版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
2022-2023學(xué)年高三上數(shù)學(xué)期末模擬試卷請(qǐng)考生注意:1.請(qǐng)用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請(qǐng)用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫(xiě)在答題紙相應(yīng)的答題區(qū)內(nèi)。寫(xiě)在試題卷、草稿紙上均無(wú)效。2.答題前,認(rèn)真閱讀答題紙上的《注意事項(xiàng)》,按規(guī)定答題。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.設(shè),分別是橢圓的左、右焦點(diǎn),過(guò)的直線交橢圓于,兩點(diǎn),且,,則橢圓的離心率為()A. B. C. D.2.已知函數(shù)在上可導(dǎo)且恒成立,則下列不等式中一定成立的是()A.、B.、C.、D.、3.2019年10月1日,中華人民共和國(guó)成立70周年,舉國(guó)同慶.將2,0,1,9,10這5個(gè)數(shù)字按照任意次序排成一行,拼成一個(gè)6位數(shù),則產(chǎn)生的不同的6位數(shù)的個(gè)數(shù)為A.96 B.84 C.120 D.3604.如圖在一個(gè)的二面角的棱有兩個(gè)點(diǎn),線段分別在這個(gè)二面角的兩個(gè)半平面內(nèi),且都垂直于棱,且,則的長(zhǎng)為()A.4 B. C.2 D.5.定義運(yùn)算,則函數(shù)的圖象是().A. B.C. D.6.設(shè)i為數(shù)單位,為z的共軛復(fù)數(shù),若,則()A. B. C. D.7.函數(shù)的圖象大致為()A. B.C. D.8.已知,,則的大小關(guān)系為()A. B. C. D.9.將4名大學(xué)生分配到3個(gè)鄉(xiāng)鎮(zhèn)去當(dāng)村官,每個(gè)鄉(xiāng)鎮(zhèn)至少一名,則不同的分配方案種數(shù)是()A.18種 B.36種 C.54種 D.72種10.函數(shù)且的圖象是()A. B.C. D.11.若集合,則=()A. B. C. D.12.已知復(fù)數(shù),(為虛數(shù)單位),若為純虛數(shù),則()A. B.2 C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知函數(shù)的定義域?yàn)镽,導(dǎo)函數(shù)為,若,且,則滿足的x的取值范圍為_(kāi)_____.14.將底面直徑為4,高為的圓錐形石塊打磨成一個(gè)圓柱,則該圓柱的側(cè)面積的最大值為_(kāi)_________.15.已知兩點(diǎn),,若直線上存在點(diǎn)滿足,則實(shí)數(shù)滿足的取值范圍是__________.16.已知雙曲線的一條漸近線為,則焦點(diǎn)到這條漸近線的距離為_(kāi)____.三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)在四棱錐中,底面是邊長(zhǎng)為2的菱形,是的中點(diǎn).(1)證明:平面;(2)設(shè)是直線上的動(dòng)點(diǎn),當(dāng)點(diǎn)到平面距離最大時(shí),求面與面所成二面角的正弦值.18.(12分)平面直角坐標(biāo)系中,曲線的參數(shù)方程為(為參數(shù)),以原點(diǎn)為極點(diǎn),軸的非負(fù)半軸為極軸,取相同的單位長(zhǎng)度建立極坐標(biāo)系,曲線的極坐標(biāo)方程為,直線的極坐標(biāo)方程為,點(diǎn).(1)求曲線的極坐標(biāo)方程與直線的直角坐標(biāo)方程;(2)若直線與曲線交于點(diǎn),曲線與曲線交于點(diǎn),求的面積.19.(12分)已知數(shù)列{an}的各項(xiàng)均為正,Sn為數(shù)列{an}的前n項(xiàng)和,an2+2an=4Sn+1.