版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
3.6零點定理(精講)(提升版)思維導圖思維導圖考點呈現(xiàn)考點呈現(xiàn)例題剖析例題剖析考點一零點的區(qū)間【例1】(2023·河南開封·)函數(shù)的一個零點所在的區(qū)間是(
)A. B. C. D.【一隅三反】1.(2023·湖南)函數(shù)的零點所在區(qū)間是(
)A.B.C.D.2.(2023·四川攀枝花)已知函數(shù)的零點在區(qū)間上,則(
)A. B. C. D.3.(2023·云南德宏)方程的解所在的區(qū)間為(
)A. B. C. D.考點二零點的個數(shù)【例2-1】(2023·陜西)函數(shù)的零點個數(shù)為(
)A.0 B.1 C.2 D.3【例2-2】(2023·山西)已知若,則在內(nèi)的零點個數(shù)為(
)A.8 B.9 C.10 D.11【一隅三反】1.(2023·安徽)已知函數(shù)則方程的解的個數(shù)是(
)A.0 B.1 C.2 D.32.(2023·全國·高三專題練習)函數(shù)的圖像與函數(shù)的圖像的交點個數(shù)為(
)A.2 B.3 C.4 D.03.(2023·海南省)設函數(shù)定義域為R,為奇函數(shù),為偶函數(shù),當時,,則函數(shù)有(
)個零點A.4 B.5 C.6 D.7考點三比較零點的大小【例3】(2023·安徽)已知函數(shù),,的零點分別為a,b,c則a,b,c的大小順序為(
)A. B.C. D.【一隅三反】1.(2023·河南)若實數(shù)滿足,則(
)A. B.C. D.2.(2023·安徽)已知,,,則(
)A. B. C. D.3.(2023·山西)正實數(shù)滿足,則實數(shù)之間的大小關系為(
)A. B. C. D.考點四已知零點求參數(shù)【例4-1】(2023·山東濰坊)已知函數(shù)的圖像與直線有3個不同的交點,則實數(shù)m的取值范圍是(
)A. B. C. D.【例4-2】(2023·吉林)已知若關于x的方程有3個不同實根,則實數(shù)取值范圍為(
)A. B. C. D.【例4-3】(2023·安徽·合肥市)已知函數(shù)在區(qū)間上有且僅有4個零點,則的取值范圍是(
)A. B. C. D.【一隅三反】1.(2023·全國·高三專題練習)已知函數(shù)若關于x的方程恰有三個不相等的實數(shù)解,則m的取值范圍是(
)A. B.C. D.2.(2023·河南·模擬預測(理))已知函數(shù)為定義在上的單調(diào)函數(shù),且.若函數(shù)有3個零點,則的取值范圍為(
)A. B.C. D.3.(2023·廣西·貴港市高級中學三模)已知在有且僅有6個實數(shù)根,則實數(shù)的取值范圍為(
)A. B.C. D.4.(2023·山西)已知函數(shù),若函數(shù)恰好有兩個零點,則實數(shù)k的取值范圍是(
)A. B. C. D.考點五零點的綜合運用【例5-1】(2023·新疆克拉瑪依)函數(shù)在區(qū)間上的所有零點之和為(
)A. B.C. D.【例5-2】(2023·甘肅)若函數(shù)在區(qū)間上有2個零點,則的取值范圍是(
)A. B. C. D.【例5-3】(2023·全國·高三專題練習)已知函數(shù)的零點為,函數(shù)的零點為,則下列不等式中成立的是(
)A. B.C. D.【一隅三反】1.(2023·安徽·合肥一六八中學)若為奇函數(shù),且是的一個零點,則一定是下列哪個函數(shù)的零點(
)A. B. C. D.2.(2023·陜西·模擬預測(理))已知是方程的根,是方程的根,則的值為(
)A.2 B.3 C.6 D.103.(2023·陜西·西安中學一模(理))函數(shù)的所有零點之和為_________.3.6零點定理(精講)(提升版)思維導圖思維導圖考點呈現(xiàn)考點呈現(xiàn)例題剖析例題剖析考點一零點的區(qū)間【例1】(2023·河南開封·)函數(shù)的一個零點所在的區(qū)間是(
)A. B. C. D.答案:D【解析】因為,的定義域為,,所以在上單調(diào)遞增,所以,,由零點存在性定理知:,函數(shù)的一個零點所在的區(qū)間是.故選:D.【一隅三反】1.(2023·湖南)函數(shù)的零點所在區(qū)間是(
)A.B.C.D.答案:B【解析】因為是上的增函數(shù),且,所以的零點在區(qū)間內(nèi).故選:B2.(2023·四川攀枝花)已知函數(shù)的零點在區(qū)間上,則(
)A. B. C. D.答案:C【解析】函數(shù)的定義域為,且在上單調(diào)遞增,故其至多一個零點;又,,故的零點在區(qū)間,故.故選:.3.(2023·云南德宏)方程的解所在的區(qū)間為(
