廣東省深圳市福田區(qū)北環(huán)中學2024年中考一模數(shù)學試題含解析_第1頁
廣東省深圳市福田區(qū)北環(huán)中學2024年中考一模數(shù)學試題含解析_第2頁
廣東省深圳市福田區(qū)北環(huán)中學2024年中考一模數(shù)學試題含解析_第3頁
廣東省深圳市福田區(qū)北環(huán)中學2024年中考一模數(shù)學試題含解析_第4頁
廣東省深圳市福田區(qū)北環(huán)中學2024年中考一模數(shù)學試題含解析_第5頁
已閱讀5頁,還剩16頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領

文檔簡介

廣東省深圳市福田區(qū)北環(huán)中學2024年中考一模數(shù)學試題注意事項:1.答卷前,考生務必將自己的姓名、準考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應題目的答案標號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標號?;卮鸱沁x擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結束后,將本試卷和答題卡一并交回。一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1.某大學生利用課余時間在網(wǎng)上銷售一種成本為50元/件的商品,每月的銷售量y(件)與銷售單價x(元/件)之間的函數(shù)關系式為y=–4x+440,要獲得最大利潤,該商品的售價應定為A.60元B.70元C.80元D.90元2.現(xiàn)有兩根木棒,它們的長分別是20cm和30cm,若不改變木棒的長短,要釘成一個三角形木架,則應在下列四根木棒中選取()A.10cm的木棒 B.40cm的木棒 C.50cm的木棒 D.60cm的木棒3.將5570000用科學記數(shù)法表示正確的是()A.5.57×105B.5.57×106C.5.57×107D.5.57×1084.下列說法中,正確的是()A.長度相等的弧是等弧B.平分弦的直徑垂直于弦,并且平分弦所對的兩條弧C.經(jīng)過半徑并且垂直于這條半徑的直線是圓的切線D.在同圓或等圓中90°的圓周角所對的弦是這個圓的直徑5.某種圓形合金板材的成本y(元)與它的面積(cm2)成正比,設半徑為xcm,當x=3時,y=18,那么當半徑為6cm時,成本為()A.18元 B.36元 C.54元 D.72元6.對于數(shù)據(jù):6,3,4,7,6,0,1.下列判斷中正確的是()A.這組數(shù)據(jù)的平均數(shù)是6,中位數(shù)是6 B.這組數(shù)據(jù)的平均數(shù)是6,中位數(shù)是7C.這組數(shù)據(jù)的平均數(shù)是5,中位數(shù)是6 D.這組數(shù)據(jù)的平均數(shù)是5,中位數(shù)是77.已知一元二次方程2x2+2x﹣1=0的兩個根為x1,x2,且x1<x2,下列結論正確的是()A.x1+x2=1 B.x1?x2=﹣1 C.|x1|<|x2| D.x12+x1=8.如圖,把一張矩形紙片ABCD沿EF折疊后,點A落在CD邊上的點A′處,點B落在點B′處,若∠2=40°,則圖中∠1的度數(shù)為()A.115° B.120° C.130° D.140°9.如圖,在△ABC中,∠ACB=90°,∠A=30°,BC=4,以點C為圓心,CB長為半徑作弧,交AB于點D;再分別以點B和點D為圓心,大于BD的長為半徑作弧,兩弧相交于點E,作射線CE交AB于點F,則AF的長為()A.5 B.6 C.7 D.810.有m輛客車及n個人,若每輛客車乘40人,則還有10人不能上車,若每輛客車乘43人,則只有1人不能上車,有下列四個等式:①40m+10=43m﹣1;②;③;④40m+10=43m+1,其中正確的是()A.①② B.②④ C.②③ D.③④11.某公司有11名員工,他們所在部門及相應每人所創(chuàng)年利潤如下表所示,已知這11個數(shù)據(jù)的中位數(shù)為1.部門人數(shù)每人所創(chuàng)年利潤(單位:萬元)11938743這11名員工每人所創(chuàng)年利潤的眾數(shù)、平均數(shù)分別是A.10,1 B.7,8 C.1,6.1 D.1,612.方程x2+2x﹣3=0的解是()A.x1=1,x2=3B.x1=1,x2=﹣3C.x1=﹣1,x2=3D.x1=﹣1,x2=﹣3二、填空題:(本大題共6個小題,每小題4分,共24分.)13.如圖所示,在等腰△ABC中,AB=AC,∠A=36°,將△ABC中的∠A沿DE向下翻折,使點A落在點C處.若AE=,則BC的長是_____.14.某自然保護區(qū)為估計該地區(qū)一種珍稀鳥類的數(shù)量,先捕捉了20只,給它們做上標記后放回,過一段時間待它們完全混合于同類后又捕捉了20只,發(fā)現(xiàn)其中有4只帶有標記,從而估計該地區(qū)此種鳥類的數(shù)量大約有______只15.