(1)求{an}的通項(xiàng)公式;(2)設(shè)bn,求數(shù)列{bn}的前n項(xiàng)和.20.(12分)已知函數(shù).(1)當(dāng)時(shí),判斷在上的單調(diào)性并加以證明;(2)若,,求的取值范圍.21.(12分)若關(guān)于的方程的兩根都大于2,求實(shí)數(shù)的取值范圍.22.(10分)某校共有學(xué)生2000人,其中男生900人,女生1100人,為了調(diào)查該校學(xué)生每周平均體育鍛煉時(shí)間,采用分層抽樣的方法收集該校100名學(xué)生每周平均體育鍛煉時(shí)間(單位:小時(shí)).(1)應(yīng)抽查男生與女生各多少人?(2)根據(jù)收集100人的樣本數(shù)據(jù),得到學(xué)生每周平均體育鍛煉時(shí)間的頻率分布表:時(shí)間(小時(shí))[0,1](1,2](2,3](3,4](4,5](5,6]頻率0.050.200.300.250.150.05若在樣本數(shù)據(jù)中有38名男學(xué)生平均每周課外體育鍛煉時(shí)間超過(guò)2小時(shí),請(qǐng)完成每周平均體育鍛煉時(shí)間與性別的列聯(lián)表,并判斷是否有95%的把握認(rèn)為“該校學(xué)生的每周平均體育鍛煉時(shí)間與性別有關(guān)”?男生女生總計(jì)每周平均體育鍛煉時(shí)間不超過(guò)2小時(shí)每周平均體育鍛煉時(shí)間超過(guò)2小時(shí)總計(jì)附:K2.P(K2≥k0)0.1000.0500.0100.0052.7063.8416.6357.879
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、C【解析】
根據(jù)表示出線段長(zhǎng)度,由勾股定理,解出每條線段的長(zhǎng)度,再由勾股定理構(gòu)造出關(guān)系,求出離心率.【詳解】設(shè),則由橢圓的定義,可以得到,在中,有,解得在中,有整理得,故選C項(xiàng).【點(diǎn)睛】本題考查幾何法求橢圓離心率,是求橢圓離心率的一個(gè)常用方法,通過(guò)幾何關(guān)系,構(gòu)造出關(guān)系,得到離心率.屬于中檔題.2、A【解析】
設(shè),利用導(dǎo)數(shù)和題設(shè)條件,得到,得出函數(shù)在R上單調(diào)遞增,得到,進(jìn)而變形即可求解.【詳解】由題意,設(shè),則,又由,所以,即函數(shù)在R上單調(diào)遞增,則,即,變形可得.故選:A.【點(diǎn)睛】本題主要考查了利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性及其應(yīng)用,以及利用單調(diào)性比較大小,其中解答中根據(jù)題意合理構(gòu)造新函數(shù),利用新函數(shù)的單調(diào)性求解是解答的關(guān)鍵,著重考查了構(gòu)造思想,以及推理與計(jì)算能力,屬于中檔試題.3、B【解析】
2,0,1,9,10按照任意次序排成一行,得所有不以0開(kāi)頭的排列數(shù)共個(gè),其中含有2個(gè)10的排列數(shù)共個(gè),所以產(chǎn)生的不同的6位數(shù)的個(gè)數(shù)為.故選B.4、A【解析】
由,兩邊平方后展開(kāi)整理,即可求得,則的長(zhǎng)可求.【詳解】解:,,,,,,.,,故選:.【點(diǎn)睛】本題考查了向量的多邊形法則、數(shù)量積的運(yùn)算性質(zhì)、向量垂直與數(shù)量積的關(guān)系,考查了空間想象能力,考查了推理能力與計(jì)算能力,屬于中檔題.5、A【解析】
由已知新運(yùn)算的意義就是取得中的最小值,因此函數(shù),只有選項(xiàng)中的圖象符合要求,故選A.6、A【解析】
由復(fù)數(shù)的除法求出,然后計(jì)算.【詳解】,∴.故選:A.【點(diǎn)睛】本題考查復(fù)數(shù)的乘除法運(yùn)算,考查共軛復(fù)數(shù)的概念,掌握復(fù)數(shù)的運(yùn)算法則是解題關(guān)鍵.7、A【解析】
