一元二次方程,解之取其正值即可得出結論.【詳解】解:依題意,得:1+n+n2=111,解得:n1=10,n2=﹣11(不合題意,舍去).故選:B.【點睛】本題考查了一元二次方程的應用,找準等量關系,正確列出一元二次方程是解題的關鍵.8、D【解析】∵AB是直徑,∴∠ACB=90°.∵CD⊥AB,∴∠ADC=90°.∴∠ACD=∠B.在Rt△ABC中,∵,BC=4,∴,解得.∴.故選D.9、C【分析】由直徑所對的圓周角是直角,可得∠ADB=90°,可計算出∠BAD,再由同弧所對的圓周角相等得∠BCD=∠BAD.【詳解】∵是的直徑∴∠ADB=90°∴∠BAD=90°-∠ABD=32°∴∠BCD=∠BAD=32°.故選C.【點睛】本題考查圓周角定理,熟練運用該定理將角度進行轉換是關鍵.10、B【分析】連接AC,根據(jù)網(wǎng)格的特點求出r=AC的長度,再得到扇形的圓心角度數(shù),根據(jù)扇形面積公式即可求解.【詳解】連接AC,則r=AC=扇形的圓心角度數(shù)為∠BAD=45°,∴扇形的面積==故選B.【點睛】此題主要考查扇形面積求解,解題的關鍵是熟知勾股定理及扇形面積公式.二、填空題(每小題3分,共24分)11、【分析】根據(jù)有理系數(shù)一元二次方程若有一根為,則必有另一根為求解即可.【詳解】根據(jù)題意,方程的另一個根為,∴這個方程可以是:,即:,故答案是:,【點睛】本題考查了一元二次方程根與系數(shù)的關系,正確理解“有理系數(shù)一元二次方程若有一根為,則必有另一根為”是解題的關鍵.12、直角【分析】先根據(jù)非負數(shù)的性質及特殊角的三角函數(shù)值求得∠A和∠B,即可作出判斷.【詳解】∵,∴,,∴,,∵,,∴∠A=30°,∠B=60°,

∴,

∴△ABC是直角三角形.

故答案為:直角.【點睛】本題考查了特殊角的三角函數(shù)值,非負數(shù)的性質及三角形的內(nèi)角和定理,根據(jù)非負數(shù)的性質及特殊角的三角函數(shù)值求出∠A、∠B的度數(shù),是解題的關鍵.13、1【分析】在同一時刻物高和影長成正比,即在同一時刻的兩個物體,影子,對應比值相等進而得出答案.【詳解】解:根據(jù)相同時刻的物高與影長成比例.設樹的高度為,則,解得:.故答案為:1.【點睛】此題考查相似三角形的應用,解題關鍵在于掌握其性質定義.14、60°【解析】試題分析:根據(jù)旋轉圖形的性質可得:∠PAP′=∠BAC=60°.考點:旋轉圖形的性質15、①②③④【分析】①正確.利用直角三角形30度角的性質即可解決問題;②正確,通過計算證明∠BPD=135°,即可判斷;③正確,根據(jù)兩角相等兩個三角形相似即可判斷;④正確.利用相似三角形的性質即可證明.【詳解】∵△BPC是等邊三角形,

∴BP=PC=BC,∠PBC=∠PCB=∠BPC=60°,

在正方形ABCD中,

∵AB=BC=CD,∠A=∠ABC=∠ADC=∠BCD=90°,

∴∠ABE=∠DCF=90°-60°=30°,在和中,,∴,∴,∴在中,∠A=90°,∠ABE=30°,∴,故①正確;∵PC=CD,∠PCD=30°,

∴∠PDC=∠DPC=75°,∴∠BPD=∠BPC+∠DPC=60°+75°=135°,故②正確;∵∠ADC=90°,∠PDC=75°,

∴∠EDP=∠ADC-∠PDC=90°-75°=15°,

∵∠DBA=45°,∠ABE=30°,

∴∠EBD=∠DBA-∠ABE=45°-30°=15°,

∴∠EDP=∠EBD=15°,

∵∠DEP=∠BED,

∴△PDE∽△DBE,故③正確;∵△PDE∽△DBE,∴,∴,故④正確;綜上,①②③④都正確,故答案為:①②③④.【點睛】本題考查相似三角形的判定和性質,等邊三角形的性質,正方形的性質,直角三角形30度角的性質等知識,解題的關鍵是熟練掌握基本知識.16、【分析】證明,利用相似比列出關于AD,DE,EC,CF的關系式,從而求出長的取值范圍.【詳解】∵∴∴∵四邊形是矩形∴∴∴∴∴∴因為∴故答案為:.【點睛】本題考查了一元二次方程的最值問題,掌握相似三角形的性質以及判定、解一元二次方程得方法是解題的關鍵.17、【分析】根據(jù)反比例函數(shù)的定義知m1-5=-1,且m-1≠0,據(jù)此可以求得m的值.【詳解】∵y=(m-1)x