被歷代數(shù)學家尊為“算經(jīng)之首”的九章算術是中國古代算法的扛鼎之作九章算術中記載:“今有五雀、六燕,集稱之衡,雀俱重,燕俱輕一雀一燕交而處,衡適平并燕、雀重一斤問燕、雀一枚各重幾何?”譯文:“今有5只雀、6只燕,分別聚集而且用衡器稱之,聚在一起的雀重,燕輕將一只雀、一只燕交換位置而放,重量相等只雀、6只燕重量為1斤問雀、燕毎只各重多少斤?”設每只雀重x斤,每只燕重y斤,可列方程組為______.16.如圖,在矩形ABCD中,DE⊥AC,垂足為E,且tan∠ADE=,AC=5,則AB的長____.17.如圖,直線x=2與反比例函數(shù)和的圖象分別交于A、B兩點,若點P是y軸上任意一點,則△PAB的面積是_____.18.如圖,AC是以AB為直徑的⊙O的弦,點D是⊙O上的一點,過點D作⊙O的切線交直線AC于點E,AD平分∠BAE,若AB=10,DE=3,則AE的長為_____.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19.(6分)如圖,在平面直角坐標系中,點A和點C分別在x軸和y軸的正半軸上,OA=6,OC=4,以OA,OC為鄰邊作矩形OABC,動點M,N以每秒1個單位長度的速度分別從點A、C同時出發(fā),其中點M沿AO向終點O運動,點N沿CB向終點B運動,當兩個動點運動了t秒時,過點N作NP⊥BC,交OB于點P,連接MP.(1)直接寫出點B的坐標為,直線OB的函數(shù)表達式為;(2)記△OMP的面積為S,求S與t的函數(shù)關系式;并求t為何值時,S有最大值,并求出最大值.20.(6分)如圖,二次函數(shù)的圖像與軸交于、兩點,與軸交于點,.點在函數(shù)圖像上,軸,且,直線是拋物線的對稱軸,是拋物線的頂點.求、的值;如圖①,連接,線段上的點關于直線的對稱點恰好在線段上,求點的坐標;如圖②,動點在線段上,過點作軸的垂線分別與交于點,與拋物線交于點.試問:拋物線上是否存在點,使得與的面積相等,且線段的長度最?。咳绻嬖?,求出點的坐標;如果不存在,說明理由.21.(6分)為紀念紅軍長征勝利81周年,我市某中學團委擬組織學生開展唱紅歌比賽活動,為此,該校隨即抽取部分學生就“你是否喜歡紅歌”進行問卷調(diào)查,并將調(diào)查結果統(tǒng)計后繪制成如下統(tǒng)計表和扇形統(tǒng)計圖.態(tài)度非常喜歡喜歡一般不知道頻數(shù)90b3010頻率a0.350.20請你根據(jù)統(tǒng)計圖、表,提供的信息解答下列問題:(1)該校這次隨即抽取了名學生參加問卷調(diào)查:(2)確定統(tǒng)計表中a、b的值:a=,b=;(3)該校共有2000名學生,估計全校態(tài)度為“非常喜歡”的學生人數(shù).22.(8分)如圖,已知AB是⊙O的弦,C是的中點,AB=8,AC=,求⊙O半徑的長.23.(8分)如圖,AB是⊙O的直徑,點E是AD上的一點,∠DBC=∠BED.(1)請判斷直線BC與⊙O的位置關系,并說明理由;(2)已知AD=5,CD=4,求BC的長.24.(10分)地下停車場的設計大大緩解了住宅小區(qū)停車難的問題,如圖是龍泉某小區(qū)的地下停車庫坡道入口的設計示意圖,其中,AB⊥BD,∠BAD=18°,C在BD上,BC=0.5m.根據(jù)規(guī)定,地下停車庫坡道入口上方要張貼限高標志,以便告知駕駛員所駕車輛能否安全駛入.小剛認為CD的長就是所限制的高度,而小亮認為應該以CE的長作為限制的高度.小剛和小亮誰說得對?請你判斷并計算出正確的限制高度.(結果精確到0.1m,參考數(shù)據(jù):sin18°≈0.31,cos18°≈0.95,tan18°≈0.325)25.(10分)某養(yǎng)雞場有2500只雞準備對外出售.從中隨機抽取了一部分雞,根據(jù)它們的質(zhì)量(單位:),繪制出如下的統(tǒng)計圖①和圖②.請根據(jù)相關信息,解答下列問題:(Ⅰ)圖①中的值為;(Ⅱ)求統(tǒng)計的這組數(shù)據(jù)的平均數(shù)、眾數(shù)和中位數(shù);(Ⅲ)根據(jù)樣本數(shù)據(jù),估計這2500只雞中,質(zhì)量為的約有多少只?26.(12分)如圖,AB是⊙O的直徑,點C在⊙O上,CE^AB于E,CD平分DECB,交過點B的射線于D,交AB于F,且BC=BD.(1)求證:BD是⊙O的切線;(2)若AE=9,CE=12,求BF的長.27.(12分)動畫片《小豬佩奇》分靡全球,受到孩子們的喜愛.現(xiàn)有4張《小豬佩奇》角色卡片,分別是A佩奇,B喬治,C佩奇媽媽,D佩奇爸爸(四張卡片除字母和內(nèi)容外,其余完全相同).姐弟兩人做游戲,他們將這四張卡片混在一起,背面朝上放好.(1)姐姐從中隨機抽取一張卡片,恰好抽到A佩奇的概率為;(2)若兩人分別隨機抽取一張卡片(不放回),請用列表或畫樹狀圖的分方法求出恰好姐姐抽到A佩奇弟弟抽到B喬治的概率.

