2023屆廣東省普寧市華美實驗中學(xué)數(shù)學(xué)高三第一學(xué)期期末考試試題含解析_第1頁
2023屆廣東省普寧市華美實驗中學(xué)數(shù)學(xué)高三第一學(xué)期期末考試試題含解析_第2頁
2023屆廣東省普寧市華美實驗中學(xué)數(shù)學(xué)高三第一學(xué)期期末考試試題含解析_第3頁
2023屆廣東省普寧市華美實驗中學(xué)數(shù)學(xué)高三第一學(xué)期期末考試試題含解析_第4頁
2023屆廣東省普寧市華美實驗中學(xué)數(shù)學(xué)高三第一學(xué)期期末考試試題含解析_第5頁
已閱讀5頁,還剩16頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

2022-2023學(xué)年高三上數(shù)學(xué)期末模擬試卷注意事項:1.答題前,考生先將自己的姓名、準(zhǔn)考證號碼填寫清楚,將條形碼準(zhǔn)確粘貼在條形碼區(qū)域內(nèi)。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知數(shù)列是公比為的等比數(shù)列,且,若數(shù)列是遞增數(shù)列,則的取值范圍為()A. B. C. D.2.已知雙曲線的右焦點為,過的直線交雙曲線的漸近線于兩點,且直線的傾斜角是漸近線傾斜角的2倍,若,則該雙曲線的離心率為()A. B. C. D.3.設(shè)復(fù)數(shù)滿足,在復(fù)平面內(nèi)對應(yīng)的點為,則不可能為()A. B. C. D.4.已知為拋物線的焦點,點在上,若直線與的另一個交點為,則()A. B. C. D.5.在滿足,的實數(shù)對中,使得成立的正整數(shù)的最大值為()A.5 B.6 C.7 D.96.已知等比數(shù)列的各項均為正數(shù),設(shè)其前n項和,若(),則()A.30 B. C. D.627.如圖,在平行四邊形中,為對角線的交點,點為平行四邊形外一點,且,,則()A. B.C. D.8.已知等差數(shù)列的前n項和為,且,則()A.4 B.8 C.16 D.29.已知直線:與橢圓交于、兩點,與圓:交于、兩點.若存在,使得,則橢圓的離心率的取值范圍為()A. B. C. D.10.已知角的終邊經(jīng)過點,則的值是A.1或 B.或 C.1或 D.或11.正方體,是棱的中點,在任意兩個中點的連線中,與平面平行的直線有幾條()A.36 B.21 C.12 D.612.已知拋物線C:,過焦點F的直線l與拋物線C交于A,B兩點(A在x軸上方),且滿足,則直線l的斜率為()A.1 B.C.2 D.3二、填空題:本題共4小題,每小題5分,共20分。13.在中,內(nèi)角所對的邊分別為,若,的面積為,則_______,_______.14.設(shè)是等比數(shù)列的前項的和,成等差數(shù)列,則的值為_____.15.已知集合,.若,則實數(shù)a的值是______.16.已知函數(shù),且,,使得,則實數(shù)m的取值范圍是______.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)在中,角的對邊分別為,且.(1)求角的大?。唬?)若,求邊上的高.18.(12分)如圖所示,在三棱柱中,為等邊三角形,,,平面,是線段上靠近的三等分點.(1)求證:;(2)求直線與平面所成角的正弦值.19.(12分)已知是遞增的等差數(shù)列,,是方程的根.(1)求的通項公式;(2)求數(shù)列的前項和.20.(12分)在中國,不僅是購物,而且從共享單車到醫(yī)院掛號再到公共繳費,日常生活中幾乎全部領(lǐng)域都支持手機(jī)支付.出門不帶現(xiàn)金的人數(shù)正在迅速增加。中國人民大學(xué)和法國調(diào)查公司益普索合作,調(diào)查了騰訊服務(wù)的6000名用戶,從中隨機(jī)抽取了60名,統(tǒng)計他們出門隨身攜帶現(xiàn)金(單位:元)如莖葉圖如示,規(guī)定:隨身攜帶的現(xiàn)金在100元以下(不含100元)的為“手機(jī)支付族”,其他為“非手機(jī)支付族”.(1)根據(jù)上述樣本數(shù)據(jù),將列聯(lián)表補充完整,并判斷有多大的把握認(rèn)為“手機(jī)支付族”與“性別”有關(guān)?(2)用樣本估計總體,若從騰訊服務(wù)的用戶中隨機(jī)抽取3位女性用戶,這3位用戶中“手機(jī)支付族”的人數(shù)為,求隨機(jī)變量的期望和方差;(3)某商場為了推廣手機(jī)支付,特推出兩種優(yōu)惠方案,方案一:手機(jī)支付消費每滿1000元可直減100元;方案二:手機(jī)支付消費每滿1000元可抽獎2次,每次中獎的概率同為,且每次抽獎互不影響,中獎一次打9折,中獎兩次打8.5折.如果你打算用手機(jī)支付購買某樣價值1200元的商品,請從實際付款金額的數(shù)學(xué)期望的角度分析,選擇哪種優(yōu)惠方案更劃算?附:0.0500.0100.0013.8416.63510.82821.(12分)已知函數(shù),.(1)當(dāng)時,討論函數(shù)的單調(diào)性;(2)若,當(dāng)時,函數(shù),求函數(shù)的最小值.22.(10分)為了響應(yīng)國家號召,促進(jìn)垃圾分類,某校組織了高三年級學(xué)生參與了“垃圾分類,從我做起”的知識問卷作答隨機(jī)抽出男女各20名同學(xué)的問卷進(jìn)行打分,作出如圖所示的莖葉圖,成績大于70分的為“合格”.(Ⅰ)由以上數(shù)據(jù)繪制成2×2聯(lián)表,是否有95%以上的把握認(rèn)為“性別”與“問卷結(jié)果”有關(guān)?男女總計合格不合格總計(Ⅱ)從上述樣本中,成績在60分以下(不含60分)的男女學(xué)生問卷中任意選2個,記來自男生的個數(shù)為,求的分布列及數(shù)學(xué)期望.附:0.1000.0500.0100.0012.7063.8416.63510.828