m1?5是y關于x的反比例函數(shù),∴m1-5=-1,且m-1≠0,∴(m+1)(m-1)=0,且m-1≠0,∴m+1=0,即m=-1;故答案為:-1.【點睛】本題考查了反比例函數(shù)的定義,重點是將一般式y(tǒng)=(k≠0)轉化為y=kx-1(k≠0)的形式.18、【解析】過A作AD垂直于BC,在直角三角形ABD中,利用銳角三角函數(shù)定義求出AD的長,在直角三角形ACD中,利用銳角三角函數(shù)定義求出CD的長,再利用勾股定理求出AC的長即可.【詳解】解:過作,在中,,,∴,在中,,∴,即,根據(jù)勾股定理得:,故答案為【點睛】此題考查了解直角三角形,涉及的知識有:銳角三角函數(shù)定義,以及勾股定理,熟練掌握各自的性質是解本題的關鍵.三、解答題(共66分)19、(1);(2)1.【分析】(1)先移項,然后利用因式分解法解方程即可(2)作OM⊥AB于M,ON⊥CD于N,連接OA、OC,根據(jù)垂徑定理求出AM,根據(jù)勾股定理求出OM,根據(jù)題意求出ON,根據(jù)勾股定理、垂徑定理計算即可.【詳解】(1)解:∵或(2)作OM⊥AB于M,ON⊥CD于N,連接OA、OC,則∵∴點在同一條直線上,在中∴在中,∵∴【點睛】本題考查了解一元二次方程、垂徑定理和勾股定理的應用,掌握垂直于弦的直徑平分這條弦是解題的關鍵.20、(2)證明見解析;(2)①3;②y=(x﹣2)2﹣2.【分析】(2)△=(a+3)2﹣4(a+2)=a2+2a+5=(a+2)2+4>2,即可求解;(2)①函數(shù)的對稱軸為:x=2,根據(jù)函數(shù)的對稱軸知,m=3,即可求解;②函數(shù)的頂點坐標為(2,﹣2),故拋物線的表達式為:y=a(x﹣2)2﹣2,將(2,2)代入上式并解得:a=2,即可求解.【詳解】(2)△=(a+3)2﹣4(a+2)=a2+2a+5=(a+2)2+4>2,故無論a取何值,原方程總有兩個不相等的實數(shù)根;(2)①函數(shù)的對稱軸為:x=2,根據(jù)函數(shù)的對稱性可得,m=3,故答案為:3;②函數(shù)的頂點坐標為(2,﹣2),故拋物線的表達式為:y=a(x﹣2)2﹣2,將(2,2)代入上式得:2=a(2﹣2)2﹣2,解得:a=2,故拋物線的表達式為:y=(x﹣2)2﹣2.【點睛】此題考查一元二次方程根的判別式,二次函數(shù)的性質,待定系數(shù)法求函數(shù)的解析式,此題中能讀懂表格中的數(shù)值變化是解題的關鍵.21、見詳解【分析】先以點B為圓心,以BD為半徑畫弧,作出點E,再分別以點D,點E為圓心,以BD為半徑畫弧,作出點F,連結即可作出正方形.【詳解】如圖,作法:1.以點B為圓心,以BD長為半徑畫弧,交AB于點E;2.分別以點D,點E為圓心,以BD長為半徑畫弧,兩弧相交于點F,3.連結EF,FD,∴四邊形DBEF即為所求作的正方形.理由:∵BD=DF=FE=EB∴四邊形DBEF為菱形,∵∴四邊形DBEF是正方形.【點睛】本題主要考查了基本作圖,正方形的判定.