黑龍江省哈爾濱阿城區(qū)六校聯(lián)考2023-2024學年十校聯(lián)考最后數(shù)學試題含解析_第1頁
黑龍江省哈爾濱阿城區(qū)六校聯(lián)考2023-2024學年十校聯(lián)考最后數(shù)學試題含解析_第2頁
黑龍江省哈爾濱阿城區(qū)六校聯(lián)考2023-2024學年十校聯(lián)考最后數(shù)學試題含解析_第3頁
黑龍江省哈爾濱阿城區(qū)六校聯(lián)考2023-2024學年十校聯(lián)考最后數(shù)學試題含解析_第4頁
黑龍江省哈爾濱阿城區(qū)六校聯(lián)考2023-2024學年十校聯(lián)考最后數(shù)學試題含解析_第5頁
已閱讀5頁,還剩16頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

黑龍江省哈爾濱阿城區(qū)六校聯(lián)考2023-2024學年十校聯(lián)考最后數(shù)學試題注意事項:1.答題前,考生先將自己的姓名、準考證號填寫清楚,將條形碼準確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題(共10小題,每小題3分,共30分)1.如下字體的四個漢字中,是軸對稱圖形的是()A. B. C. D.2.在一個不透明的口袋里有紅、黃、藍三種顏色的小球,這些球除顏色外都相同,其中有5個紅球,4個藍球.若隨機摸出一個藍球的概率為,則隨機摸出一個黃球的概率為()A. B. C. D.3.下列圖形中為正方體的平面展開圖的是()A. B.C. D.4.圖為小明和小紅兩人的解題過程.下列敘述正確的是()計算:+A.只有小明的正確 B.只有小紅的正確C.小明、小紅都正確 D.小明、小紅都不正確5.九章算術(shù)是中國古代數(shù)學專著,九章算術(shù)方程篇中有這樣一道題:“今有善行者行一百步,不善行者行六十步,今不善行者先行一百步,善行者追之,問幾何步及之?”這是一道行程問題,意思是說:走路快的人走100步的時候,走路慢的才走了60步;走路慢的人先走100步,然后走路快的人去追趕,問走路快的人要走多少步才能追上走路慢的人?如果走路慢的人先走100步,設(shè)走路快的人要走