)A. B. C. D.答案:B【解析】設,易知在定義域內(nèi)是增函數(shù),又,,所以的零點在上,即題中方程的根屬于.故選:B.考點二零點的個數(shù)【例2-1】(2023·陜西)函數(shù)的零點個數(shù)為(
)A.0 B.1 C.2 D.3答案:D【解析】當時,則函數(shù)的零點個數(shù)為函數(shù)與函數(shù),的交點個數(shù)作出兩個函數(shù)的圖象如下圖所示,由圖可知,當時,函數(shù)的零點有兩個,當時,,即當時,函數(shù)的零點有一個.綜上,函數(shù)的零點有三個.故選:D【例2-2】(2023·山西)已知若,則在內(nèi)的零點個數(shù)為(
)A.8 B.9 C.10 D.11答案:B【解析】作出的圖像,則在內(nèi)的零點個數(shù)為曲線與直線在內(nèi)的交點個數(shù)9.選:B.【一隅三反】1.(2023·安徽)已知函數(shù)則方程的解的個數(shù)是(
)A.0 B.1 C.2 D.3答案:C【解析】令,得,則函數(shù)零點的個數(shù)即函數(shù)與函數(shù)的交點個數(shù).作出函數(shù)與函數(shù)的圖像,可知兩個函數(shù)圖像的交點的個數(shù)為2,故方程的解的個數(shù)為2個.故選:C.2.(2023·全國·高三專題練習)函數(shù)的圖像與函數(shù)的圖像的交點個數(shù)為(
)A.2 B.3 C.4 D.0答案:C【解析】在上是增函數(shù),在和上是減函數(shù),在和上是增函數(shù),,,,作出函數(shù)的圖像,如圖,由圖像可知它們有4個交點.故選:C.3.(2023·海南?。┰O函數(shù)定義域為R,為奇函數(shù),為偶函數(shù),當時,,則函數(shù)有(
)個零點A.4 B.5 C.6 D.7答案:C【解析】的零點個數(shù)即的圖象交點個數(shù).因為為奇函數(shù),故關于原點對稱,故關于對稱,又為偶函數(shù),故關于對稱,又當時,,畫出圖象,易得函數(shù)的圖象有6個交點故選:C考點三比較零點的大小【例3】(2023·安徽)已知函數(shù),,的零點分別為a,b,c則a,b,c的大小順序為(
)A. B.C. D.答案:D【解析】由得,,由得,由得.在同一平面直角坐標系中畫出、、的圖象,由圖象知,,.故選:D【一隅三反】1.(2023·河南)若實數(shù)滿足,則(
)A. B.C. D.答案:B【解析】畫出與三個函數(shù)的圖象,如圖可得的與交點的橫坐標依次為,故故選:B2.(2023·安徽)已知,,,則(
)A. B. C. D.答案:A【解析】設函數(shù),易知在上遞增,,,即,由零點存在定理可知.;設函數(shù),易知在上遞增,,,即,由零點存在定理可知,;設函數(shù),易知在上遞減,,,因為,由函數(shù)單調(diào)性可知,,即.故選:A.3.(2023·山西)正實數(shù)滿足,則實數(shù)之間的大小關系為(
)A. B. C. D.答案:A【解析】,即,即,與的圖象在只有一個交點,則在只有一個根,令,,,,則;,即,即,由與的圖象在只有一個交點,則在只有一個根,令,,,,故;,即,即,由與的圖象在只有一個交點,則在只有一個根,令,,,,則;故選:A.考點四已知零點求參數(shù)【例4-1】(2023·山東濰坊)已知函數(shù)的圖像與直線有3個不同的交點,則實數(shù)m的取值范圍是(
)A. B. C. D.答案:B【解析】對函數(shù)求導得:,當或時,,當時,,即在,上單調(diào)遞增,在上單調(diào)遞減,在處取得極大值,在處取得極小值,在同一坐標系內(nèi)作出函數(shù)的圖像和直線,如圖,觀察圖象知,當時,函數(shù)的圖像與直線有3個不同的交點,所以實數(shù)m的取值范圍是.故選:B【例4-2】(2023·吉林)已知若關于x的方程有3個不同實根,則實數(shù)取值范圍為(
)A. B. C. D.答案:D【解析】因為時,,則,令,則,所以時,,則單調(diào)遞增;時,,則單調(diào)遞減;且,,時,;時,,則,令,則,所以時,,則單調(diào)遞增;時,,則單調(diào)遞減;且,,時,;作出在上的圖象,如圖:由圖可知要使有3個不同的實根,則.故選:D.【例4-3】(2023·安徽·合肥市)已知函數(shù)在區(qū)間上有且僅有4個零點,則的取值范圍是(
)A. B. C. D.答案:B【解析】根據(jù)題意,函數(shù),若,即,必有,令,則,設,則函數(shù)和在區(qū)間內(nèi)有4個交點,又由于,必有,即的取值范圍是,故選:B.【一隅三反】1.(2023·全國·高三專題練習)已知函數(shù)若關于x的方程恰有三個不相等的實數(shù)解,則m的取值范圍是(