解題的關鍵是熟記作圖的方法及正方形的判定.22、(1)y=﹣x2+2x+1;(2)-3;(3)當m=2﹣1時,點P的坐標為(0,)和(0,);當m=2時,點P的坐標為(0,1)和(0,2).【解析】(1)根據(jù)對稱軸為直線x=1且拋物線過點A(0,1)利用待定系數(shù)法進行求解可即得;(2)根據(jù)直線y=kx﹣k+4=k(x﹣1)+4知直線所過定點G坐標為(1,4),從而得出BG=2,由S△BMN=S△BNG﹣S△BMG=BG?xN﹣BG?xM=1得出xN﹣xM=1,聯(lián)立直線和拋物線解析式求得x=,根據(jù)xN﹣xM=1列出關于k的方程,解之可得;(3)設拋物線L1的解析式為y=﹣x2+2x+1+m,知C(0,1+m)、D(2,1+m)、F(1,0),再設P(0,t),分△PCD∽△POF和△PCD∽△POF兩種情況,由對應邊成比例得出關于t與m的方程,利用符合條件的點P恰有2個,結合方程的解的情況求解可得.【詳解】(1)由題意知,解得:,∴拋物線L的解析式為y=﹣x2+2x+1;(2)如圖1,設M點的橫坐標為xM,N點的橫坐標為xN,∵y=kx﹣k+4=k(x﹣1)+4,∴當x=1時,y=4,即該直線所過定點G坐標為(1,4),∵y=﹣x2+2x+1=﹣(x﹣1)2+2,∴點B(1,2),則BG=2,∵S△BMN=1,即S△BNG﹣S△BMG=BG?(xN﹣1)-BG?(xM-1)=1,∴xN﹣xM=1,由得:x2+(k﹣2)x﹣k+3=0,解得:x==,則xN=、xM=,由xN﹣xM=1得=1,∴k=±3,∵k<0,∴k=﹣3;(3)如圖2,設拋物線L1的解析式為y=﹣x2+2x+1+m,∴C(0,1+m)、D(2,1+m)、F(1,0),設P(0,t),(a)當△PCD∽△FOP時,,∴,∴t2﹣(1+m)t+2=0①;(b)當△PCD∽△POF時,,∴,∴t=(m+1)②;(Ⅰ)當方程①有兩個相等實數(shù)根時,△=(1+m)2﹣8=0,解得:m=2﹣1(負值舍去),此時方程①有兩個相等實數(shù)根t1=t2=,方程②有一個實數(shù)根t=,∴m=2﹣1,此時點P的坐標為(0,)和(0,);(Ⅱ)當方程①有兩個不相等的實數(shù)根時,把②代入①,得:(m+1)2﹣(m+1)+2=0,解得:m=2(負值舍去),此時,方程①有兩個不相等的實數(shù)根t1=1、t2=2,方程②有一個實數(shù)根t=1,∴m=2,此時點P的坐標為(0,1)和(0,2);綜上,當m=2﹣1時,點P的坐標為(0,)和(0,);當m=2時,點P的坐標為(0,1)和(0,2).【點睛】本題主要考查二次函數(shù)的應用,涉及到待定系數(shù)法求函數(shù)解析式、割補法求三角形的面積、相似三角形的判定與性質等,(2)小題中根據(jù)三角形BMN的面積求得點N與點M的橫坐標之差是解題的關鍵;(3)小題中運用分類討論思想進行求解是關鍵.23、(1)見解析;(2)見解析;(3)見解析.【解析】(1)利用直角三角形斜邊上的中線等于斜邊的一半,可證出CG=EG.