x

步才能追上走路慢的人,那么,下面所列方程正確的是A. B. C. D.6.下列運算正確的是()A.a(chǎn)2+a2=a4 B.(a+b)2=a2+b2 C.a(chǎn)6÷a2=a3 D.(﹣2a3)2=4a67.下列計算正確的是()A.2x﹣x=1 B.x2?x3=x6C.(m﹣n)2=m2﹣n2 D.(﹣xy3)2=x2y68.已知:a、b是不等于0的實數(shù),2a=3b,那么下列等式中正確的是()A.a(chǎn)b=23 B.a(chǎn)9.已知二次函數(shù)y=x2+bx+c的圖象與x軸相交于A、B兩點,其頂點為P,若S△APB=1,則b與c滿足的關(guān)系是()A.b2-4c+1=0 B.b2-4c-1=0 C.b2-4c+4=0 D.b2-4c-4=010.如圖,直線AB∥CD,∠C=44°,∠E為直角,則∠1等于()A.132° B.134° C.136° D.138°二、填空題(本大題共6個小題,每小題3分,共18分)11.小青在八年級上學期的數(shù)學成績?nèi)缦卤硭荆綍r測驗期中考試期末考試成績869081如果學期總評成績根據(jù)如圖所示的權(quán)重計算,小青該學期的總評成績是_____分.12.如圖,線段AB的長為4,C為AB上一個動點,分別以AC、BC為斜邊在AB的同側(cè)作兩個等腰直角三角形ACD和BCE,連結(jié)DE,則DE長的最小值是_____.13.圖,A,B是反比例函數(shù)y=圖象上的兩點,過點A作AC⊥y軸,垂足為C,AC交OB于點D.若D為OB的中點,△AOD的面積為3,則k的值為________.14.如圖,已知,D、E分別是邊AB、AC上的點,且設(shè),,那么______用向量、表示15.若關(guān)于的一元二次方程(m-1)x2-4x+1=0有兩個不相等的實數(shù)根,則m的取值范圍為_____________.16.如圖,甲、乙兩船同時從港口出發(fā),甲船以60海里/時的速度沿北偏東60°方向航行,乙船沿北偏西30°方向航行,半小時后甲船到達點C,乙船正好到達甲船正西方向的點B,則乙船的航程為______海里(結(jié)果保留根號).三、解答題(共8題,共72分)17.(8分)某校數(shù)學綜合實踐小組的同學以“綠色出行”為主題,把某小區(qū)的居民對共享單車的了解和使用情況進行了問卷調(diào)查.在這次調(diào)查中,發(fā)現(xiàn)有20人對于共享單車不了解,使用共享單車的居民每天騎行路程不超過8千米,并將調(diào)查結(jié)果制作成統(tǒng)計圖,如下圖所示:本次調(diào)查人數(shù)共人,使用過共享單車的有人;請將條形統(tǒng)計圖補充完整;如果這個小區(qū)大約有3000名居民,請估算出每天的騎行路程在2~4千米的有多少人?18.(8分)如圖,在△ABC中,BD平分∠ABC,AE⊥BD于點O,交BC于點E,AD∥BC,連接CD.(1)求證:AO=EO;(2)若AE是△ABC的中線,則四邊形AECD是什么特殊四邊形?證明你的結(jié)論.19.(8分)如圖,在平面直角坐標系中,O為坐標原點,△AOB是等腰直角三角形,∠AOB=90°,點A(2,1).(1)求點B的坐標;(2)求經(jīng)過A、O、B三點的拋物線的函數(shù)表達式;(3)在(2)所求的拋物線上,是否存在一點P,使四邊形ABOP的面積最大?若存在,求出點P的坐標;若不存在,請說明理由.20.(8分)甲、乙兩人分別站在相距6米的A、B兩點練習打羽毛球,已知羽毛球飛行的路線為拋物線的一部分,甲在離地面1米的C處發(fā)出一球,乙在離地面1.5米的D處成功擊球,球飛行過程中的最高點H與甲的水平距離AE為4米,現(xiàn)以A為原點,直線AB為x軸,建立平面直角坐標系(如圖所示).求羽毛球飛行的路線所在的拋物線的表達式及飛行的最高高度.21.(8分)如圖1,二次函數(shù)y=ax2﹣2ax﹣3a(a<0)的圖象與x軸交于A、B兩點(點A在點B的右側(cè)),與y軸的正半軸交于點C,頂點為D.(1)求頂點D的坐標(用含a的代數(shù)式表示);(2)若以AD為直徑的圓經(jīng)過點C.①求拋物線的函數(shù)關(guān)系式;②如圖2,點E是y軸負半軸上一點,連接BE,將△OBE繞平面內(nèi)某一點旋轉(zhuǎn)180°,得到△PMN(點P、M、N分別和點O、B、E對應),并且點M、N都在拋物線上,作MF⊥x軸于點F,若線段MF:BF=1:2,求點M、N的坐標;③點Q在拋物線的對稱軸上,以Q為圓心的圓過A、B兩點,并且和直線CD相切,如圖3,求點Q的坐標.22.(10分)《九章算術(shù)》中有一道闡述“盈不足術(shù)”的問題,原文如下:今有人共買物,人出八,盈三;人出七,不足四.問人數(shù),物價各幾何?譯文為:現(xiàn)有一些人共同買一個物品,每人出8元,還盈余3元;每人出7元,則還差4元,問共有多少人?這個物品的價格是多少?請解答上述問題.23.(12分)解方程組24.矩形ABCD中,DE平分∠ADC交BC邊于點E,P為DE上的一點(PE<PD),PM⊥PD,PM交AD邊于點M.(1)若點F是邊CD上一點,滿足PF⊥PN,且點N位于AD邊上,如圖1所示.求證:①PN=PF;②DF+DN=DP;(2)如圖2所示,當點F在CD邊的延長線上時,仍然滿足PF⊥PN,此時點N位于DA邊的延長線上,如圖2所示;試問DF,DN,DP有怎樣的數(shù)量關(guān)系,并加以證明.