根據(jù)函數(shù)的奇偶性和單調(diào)性,排除錯(cuò)誤選項(xiàng),從而得出正確選項(xiàng).【詳解】因?yàn)?,所以是偶函?shù),排除C和D.當(dāng)時(shí),,,令,得,即在上遞減;令,得,即在上遞增.所以在處取得極小值,排除B.故選:A【點(diǎn)睛】本小題主要考查函數(shù)圖像的識(shí)別,考查利用導(dǎo)數(shù)研究函數(shù)的單調(diào)區(qū)間和極值,屬于中檔題.8、D【解析】
由指數(shù)函數(shù)的圖像與性質(zhì)易得最小,利用作差法,結(jié)合對(duì)數(shù)換底公式及基本不等式的性質(zhì)即可比較和的大小關(guān)系,進(jìn)而得解.【詳解】根據(jù)指數(shù)函數(shù)的圖像與性質(zhì)可知,由對(duì)數(shù)函數(shù)的圖像與性質(zhì)可知,,所以最??;而由對(duì)數(shù)換底公式化簡(jiǎn)可得由基本不等式可知,代入上式可得所以,綜上可知,故選:D.【點(diǎn)睛】本題考查了指數(shù)式與對(duì)數(shù)式的化簡(jiǎn)變形,對(duì)數(shù)換底公式及基本不等式的簡(jiǎn)單應(yīng)用,作差法比較大小,屬于中檔題.9、B【解析】
把4名大學(xué)生按人數(shù)分成3組,為1人、1人、2人,再把這三組分配到3個(gè)鄉(xiāng)鎮(zhèn)即得.【詳解】把4名大學(xué)生按人數(shù)分成3組,為1人、1人、2人,再把這三組分配到3個(gè)鄉(xiāng)鎮(zhèn),則不同的分配方案有種.故選:.【點(diǎn)睛】本題考查排列組合,屬于基礎(chǔ)題.10、B【解析】
先判斷函數(shù)的奇偶性,再取特殊值,利用零點(diǎn)存在性定理判斷函數(shù)零點(diǎn)分布情況,即可得解.【詳解】由題可知定義域?yàn)?,,是偶函?shù),關(guān)于軸對(duì)稱,排除C,D.又,,在必有零點(diǎn),排除A.故選:B.【點(diǎn)睛】本題考查了函數(shù)圖象的判斷,考查了函數(shù)的性質(zhì),屬于中檔題.11、C【解析】
求出集合,然后與集合取交集即可.【詳解】由題意,,,則,故答案為C.【點(diǎn)睛】本題考查了分式不等式的解法,考查了集合的交集,考查了計(jì)算能力,屬于基礎(chǔ)題.12、C【解析】
把代入,利用復(fù)數(shù)代數(shù)形式的除法運(yùn)算化簡(jiǎn),由實(shí)部為0且虛部不為0求解即可.【詳解】∵,∴,∵為純虛數(shù),∴,解得.故選C.【點(diǎn)睛】本題考查復(fù)數(shù)代數(shù)形式的除法運(yùn)算,考查復(fù)數(shù)的基本概念,是基礎(chǔ)題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
構(gòu)造函數(shù),再根據(jù)條件確定為奇函數(shù)且在上單調(diào)遞減,最后利用單調(diào)性以及奇偶性化簡(jiǎn)不等式,解得結(jié)果.【詳解】依題意,,令,則,故函數(shù)為奇函數(shù),故函數(shù)在上單調(diào)遞減,則,即,故,則x的取值范圍為.故答案為:【點(diǎn)睛】本題考查函數(shù)奇偶性、單調(diào)性以及利用函數(shù)性質(zhì)解不等式,考查綜合分析求解能力,屬中檔題.14、【解析】
由題意欲使圓柱側(cè)面積最大,需使圓柱內(nèi)接于圓錐.設(shè)圓柱的高為h,底面半徑為r,則,將側(cè)面積表示成關(guān)于的函數(shù),再利用一元二次函數(shù)的性質(zhì)求最值.【詳解】欲使圓柱側(cè)面積最大,需使圓柱內(nèi)接于圓錐.設(shè)圓柱的高為h,底面半徑為r,則,所以.∴,當(dāng)時(shí),的最大值為.故答案為:.【點(diǎn)睛】本題考查圓柱的側(cè)面積的最值,考查函數(shù)與方程思想、轉(zhuǎn)化與化歸思想、,考查空間想象能力和運(yùn)算求解能力,求解時(shí)注意將問(wèn)題轉(zhuǎn)化為函數(shù)的最值問(wèn)題.15、【解析】