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解析】

先根據(jù)已知條件求解出的通項公式,然后根據(jù)的單調(diào)性以及得到滿足的不等關(guān)系,由此求解出的取值范圍.【詳解】由已知得,則.因為,數(shù)列是單調(diào)遞增數(shù)列,所以,則,化簡得,所以.故選:D.【點睛】本題考查數(shù)列通項公式求解以及根據(jù)數(shù)列單調(diào)性求解參數(shù)范圍,難度一般.已知數(shù)列單調(diào)性,可根據(jù)之間的大小關(guān)系分析問題.2、B【解析】

先求出直線l的方程為y(x﹣c),與y=±x聯(lián)立,可得A,B的縱坐標(biāo),利用,求出a,b的關(guān)系,即可求出該雙曲線的離心率.【詳解】雙曲線1(a>b>0)的漸近線方程為y=±x,∵直線l的傾斜角是漸近線OA傾斜角的2倍,∴kl,∴直線l的方程為y(x﹣c),與y=±x聯(lián)立,可得y或y,∵,∴2?,∴ab,∴c=2b,∴e.故選B.【點睛】本題考查雙曲線的簡單性質(zhì),考查向量知識,考查學(xué)生的計算能力,屬于中檔題.3、D【解析】

依題意,設(shè),由,得,再一一驗證.【詳解】設(shè),因為,所以,經(jīng)驗證不滿足,故選:D.【點睛】本題主要考查了復(fù)數(shù)的概念、復(fù)數(shù)的幾何意義,還考查了推理論證能力,屬于基礎(chǔ)題.4、C【解析】