參考答案一、選擇題(共10小題,每小題3分,共30分)1、A【解析】試題分析:根據(jù)軸對稱圖形的意義:如果一個圖形沿著一條直線對折后兩部分完全重合,這樣的圖形叫做軸對稱圖形,這條直線叫做對稱軸;據(jù)此可知,A為軸對稱圖形.故選A.考點:軸對稱圖形2、A【解析】

設(shè)黃球有x個,根據(jù)摸出一個球是藍球的概率是,得出黃球的個數(shù),再根據(jù)概率公式即可得出隨機摸出一個黃球的概率.【詳解】解:設(shè)袋子中黃球有x個,根據(jù)題意,得:,解得:x=3,即袋中黃球有3個,所以隨機摸出一個黃球的概率為,故選A.【點睛】此題主要考查了概率公式的應用,用到的知識點為:概率=所求情況數(shù)與總情況數(shù)之比.得到所求的情況數(shù)是解決本題的關(guān)鍵.3、C【解析】

利用正方體及其表面展開圖的特點依次判斷解題.【詳解】由四棱柱四個側(cè)面和上下兩個底面的特征可知A,B,D上底面不可能有兩個,故不是正方體的展開圖,選項C可以拼成一個正方體,故選C.【點睛】本題是對正方形表面展開圖的考查,熟練掌握正方體的表面展開圖是解題的關(guān)鍵.4、D【解析】

直接利用分式的加減運算法則計算得出答案.【詳解】解:=﹣+=﹣+==,故小明、小紅都不正確.故選:D.【點睛】此題主要考查了分式的加減運算,正確進行通分運算是解題關(guān)鍵.5、B【解析】解:設(shè)走路快的人要走x步才能追上走路慢的人,根據(jù)題意得:.故選B.點睛:本題考查了一元一次方程的應用.找準等量關(guān)系,列方程是關(guān)鍵.6、D【解析】

根據(jù)完全平方公式、合并同類項、同底數(shù)冪的除法、積的乘方,即可解答.【詳解】A、a2+a2=2a2,故錯誤;B、(a+b)2=a2+2ab+b2,故錯誤;C、a6÷a2=a4,故錯誤;D、(-2a3)2=4a6,正確;故選D.【點睛】本題考查了完全平方公式、同底數(shù)冪的除法、積的乘方以及合并同類項,解決本題的關(guān)鍵是熟記公式和法則.7、D【解析】

根據(jù)合并同類項的法則,積的乘方,完全平方公式,同底數(shù)冪的乘法的性質(zhì),對各選項分析判斷后利用排除法求解.【詳解】解:A、2x-x=x,錯誤;B、x2?x3=x5,錯誤;C、(m-n)2=m2-2mn+n2,錯誤;D、(-xy3)2=x2y6,正確;故選D.【點睛】考查了整式的運算能力,對于相關(guān)的整式運算法則要求學生很熟練,才能正確求出結(jié)果.8、B【解析】∵2a=3b,∴ab=3故選B.9、D【解析】