問(wèn)題轉(zhuǎn)化為求直線與圓有公共點(diǎn)時(shí),的取值范圍,利用數(shù)形結(jié)合思想能求出結(jié)果.【詳解】解:直線,點(diǎn),,直線上存在點(diǎn)滿足,的軌跡方程是.如圖,直線與圓有公共點(diǎn),圓心到直線的距離:,解得.實(shí)數(shù)的取值范圍為.故答案為:.【點(diǎn)睛】本題主要考查直線方程、圓、點(diǎn)到直線的距離公式等基礎(chǔ)知識(shí),考查推理論證能力、運(yùn)算求解能力,考查化歸與轉(zhuǎn)化思想、函數(shù)與方程思想,屬于中檔題.16、2.【解析】
由雙曲線的一條漸近線為,解得.求出雙曲線的右焦點(diǎn),利用點(diǎn)到直線的距離公式求解即可.【詳解】雙曲線的一條漸近線為解得:雙曲線的右焦點(diǎn)為焦點(diǎn)到這條漸近線的距離為:本題正確結(jié)果:【點(diǎn)睛】本題考查了雙曲線和的標(biāo)準(zhǔn)方程及其性質(zhì),涉及到點(diǎn)到直線距離公式的考查,屬于基礎(chǔ)題.三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17、(1)證明見(jiàn)解析(2)【解析】
(1)取中點(diǎn),連接,根據(jù)菱形的性質(zhì),結(jié)合線面垂直的判定定理和性質(zhì)進(jìn)行證明即可;(2)根據(jù)面面垂直的判定定理和性質(zhì)定理,可以確定點(diǎn)到直線的距離即為點(diǎn)到平面的距離,結(jié)合垂線段的性質(zhì)可以確定點(diǎn)到平面的距離最大,最大值為1.以為坐標(biāo)原點(diǎn),直線分別為軸建立空間直角坐標(biāo)系.利用空間向量夾角公式,結(jié)合同角的三角函數(shù)關(guān)系式進(jìn)行求解即可.【詳解】(1)證明:取中點(diǎn),連接,因?yàn)樗倪呅螢榱庑吻?所以,因?yàn)?,所以,又,所以平面,因?yàn)槠矫?,所?同理可證,因?yàn)椋云矫?(2)解:由(1)得平面,所以平面平面,平面平面.所以點(diǎn)到直線的距離即為點(diǎn)到平面的距離.過(guò)作的垂線段,在所有的垂線段中長(zhǎng)度最大的為,此時(shí)必過(guò)的中點(diǎn),因?yàn)闉橹悬c(diǎn),所以此時(shí),點(diǎn)到平面的距離最大,最大值為1.以為坐標(biāo)原點(diǎn),直線分別為軸建立空間直角坐標(biāo)系.則所以平面的一個(gè)法向量為,設(shè)平面的法向量為,則即取,則,,所以,所以面與面所成二面角的正弦值為.【點(diǎn)睛】本題考查了線面垂直的判定定理和性質(zhì)的應(yīng)用,考查了二面角的向量求法,考查了推理論證能力和數(shù)學(xué)運(yùn)算能力.18、(1).(2)【解析】
(1)根據(jù)題意代入公式化簡(jiǎn)即可得到.(2)聯(lián)立極坐標(biāo)方程通過(guò)極坐標(biāo)的幾何意義求解,再求點(diǎn)到直線的距離即可算出三角形面積.【詳解】解:(1)曲線,即.∴.曲線的極坐標(biāo)方程為.直線的極坐標(biāo)方程為,即,∴直線的直角坐標(biāo)方程為.(2)設(shè),,∴,解得.又,∴(舍去).∴.點(diǎn)到直線的距離為,∴的面積為.【點(diǎn)睛】此題考查參數(shù)方程,極坐標(biāo),直角坐標(biāo)之間相互轉(zhuǎn)化,注意參數(shù)方程只能先轉(zhuǎn)化為直角坐標(biāo)再轉(zhuǎn)化為極坐標(biāo),屬于較易題目.19、(1)an=2n+1;(2)2.【解析】