)A. B.C. D.答案:D【解析】函數(shù)的圖像如下圖所示:若關于x的方程恰有三個不相等的實數(shù)解,則函數(shù)的圖像與直線有三個交點,若直線經(jīng)過原點時,m=0,若直線與函數(shù)的圖像相切,令,令.故.故選:D.2.(2023·河南·模擬預測(理))已知函數(shù)為定義在上的單調(diào)函數(shù),且.若函數(shù)有3個零點,則的取值范圍為(
)A. B.C. D.答案:A【解析】因為為定義在R上的單調(diào)函數(shù),所以存在唯一的,使得,則,,即,因為函數(shù)為增函數(shù),且,所以,.當時,由,得;當時,由,得.結(jié)合函數(shù)的圖象可知,若有3個零點,則.故選:A3.(2023·廣西·貴港市高級中學三模)已知在有且僅有6個實數(shù)根,則實數(shù)的取值范圍為(
)A. B.C. D.答案:D【解析】由,得,即.設,即在有且僅有6個實數(shù)根,因為,故只需,解得,故選:D.4.(2023·山西)已知函數(shù),若函數(shù)恰好有兩個零點,則實數(shù)k的取值范圍是(
)A. B. C. D.答案:C【解析】由題意知,畫出函數(shù)的簡圖,如圖所示由恰好有兩個零點轉(zhuǎn)化為與直線有兩個不同的交點,由圖知,當直線經(jīng)過點兩點的斜率為,則.所以實數(shù)k的取值范圍為.故選:C.考點五零點的綜合運用【例5-1】(2023·新疆克拉瑪依)函數(shù)在區(qū)間上的所有零點之和為(
)A. B.C. D.答案:C【解析】因為,令,即,當時顯然不成立,當時,作出和的圖象,如圖,它們關于點對稱,由圖象可知它們在上有4個交點,且關于點對稱,每對稱的兩個點的橫坐標和為,所以4個點的橫坐標之和為.故選:C.【例5-2】(2023·甘肅)若函數(shù)在區(qū)間上有2個零點,則的取值范圍是(
)A. B. C. D.答案:A【解析】函數(shù)在區(qū)間上有2個零點即方程在區(qū)間上有2個實數(shù)根設,則為偶函數(shù).且當時,,當時,在上單調(diào)遞增,且所以在上單調(diào)遞減,則在上單調(diào)遞增,又時,;時,,則的大致圖像如圖.所以方程在區(qū)間上有2個實數(shù)根滿足則,設,則在上恒成立所以故選:A【例5-3】(2023·全國·高三專題練習)已知函數(shù)的零點為,函數(shù)的零點為,則下列不等式中成立的是(
)A. B.C. D.答案:C【解析】令、,則、,在同一坐標系中分別繪出函數(shù)、、的圖像,因為函數(shù)的零點為,函數(shù)的零點為,所以,,解方程組,因為函數(shù)與互為反函數(shù),所以由反函數(shù)性質(zhì)知、關于對稱,則,,,A、B、D錯誤,因為,所以在上單調(diào)遞增,因為,,所以,因為點在直線上,所以,,故C正確,故選:C.【一隅三反】1.(2023·安徽·合肥一六八中學)若為奇函數(shù),且是的一個零點,則一定是下列哪個函數(shù)的零點(
)A. B. C. D.答案:B【解析】是奇函數(shù),且是的一個零點,所以,把分別代入下面四個選項,對于A,,不一定為0,故A錯誤;對于B,,所以是函數(shù)的零點,故B正確;對于C,,故C不正確;對于D,,故D不正確;故選:B.2.(2023·陜西·模擬預測(理))已知是方程的根,是方程的根,則的值為(
)A.2 B.3 C.6 D.10答案:A【解析】方程可變形為方程,方程可變形為
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 油井打塞施工方案
- 養(yǎng)老護理員情感勞動及其支持策略研究
- 基于數(shù)據(jù)合成的視網(wǎng)膜影像分析研究
- 硫化物電解質(zhì)界面改性及全固態(tài)電池性能研究
- 八年級學生幾何直觀能力的現(xiàn)狀調(diào)查研究
- 2025年度租房糾紛專業(yè)調(diào)解與法律援助服務合同
- 二零二五年度智慧城市經(jīng)營貸采購協(xié)議
- 二零二五年度菜鳥驛站智能物流合作推廣協(xié)議
- 2025年度出租房屋意外事故責任免除與房東無關聯(lián)協(xié)議
- 2025年度道路清掃與城市環(huán)境衛(wèi)生綜合治理合同
- 圖像識別領域自適應技術-洞察分析
- 個體戶店鋪租賃合同
- 禮盒業(yè)務銷售方案
- 二十屆三中全會精神學習試題及答案(100題)
- 【奧運會獎牌榜預測建模實證探析12000字(論文)】
- 土力學與地基基礎(課件)
- 主要負責人重大隱患帶隊檢查表
- 魯濱遜漂流記人物形象分析
- 危險廢物貯存?zhèn)}庫建設標準
- 多層工業(yè)廠房主體結(jié)構(gòu)施工方案鋼筋混凝土結(jié)構(gòu)
- 救生艇筏、救助艇基本知識課件
評論
0/150
提交評論