拋物線的頂點坐標為P(?,),設(shè)A、B兩點的坐標為A(,0)、B(,0)則AB=,根據(jù)根與系數(shù)的關(guān)系把AB的長度用b、c表示,而S△APB=1,然后根據(jù)三角形的面積公式就可以建立關(guān)于b、c的等式.【詳解】解:∵,∴AB==,∵若S△APB=1∴S△APB=×AB×=1,∴?××,∴,設(shè)=s,則,故s=2,∴=2,∴.故選D.【點睛】本題主要考查了拋物線與x軸的交點情況與判別式的關(guān)系、拋物線頂點坐標公式、三角形的面積公式等知識,綜合性比較強.10、B【解析】過E作EF∥AB,求出AB∥CD∥EF,根據(jù)平行線的性質(zhì)得出∠C=∠FEC,∠BAE=∠FEA,求出∠BAE,即可求出答案.解:過E作EF∥AB,∵AB∥CD,∴AB∥CD∥EF,∴∠C=∠FEC,∠BAE=∠FEA,∵∠C=44°,∠AEC為直角,∴∠FEC=44°,∠BAE=∠AEF=90°﹣44°=46°,∴∠1=180°﹣∠BAE=180°﹣46°=134°,故選B.“點睛”本題考查了平行線的性質(zhì)的應用,能正確作出輔助線是解此題的關(guān)鍵.二、填空題(本大題共6個小題,每小題3分,共18分)11、84.2【解析】小青該學期的總評成績?yōu)?86×10%+90×30%+81×60%=84.2(分),故答案為:84.2.12、2【解析】試題分析:由題意得,DE=CD2+CE2;C為AB上一個動點,分別以AC、BC為斜邊在AB的同側(cè)作兩個等腰直角三角形△ACD和△BCE,AD=CD;CE=BE;由勾股定理得AC2=AD2+CD2考點:不等式的性質(zhì)點評:本題考查不等式的性質(zhì),會用勾股定理,完全平方公式,不等關(guān)系等知識,它們是解決本題的關(guān)鍵13、1.【解析】先設(shè)點D坐標為(a,b),得出點B的坐標為(2a,2b),A的坐標為(4a,b),再根據(jù)△AOD的面積為3,列出關(guān)系式求得k的值.解:設(shè)點D坐標為(a,b),∵點D為OB的中點,∴點B的坐標為(2a,2b),∴k=4ab,又∵AC⊥y軸,A在反比例函數(shù)圖象上,∴A的坐標為(4a,b),∴AD=4a﹣a=3a,∵△AOD的面積為3,∴×3a×b=3,∴ab=2,∴k=4ab=4×2=1.故答案為1“點睛”本題主要考查了反比例函數(shù)系數(shù)k的幾何意義,以及運用待定系數(shù)法求反比例函數(shù)解析式,根據(jù)△AOD的面積為1列出關(guān)系式是解題的關(guān)鍵.14、【解析】

在△ABC中,,∠A=∠A,所以△ABC△ADE,所以DE=BC,再由向量的運算可得出結(jié)果.【詳解】解:在△ABC中,,∠A=∠A,∴△ABC△ADE,∴DE=BC,∴=3=3∴=,故答案為.【點睛】本題考查了相似三角形的判定和性質(zhì)以及向量的運算.15、且【解析】試題解析:∵一元二次方程有兩個不相等的實數(shù)根,∴m?1≠0且△=16?4(m?1)>0,解得m<5且m≠1,∴m的取值范圍為m<5且m≠1.故答案為:m<5且m≠1.點睛:一元二次方程方程有兩個不相等的實數(shù)根時:16、10海里.【解析】

本題可以求出甲船行進的距離AC,根據(jù)三角函數(shù)就可以求出AB,即可求出乙船的路程.【詳解】由已知可得:AC=60×0.5=30海里,又∵甲船以60海里/時的速度沿北偏東60°方向航行,乙船沿北偏西30°,∴∠BAC=90°,又∵乙船正好到達甲船正西方向的B點,∴∠C=30°,∴AB=AC?tan30°=30×=10海里.答:乙船的路程為10海里.故答案為10海里.【點睛】本題主要考查的是解直角三角形的應用-方向角問題及三角函數(shù)的定義,理解方向角的定義是解決本題的關(guān)鍵.三、解答題(共8題,共72分)17、(1)200,90(2)圖形見解析(3)750人【解析】試題分析:(1)用對于共享單車不了解的人數(shù)20除以對于共享單車不了解的人數(shù)所占得百分比即可得本次調(diào)查人數(shù);用總?cè)藬?shù)乘以使用過共享單車人數(shù)所占的百分比即可得使用過共享單車的人數(shù);(2)用使用過共享單車的總?cè)藬?shù)減去0~2,4~6,6~8的人數(shù),即可得2~4的人數(shù),再圖上畫出即可;(3)用3000乘以騎行路程在2~4千米的人數(shù)所占的百分比即可得每天的騎行路程在2~4千米的人數(shù).試題解析:(1)20÷10%=200,200×(1-45%-10%)=90;(2)90-25-10-5=50,補全條形統(tǒng)計圖(3)=750(人)答:每天的騎行路程在2~4千米的大約750人18、(1)詳見解析;(2)平行四邊形.【解析】