(1)根據(jù)題意求出首項(xiàng),再由(an+12+2an+1)﹣(an2+2an)=4an+1,求得該數(shù)列為等差數(shù)列即可求得通項(xiàng)公式;(2)利用錯(cuò)位相減法進(jìn)行數(shù)列求和.【詳解】(1)∵an2+2an=4Sn+1,∴a12+2a1=4S1+1,即,解得:a1=1或a1=﹣1(舍),又∵an+12+2an+1=4Sn+1+1,∴(an+12+2an+1)﹣(an2+2an)=4an+1,整理得:(an+1﹣an)(an+1+an)=2(an+1+an),又∵數(shù)列{an}的各項(xiàng)均為正,∴an+1﹣an=2,∴數(shù)列{an}是首項(xiàng)為1、公差為2的等差數(shù)列,∴數(shù)列{an}的通項(xiàng)公式an=1+2(n﹣1)=2n+1;(2)由(1)可知bn,記數(shù)列{bn}的前n項(xiàng)和為T(mén)n,則Tn=1?5?(2n+1)?,Tn=1?5??…+(2n﹣1)?(2n+1)?,錯(cuò)位相減得:Tn=1+2(?)﹣(2n+1)?=1+2,∴Tn()=2.【點(diǎn)睛】此題考查求等差數(shù)列的基本量,根據(jù)遞推關(guān)系判定等差數(shù)列,根據(jù)錯(cuò)位相減進(jìn)行數(shù)列求和,關(guān)鍵在于熟記方法準(zhǔn)確計(jì)算.20、(1)在為增函數(shù);證明見(jiàn)解析(2)【解析】
(1)令,求出,可推得,故在為增函數(shù);(2)令,則,由此利用分類(lèi)討論思想和導(dǎo)數(shù)性質(zhì)求出實(shí)數(shù)的取值范圍.【詳解】(1)當(dāng)時(shí),.記,則,當(dāng)時(shí),,.所以,所以在單調(diào)遞增,所以.因?yàn)?,所以,所以在為增函?shù).(2)由題意,得,記,則,令,則,當(dāng)時(shí),,,所以,所以在為增函數(shù),即在單調(diào)遞增,所以.①當(dāng),,恒成立,所以為增函數(shù),即在單調(diào)遞增,又,所以,所以在為增函數(shù),所以所以滿足題意.②當(dāng),,令,,因?yàn)?,所以,故在單調(diào)遞增,故,即.故,又在單調(diào)遞增,由零點(diǎn)存在性定理知,存在唯一實(shí)數(shù),,當(dāng)時(shí),,單調(diào)遞減,即單調(diào)遞減,所以,此時(shí)在為減函數(shù),所以,不合題意,應(yīng)舍去.綜上所述,的取值范圍是.【點(diǎn)睛】本題主要考查了導(dǎo)數(shù)的綜合應(yīng)用,利用導(dǎo)
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年場(chǎng)民法典技術(shù)合同合同法務(wù)顧問(wèn)合同4篇
- 2025年度智能穿戴設(shè)備售后維修與保養(yǎng)合同范本4篇
- 上海辦公室裝修合作合同一
- 2025年度土地征收與補(bǔ)償測(cè)繪服務(wù)合同范文4篇
- 二手車(chē)交易協(xié)議樣式(2024版)版B版
- 2025年度咖啡廳租賃合同77069(含咖啡文化體驗(yàn))4篇
- 2025年度智能產(chǎn)品全球分銷(xiāo)渠道拓展合同協(xié)議書(shū)4篇
- 2025年度汽車(chē)零部件銷(xiāo)售合同范本(二零二五版)4篇
- 2025年度智慧社區(qū)市場(chǎng)調(diào)研服務(wù)合同書(shū)4篇
- 專業(yè)駕駛員商業(yè)秘密保護(hù)協(xié)議(2024版)一
- 物理學(xué)家伽利略課件
- 小學(xué)語(yǔ)文閱讀校本課程設(shè)計(jì)方案
- 山東省濟(jì)南市2024-2025學(xué)年高一英語(yǔ)上學(xué)期學(xué)情檢測(cè)期末試題
- 車(chē)險(xiǎn)理賠全解析
- Unit10l'mten!(練)新概念英語(yǔ)青少版StarterA
- 產(chǎn)業(yè)園區(qū)開(kāi)發(fā)全流程實(shí)操解析
- NBT 47013.4-2015 承壓設(shè)備無(wú)損檢測(cè) 第4部分:磁粉檢測(cè)
- 羽毛球比賽對(duì)陣表模板
- 2024年上海市中考數(shù)學(xué)真題試卷及答案解析
- 2024年全國(guó)卷1高考理綜試題及答案
- 初中語(yǔ)文現(xiàn)代文閱讀訓(xùn)練及答案二十篇
評(píng)論
0/150
提交評(píng)論