(2)結論仍然成立,連接AG,過G點作MN⊥AD于M,與EF的延長線交于N點;再證明△DAG≌△DCG,得出AG=CG;再證出△DMG≌△FNG,得到MG=NG;再證明△AMG≌△ENG,得出AG=EG;最后證出CG=EG.

(3)結論依然成立.過F作CD的平行線并延長CG交于M點,連接EM、EC,過F作FN垂直于AB于N.由于G為FD中點,易證△CDG≌△MFG,得到CD=FM,又因為BE=EF,易證∠EFM=∠EBC,則△EFM≌△EBC,∠FEM=∠BEC,EM=EC,得出△MEC是等腰直角三角形,就可以得出結論.【詳解】(1)在RtΔFCD中,G為DF∴CG=1同理,在RtΔDEF中,EG=∴EG=CG.(2)如圖②,(1)中結論仍然成立,即EG=CG.

理由:連接AG,過G點作MN⊥AD于M,與EF的延長線交于N點.

∴∠AMG=∠DMG=90°.

∵四邊形ABCD是正方形,

∴AD=CD=BC=AB,∠ADG=∠CDG.∠DAB=∠ABC=∠BCD=∠ADC=90°.

在△DAG和△DCG中,

AD=CD∠ADG=∠CDGDG=DG,

∴△DAG≌△DCG(SAS),

∴AG=CG.

∵G為DF的中點,

∴GD=GF.

∵EF⊥BE,

∴∠BEF=90°,

∴∠BEF=∠BAD,

∴AD∥EF,

∴∠N=∠DMG=90°.∠DGM=∠FGNFG=DG∠MDG=∠NFG,

∴△DMG≌△FNG(ASA),

∴MG=NG.

∵∠DA∠AMG=∠N=90°,

∴四邊形AENM是矩形,

∴AM=EN,

在△AMG和△ENG中,

AM=EN∠AMG=∠ENGMG=NG,

∴△AMG≌△ENG(SAS),

∴AG=EG,

∴EG=CG;

(3)如圖③,(1)中的結論仍然成立.

理由:過F作CD的平行線并延長CG交于M點,連接EM、EC,過F作FN⊥AB于N.

∵MF∥CD,

∴∠FMG=∠DCG,∠MFD=∠CDG.∠AQF=∠ADC=90°

∵FN⊥AB,

∴∠FNH=∠ANF=90°.

∵G為FD中點,

∴GD=GF.

在△MFG和△CDG中

∠FMG=∠DCG∠MFD=∠CDGGF=GD,

∴△CDG≌△MFG(AAS),

∴CD=FM.MG=CG.

∴MF=AB.

∵EF⊥BE,

∴∠BEF=90°.

∵∠NHF+∠HNF+∠NFH=∠BEF+∠EHB+∠EBH=180°,

∴∠NFH=∠EBH.

∵∠A=∠ANF=∠AMF=90°,

∴四邊形ANFQ是矩形,

∴∠MFN=90°.

∴∠MFN=∠CBN,

∴∠MFN+∠NFE=∠CBN+∠EBH,

∴∠MFE=∠CBE.

在△EFM和△EBC中

MF=AB∠MFE=∠CBEEF=EB,

∴△EFM≌△EBC(SAS),

∴ME=CE.,∠FEM=∠BEC,

∵∠【點睛】考查了正方形的性質的運用,矩形的判定就性質的運用,旋轉的性質的運用,直角三角形的性質的運用,全等三角形的判定及性質的運用,解答時證明三角形全等是關鍵.24、(1);(2),圖見解析【分析】(1)過點B作BD⊥AC于點D,然后在Rt△ABD中可以求出;(2)將點B代入,可得出k的值,從而得出反比例函數(shù)解析式,進而用描點法畫出函數(shù)圖象即可.【詳解】解:(1)過點B作BD⊥AC于點D,由圖可得,BD=2,AD=4,∴.(2)將點B(1,3)代入,得k=3,∴反比例函數(shù)解析式為.函數(shù)在第一象限內(nèi)取點,描點得,x(x>0)1236y6322連線得函數(shù)圖象如圖:【點睛】本題主要考查正切值的求法,反比例函數(shù)解析式的求法以及反比例函數(shù)圖象的畫法,掌握基本概念和作圖步驟是解題的關鍵.25、(1)見解析;(2)△CPA∽△CAB,此時P(,);△BPA∽△BAC,此時P(,);(3)S(3,-2)是△GBD與△GBC公共的自相似點,見解析【分析】(1)利用:兩邊對應成比例且夾角相等,證明△APC∽△CAB即可;(2)分類討論:△CPA∽△CAB和△BPA∽△BAC,分別求得P點的坐標;(3)先求得點D的坐標,說明點G(5,)、S(3,-2)在直線AC:上,證得△ABC△SGB,再證得△GBS∽△GCB,說明點S是△GBC的自相似點;又證得△DBG△DSB,說明點S是△GBD的自相似點.從而說明S(3,-2)是△GBD與△GBC公共的自相似點.【詳解】(1)如圖,∵A(1,0),B(3,0),C(0,1),P(2,0),∴AP=2-1=1,AC=,AB=3-1=2,∴,,∴=,∵∠PAC=∠

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論