參考答案一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、C【解析】設銷售該商品每月所獲總利潤為w,則w=(x–50)(–4x+440)=–4x2+640x–22000=–4(x–80)2+3600,∴當x=80時,w取得最大值,最大值為3600,即售價為80元/件時,銷售該商品所獲利潤最大,故選C.2、B【解析】

設應選取的木棒長為x,再根據(jù)三角形的三邊關系求出x的取值范圍.進而可得出結論.【詳解】設應選取的木棒長為x,則30cm-20cm<x<30cm+20cm,即10cm<x<50cm.故選B.【點睛】本題考查的是三角形的三邊關系,熟知三角形任意兩邊之和大于第三邊,任意兩邊差小于第三邊是解答此題的關鍵.3、B【解析】

科學記數(shù)法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數(shù).確定n的值是易錯點,由于5570000有7位,所以可以確定n=7﹣1=1.【詳解】5570000=5.57×101所以B正確4、D【解析】

根據(jù)切線的判定,圓的知識,可得答案.【詳解】解:A、在等圓或同圓中,長度相等的弧是等弧,故A錯誤;B、平分弦(不是直徑)的直徑垂直于弦,并且平分弦所對的兩條弧,故B錯誤;C、經(jīng)過半徑的外端并且垂直于這條半徑的直線是圓的切線,故C錯誤;D、在同圓或等圓中90°的圓周角所對的弦是這個圓的直徑,故D正確;故選:D.【點睛】本題考查了切線的判定及圓的知識,利用圓的知識及切線的判定是解題關鍵.5、D【解析】

設y與x之間的函數(shù)關系式為y=kπx2,由待定系數(shù)法就可以求出解析式,再求出x=6時y的值即可得.【詳解】解:根據(jù)題意設y=kπx2,∵當x=3時,y=18,∴18=kπ?9,則k=,∴y=kπx2=?π?x2=2x2,當x=6時,y=2×36=72,故選:D.【點睛】本題考查了二次函數(shù)的應用,解答時求出函數(shù)的解析式是關鍵.6、C【解析】