(1)由“三線合一”定理即可得到結(jié)論;

(2)由AD∥BC,BD平分∠ABC,得到∠ADB=∠ABD,由等腰三角形的判定得到AD=AB,根據(jù)垂直平分線的性質(zhì)有AB=BE,于是AD=BE,進而得到AD=EC,根據(jù)平行四邊形的判定即可得到結(jié)論.【詳解】證明:(1)∵BD平分∠ABC,AE⊥BD,∴AO=EO;(2)平行四邊形,證明:∵AD∥BC,∴∠ADB=∠ABD,∴AD=AB,∵OA=OE,OB⊥AE,∴AB=BE,∴AD=BE,∵BE=CE,∴AD=EC,∴四邊形AECD是平行四邊形.【點睛】考查等腰直角三角形的性質(zhì)以及平行四邊形的判定,掌握平行四邊形的判定方法是解題的關(guān)鍵.19、(1)B(-1.2);(2)y=;(3)見解析.【解析】

(1)過A作AC⊥x軸于點C,過B作BD⊥x軸于點D,則可證明△ACO≌△ODB,則可求得OD和BD的長,可求得B點坐標;(2)根據(jù)A、B、O三點的坐標,利用待定系數(shù)法可求得拋物線解析式;(3)由四邊形ABOP可知點P在線段AO的下方,過P作PE∥y軸交線段OA于點E,可求得直線OA解析式,設(shè)出P點坐標,則可表示出E點坐標,可表示出PE的長,進一步表示出△POA的面積,則可得到四邊形ABOP的面積,再利用二次函數(shù)的性質(zhì)可求得其面積最大時P點的坐標.【詳解】(1)如圖1,過A作AC⊥x軸于點C,過B作BD⊥x軸于點D,∵△AOB為等腰三角形,∴AO=BO,∵∠AOB=90°,∴∠AOC+∠DOB=∠DOB+∠OBD=90°,∴∠AOC=∠OBD,在△ACO和△ODB中∴△ACO≌△ODB(AAS),∵A(2,1),∴OD=AC=1,BD=OC=2,∴B(-1,2);(2)∵拋物線過O點,∴可設(shè)拋物線解析式為y=ax2+bx,把A、B兩點坐標代入可得,解得,∴經(jīng)過A、B、O原點的拋物線解析式為y=x2-x;(3)∵四邊形ABOP,∴可知點P在線段OA的下方,過P作PE∥y軸交AO于點E,如圖2,設(shè)直線AO解析式為y=kx,∵A(2,1),∴k=,∴直線AO解析式為y=x,設(shè)P點坐標為(t,t2-t),則E(t,t),∴PE=t-(t2-t)=-t2+t=-(t-1)2+,∴S△AOP=PE×2=PE═-(t-1)2+,由A(2,1)可求得OA=OB=,∴S△AOB=AO?BO=,∴S四邊形ABOP=S△AOB+S△AOP=-(t-1)2++=,∵-<0,∴當t=1時,四邊形ABOP的面積最大,此時P點坐標為(1,-),綜上可知存在使四邊形ABOP的面積最大的點P,其坐標為(1,-).【點睛】本題為二次函數(shù)的綜合應用,主要涉及待定系數(shù)法、等腰直角三角形的性質(zhì)、全等三角形的判定和性質(zhì)、三角形的面積以及方程思想等知識.在(1)中構(gòu)造三角形全等是解題的關(guān)鍵,在(2)中注意待定系數(shù)法的應用,在(3)中用t表示出四邊形ABOP的面積是解題的關(guān)鍵.本題考查知識點較多,綜合性較強,難度適中.20、米.【解析】