根據(jù)題目中的數(shù)據(jù)可以按照從小到大的順序排列,從而可以求得這組數(shù)據(jù)的平均數(shù)和中位數(shù).【詳解】對于數(shù)據(jù):6,3,4,7,6,0,1,這組數(shù)據(jù)按照從小到大排列是:0,3,4,6,6,7,1,這組數(shù)據(jù)的平均數(shù)是:中位數(shù)是6,故選C.【點睛】本題考查了平均數(shù)、中位數(shù)的求法,解決本題的關鍵是明確它們的意義才會計算,求平均數(shù)是用一組數(shù)據(jù)的和除以這組數(shù)據(jù)的個數(shù);中位數(shù)的求法分兩種情況:把一組數(shù)據(jù)從小到大排成一列,正中間如果是一個數(shù),這個數(shù)就是中位數(shù),如果正中間是兩個數(shù),那中位數(shù)是這兩個數(shù)的平均數(shù).7、D【解析】【分析】直接利用根與系數(shù)的關系對A、B進行判斷;由于x1+x2<0,x1x2<0,則利用有理數(shù)的性質(zhì)得到x1、x2異號,且負數(shù)的絕對值大,則可對C進行判斷;利用一元二次方程解的定義對D進行判斷.【詳解】根據(jù)題意得x1+x2=﹣=﹣1,x1x2=﹣,故A、B選項錯誤;∵x1+x2<0,x1x2<0,∴x1、x2異號,且負數(shù)的絕對值大,故C選項錯誤;∵x1為一元二次方程2x2+2x﹣1=0的根,∴2x12+2x1﹣1=0,∴x12+x1=,故D選項正確,故選D.【點睛】本題考查了一元二次方程的解、一元二次方程根與系數(shù)的關系,熟練掌握相關內(nèi)容是解題的關鍵.8、A【解析】解:∵把一張矩形紙片ABCD沿EF折疊后,點A落在CD邊上的點A′處,點B落在點B′處,∴∠BFE=∠EFB',∠B'=∠B=90°.∵∠2=40°,∴∠CFB'=50°,∴∠1+∠EFB'﹣∠CFB'=180°,即∠1+∠1﹣50°=180°,解得:∠1=115°,故選A.9、B【解析】試題分析:連接CD,∵在△ABC中,∠ACB=90°,∠A=30°,BC=4,∴AB=2BC=1.∵作法可知BC=CD=4,CE是線段BD的垂直平分線,∴CD是斜邊AB的中線,∴BD=AD=4,∴BF=DF=2,∴AF=AD+DF=4+2=2.故選B.考點:作圖—基本作圖;含30度角的直角三角形.10、D【解析】試題分析:首先要理解清楚題意,知道總的客車數(shù)量及總的人數(shù)不變,然后采用排除法進行分析從而得到正確答案.解:根據(jù)總人數(shù)列方程,應是40m+10=43m+1,①錯誤,④正確;根據(jù)客車數(shù)列方程,應該為,②錯誤,③正確;所以正確的是③④.故選D.考點:由實際問題抽象出一元一次方程.11、D【解析】

根據(jù)中位數(shù)的定義即可求出x的值,然后根據(jù)眾數(shù)的定義和平均數(shù)公式計算即可.【詳解】解:這11個數(shù)據(jù)的中位數(shù)是第8個數(shù)據(jù),且中位數(shù)為1,,則這11個數(shù)據(jù)為3、3、3、3、1、1、1、1、1、1、1、8、8、8、19,所以這組數(shù)據(jù)的眾數(shù)為1萬元,平均數(shù)為萬元.故選:.【點睛】此題考查的是中位數(shù)、眾數(shù)和平均數(shù),掌握中位數(shù)的定義、眾數(shù)的定義和平均數(shù)公式是解決此題的關鍵.12、B【解析】

本題可對方程進行因式分解,也可把選項中的數(shù)代入驗證是否滿足方程.【詳解】x2+2x-3=0,即(x+3)(x-1)=0,∴x1=1,x2=﹣3故選:B.【點睛】本題考查了一元二次方程的解法.解一元二次方程常用的方法有直接開平方法,配方法,公式法,因式分解法,要根據(jù)方程的特點靈活選用合適的方法.本題運用的是因式分解法.二、填空題:(本大題共6個小題,每小題4分,共24分.)13、【解析】【分析】由折疊的性質(zhì)可知AE=CE,再證明△BCE是等腰三角形即可得到BC=CE,問題得解.【詳解】∵AB=AC,∠A=36°,∴∠B=∠ACB==72°,∵將△ABC中的∠A沿DE向下翻折,使點A落在點C處,∴AE=CE,∠A=∠ECA=36°,∴∠CEB=72°,∴BC=CE=AE=,故答案為.【點睛】本題考查了等腰三角形的判斷和性質(zhì)、折疊的性質(zhì)以及三角形內(nèi)角和定理的運用,證明△BCE是等腰三角形是解題的關鍵.14、1【解析】

求出樣本中有標記的所占的百分比,再用樣本容量除以百分比即可解答.【詳解】解:

只.

故答案為:1.【點睛】本題考查的是通過樣本去估計總體,總體百分比約等于樣本百分比.15、【解析】

設雀、燕每1只各重x斤、y斤,根據(jù)等量關系:今有5只雀、6只燕,分別聚集而且用衡器稱之,聚在一起的雀重,燕輕.將一只雀、一只燕交換位置而放,重量相等.5只雀、6只燕重量為1斤,列出方程組求解即可.【詳解】設雀、燕每1只各重x斤、y斤,根據(jù)題意,得整理,得故答案為【點睛】考查二元一次方程組得應用,解題的關鍵是分析題意,找出題中的等量關系.16、3.【解析】

先根據(jù)同角的余角相等證明∠ADE=∠ACD,在△ADC根據(jù)銳角三角函數(shù)表示用含有k的代數(shù)式表示出AD=4k和DC=3k,從而根據(jù)勾股定理得出AC=5k,又AC=5,從而求出DC的值即為AB.【詳解】∵四邊形ABCD是矩形,∴∠ADC=90°,AB=CD,∵DE⊥AC,∴∠AED=90°,∴∠ADE+∠DAE=90°,∠DAE+∠ACD=90°,∴∠ADE=∠ACD,∴tan∠ACD=tan∠ADE==,設AD=4k,CD=3k,則AC=5k,∴5k=5,∴k=1,∴CD=AB=3,故答案為3.【點睛】本題考查矩形的性質(zhì)和利用銳角三角函數(shù)解直角三角形,解決此類問題時需要將已知角的三角函數(shù)、已知邊、未知邊,轉換到同一直角三角形中,然后解決問題.17、.【解析】

解:∵把x=1分別代入、,得y=1、y=,∴A(1,1),B(1,).∴.∵P為y軸上的任意一點,∴點P到直線BC的距離為1.∴△PAB的面積.故答案為:.18、1或9【解析】(1)點E在AC的延長線上時,過點O作OFAC交AC于點F,如圖所示∵OD=OA,∴∠OAD=∠ODA,∵AD平分∠BAE,∴∠OAD=∠ODA=∠DAC,∴OD//AE,∵DE是圓的切線,∴DE⊥OD,∴∠ODE=∠E=90o,∴四邊形ODEF是矩形,∴OF=DE,EF=OD=5,又∵OF⊥AC,∴AF=,∴AE=AF+EF=5+4=9.(2)當點E在CA的線上時,過點O作OFAC交AC于點F,如圖所示同(1)可得:EF=OD=5,OF=DE=3,在直角三角形AOF中,AF=,∴AE=EF-AF=5-4=1.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19、(1),;(2),1,1.【解析】

(1)根據(jù)四邊形OABC為矩形即可求出點B坐標,設直線OB解析式為,將B代入即可求直線OB的解析式;(2)由題意可得,由(1)可得點的坐標為,表達出△OMP的面積即可,利用二次函數(shù)的性質(zhì)求出最大值.【詳解】解:(1)∵OA=6,OC=4,四邊形OABC為矩形,∴AB=OC=4,∴點B,設直線OB解析式為,將B代入得,解得,∴,故答案為:;(2)由題可知,,由(1)可知,點的坐標為,∴當時,有最大值1.【點睛】本題考查了二次函數(shù)與幾何動態(tài)問題,解題的關鍵是根據(jù)題意表達出點的坐標,利用幾何知識列出函數(shù)關系式.20、(1),;(2)點的坐標為;(3)點的坐標為和【解析】

(1)根據(jù)二次函數(shù)的對稱軸公式,拋物線上的點代入,即可;(2)先求F的對稱點,代入直線BE,即可;(3)構造新的二次函數(shù),利用其性質(zhì)求極值.【詳解】解:(1)軸,,拋物線對稱軸為直線點的坐標為解得或(舍去),(2)設點的坐標為對稱軸為直線點關于直線的對稱點的坐標為.直線經(jīng)過點利用待定系數(shù)法可得直線的表達式為.因為點在上,即點的坐標為(3)存在點滿足題意.設點坐標為,則作垂足為①點在直線的左側時,點的坐標為點的坐標為點的坐標為在中,時,取最小值.此時點的坐標為②點在直線的右側時,點的坐標為同理,時,取最小值.此時點的坐標為綜上所述:滿足題意得點的坐標為和考點:二次函數(shù)的綜合運用.21、(1)200,;(2)a=0.45,b=70;(3)900名.【解析】