先求拋物線對稱軸,再根據(jù)待定系數(shù)法求拋物線解析式,再求函數(shù)最大值.【詳解】由題意得:C(0,1),D(6,1.5),拋物線的對稱軸為直線x=4,設(shè)拋物線的表達式為:y=ax2+bx+1(a≠0),則據(jù)題意得:,解得:,∴羽毛球飛行的路線所在的拋物線的表達式為:y=﹣x2+x+1,∵y=﹣(x﹣4)2+,∴飛行的最高高度為:米.【點睛】本題考核知識點:二次函數(shù)的應用.解題關(guān)鍵點:熟記二次函數(shù)的基本性質(zhì).21、(1)(1,﹣4a);(2)①y=﹣x2+2x+3;②M(,)、N(,);③點Q的坐標為(1,﹣4+2)或(1,﹣4﹣2).【解析】分析:(1)將二次函數(shù)的解析式進行配方即可得到頂點D的坐標.(2)①以AD為直徑的圓經(jīng)過點C,即點C在以AD為直徑的圓的圓周上,依據(jù)圓周角定理不難得出△ACD是個直角三角形,且∠ACD=90°,A點坐標可得,而C、D的坐標可由a表達出來,在得出AC、CD、AD的長度表達式后,依據(jù)勾股定理列等式即可求出a的值.②將△OBE繞平面內(nèi)某一點旋轉(zhuǎn)180°得到△PMN,說明了PM正好和x軸平行,且PM=OB=1,所以求M、N的坐標關(guān)鍵是求出點M的坐標;首先根據(jù)①的函數(shù)解析式設(shè)出M點的坐標,然后根據(jù)題干條件:BF=2MF作為等量關(guān)系進行解答即可.③設(shè)⊙Q與直線CD的切點為G,連接QG,由C、D兩點的坐標不難判斷出∠CDQ=45°,那么△QGD為等腰直角三角形,即QD2=2QG2=2QB2,設(shè)出點Q的坐標,然后用Q點縱坐標表達出QD、QB的長,根據(jù)上面的等式列方程即可求出點Q的坐標.詳解:(1)∵y=ax2﹣2ax﹣3a=a(x﹣1)2﹣4a,∴D(1,﹣4a).(2)①∵以AD為直徑的圓經(jīng)過點C,∴△ACD為直角三角形,且∠ACD=90°;由y=ax2﹣2ax﹣3a=a(x﹣3)(x+1)知,A(3,0)、B(﹣1,0)、C(0,﹣3a),則:AC2=9a2+9、CD2=a2+1、AD2=16a2+4由勾股定理得:AC2+CD2=AD2,即:9a2+9+a2+1=16a2+4,化簡,得:a2=1,由a<0,得:a=﹣1,②∵a=﹣1,∴拋物線的解析式:y=﹣x2+2x+3,D(1,4).∵將△OBE繞平面內(nèi)某一點旋轉(zhuǎn)180°得到△PMN,∴PM∥x軸,且PM=OB=1;設(shè)M(x,﹣x2+2x+3),則OF=x,MF=﹣x2+2x+3,BF=OF+OB=x+1;∵BF=2MF,∴x+1=2(﹣x2+2x+3),化簡,得:2x2﹣3x﹣5=0解得:x1=﹣1(舍去)、x2=.∴M(,)、N(,).③設(shè)⊙Q與直線CD的切點為G,連接QG,過C作CH⊥QD于H,如下圖:∵C(0,3)、D(1,4),∴CH=DH=1,即△CHD是等腰直角三角形,∴△QGD也是等腰直角三角形,即:QD2=2QG2;設(shè)Q(1,b),則QD=4﹣b,QG2=QB2=b2+4;得:(4﹣b)2=2(b2+4),化簡,得:b2+8b﹣8=0,解得:b=﹣4±2;即點Q的坐標為(1,)或(1,).點睛:此題主要考查了二次函數(shù)解析式的確定、旋轉(zhuǎn)圖形的性質(zhì)、圓周角定理以及直線和圓的位置關(guān)系等重要知識點;后兩個小題較難,最后一題中,通過構(gòu)建等腰直角三角形找出QD和⊙Q半徑間的數(shù)量關(guān)系是解題題目的關(guān)鍵.22、共有7人,

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論