(1)根據(jù)“一般”和“不知道”的頻數(shù)和頻率求總數(shù)即可(2)根據(jù)(1)的總數(shù),結合頻數(shù),頻率的大小可得到結果(3)根據(jù)“非常喜歡”學生的比值就可以計算出2000名學生中的人數(shù).【詳解】解:(1)“一般”頻數(shù)30,“不知道”頻數(shù)10,兩者頻率0.20,根據(jù)頻數(shù)的計算公式可得,總數(shù)=頻數(shù)/頻率=(名);(2)“非常喜歡”頻數(shù)90,a=;(3).故答案為(1)200,;(2)a=0.45,b=70;(3)900名.【點睛】此題重點考察學生對頻數(shù)和頻率的應用,掌握頻率的計算公式是解題的關鍵.22、5【解析】試題分析:連接OC交AB于D,連接OA,由垂徑定理得OD垂直平分AB,設⊙O的半徑為r,在△ACD中,利用勾股定理求得CD=2,在△OAD中,由OA2=OD2+AD2,代入相關數(shù)量求解即可得.試題解析:連接OC交AB于D,連接OA,由垂徑定理得OD垂直平分AB,設⊙O的半徑為r,在△ACD中,CD2+AD2=AC2,CD=2,在△OAD中,OA2=OD2+AD2,r2=(r-2)2+16,解得r=5,∴☉O的半徑為5.23、(1)BC與⊙O相切;理由見解析;(2)BC=6【解析】試題分析:(1)BC與⊙O相切;由已知可得∠BAD=∠BED又由∠DBC=∠BED可得∠BAD=∠DBC,由AB為直徑可得∠ADB=90°,從而可得∠CBO=90°,繼而可得BC與⊙O相切(2)由AB為直徑可得∠ADB=90°,從而可得∠BDC=90°,由BC與⊙O相切,可得∠CBO=90°,從而可得∠BDC=∠CBO,可得ΔABC~ΔBDC,所以得BCCD=ACBC,得試題解析:(1)BC與⊙O相切;∵BD=BD,∴∠BAD=∠BED,∵∠DBC=∠BED,∴∠BAD=∠DBC,∵AB為直徑,∴∠ADB=90°,∴∠BAD+∠ABD=90°,∴∠DBC+∠ABD=90°,∴∠CBO=90°,∴點B在⊙O上,∴BC與(2)∵AB為直徑,∴∠ADB=90°,∴∠BDC=90°,∵BC與⊙O相切,∴∠CBO=90°,∴∠BDC=∠CBO,∴ΔABC~ΔBDC,∴BCCD=ACBC,∴BC考點:1.切線的判定與性質(zhì);2.相似三角形的判定與性質(zhì);3.勾股定理.24、小亮說的對,CE為2.6m.【解析】

先根據(jù)CE⊥AE,判斷出CE為高,再根據(jù)解直角三角形的知識解答.【詳解】解:在△ABD中,∠ABD=90°,∠BAD=18°,BA=10m,∵tan∠BAD=BDBA∴BD=10×tan18°,∴CD=BD﹣BC=10×tan18°﹣0.5≈2.7(m),在△ABD中,∠CDE=90°﹣∠BAD=72°,∵CE⊥ED,∴sin∠CDE=CECD∴CE=sin∠CDE×CD=sin72°×2.7≈2.6(m),∵2.6m<2.7m,且CE⊥AE,∴小亮說的對.答:小亮說的對,CE為2.6m.【點睛】本題主要考查了解直角三角形的應用,主要是正弦、正切概念及運算,解決本題的關鍵把實際問題轉化為數(shù)學問題.25、(Ⅰ)28.(Ⅱ)平均數(shù)是1.52.眾數(shù)為1.8.中位數(shù)為1.5.(Ⅲ)200只.【解析】分析:(Ⅰ)用整體1減去所有已知的百分比即可求出m的值;(Ⅱ)根據(jù)眾數(shù)、中位數(shù)、加權平均數(shù)的定義計算即可;(Ⅲ)用總數(shù)乘以樣本中2.0kg的雞所占的比例即可得解.解:(Ⅰ)m%=1-22%-10%-8%-32%=28%.故m=28;(Ⅱ)觀察條形統(tǒng)計圖,∵,∴這組數(shù)據(jù)的平均數(shù)是1.52.∵在這組數(shù)據(jù)中,1.8出現(xiàn)了16次,出現(xiàn)的次數(shù)最

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論