求得點坐標(biāo),由此求得直線的方程,聯(lián)立直線的方程和拋物線的方程,求得點坐標(biāo),進(jìn)而求得【詳解】拋物線焦點為,令,,解得,不妨設(shè),則直線的方程為,由,解得,所以.故選:C【點睛】本小題主要考查拋物線的弦長的求法,屬于基礎(chǔ)題.5、A【解析】

由題可知:,且可得,構(gòu)造函數(shù)求導(dǎo),通過導(dǎo)函數(shù)求出的單調(diào)性,結(jié)合圖像得出,即得出,從而得出的最大值.【詳解】因為,則,即整理得,令,設(shè),則,令,則,令,則,故在上單調(diào)遞增,在上單調(diào)遞減,則,因為,,由題可知:時,則,所以,所以,當(dāng)無限接近時,滿足條件,所以,所以要使得故當(dāng)時,可有,故,即,所以:最大值為5.故選:A.【點睛】本題主要考查利用導(dǎo)數(shù)求函數(shù)單調(diào)性、極值和最值,以及運用構(gòu)造函數(shù)法和放縮法,同時考查轉(zhuǎn)化思想和解題能力.6、B【解析】

根據(jù),分別令,結(jié)合等比數(shù)列的通項公式,得到關(guān)于首項和公比的方程組,解方程組求出首項和公式,最后利用等比數(shù)列前n項和公式進(jìn)行求解即可.【詳解】設(shè)等比數(shù)列的公比為,由題意可知中:.由,分別令,可得、,由等比數(shù)列的通項公式可得:,因此.故選:B【點睛】本題考查了等比數(shù)列的通項公式和前n項和公式的應(yīng)用,考查了數(shù)學(xué)運算能力.7、D【解析】

連接,根據(jù)題目,證明出四邊形為平行四邊形,然后,利用向量的線性運算即可求出答案【詳解】連接,由,知,四邊形為平行四邊形,可得四邊形為平行四邊形,所以.【點睛】本題考查向量的線性運算問題,屬于基礎(chǔ)題8、A【解析】

利用等差的求和公式和等差數(shù)列的性質(zhì)即可求得.【詳解】.故選:.【點睛】本題考查等差數(shù)列的求和公式和等差數(shù)列的性質(zhì),考查基本量的計算,難度容易.9、A【解析】

由題意可知直線過定點即為圓心,由此得到坐標(biāo)的關(guān)系,再根據(jù)點差法得到直線的斜率與坐標(biāo)的關(guān)系,由此化簡并求解出離心率的取值范圍.【詳解】設(shè),且線過定點即為的圓心,因為,所以,又因為,所以,所以,所以,所以,所以,所以,所以.故選:A.【點睛】本題考查橢圓與圓的綜合應(yīng)用,著重考查了橢圓離心率求解以及點差法的運用,難度一般.通過運用點差法達(dá)到“設(shè)而不求”的目的,大大簡化運算.10、B【解析】

根據(jù)三角函數(shù)的定義求得后可得結(jié)論.【詳解】由題意得點與原點間的距離.①當(dāng)時,,∴,∴.②當(dāng)時,,∴,∴.綜上可得的值是或.故選B.【點睛】利用三角函數(shù)的定義求一個角的三角函數(shù)值時需確定三個量:角的終邊上任意一個異于原點的點的橫坐標(biāo)x,縱坐標(biāo)y,該點到原點的距離r,然后再根據(jù)三角函數(shù)的定義求解即可.11、B【解析】

先找到與平面平行的平面,利用面面平行的定義即可得到.【詳解】考慮與平面平行的平面,平面,平面,共有,故選:B.【點睛】本題考查線面平行的判定定理以及面面平行的定義,涉及到了簡單的組合問題,是一中檔題.12、B【解析】

設(shè)直線的方程為代入拋物線方程,利用韋達(dá)定理可得,,由可知所以可得代入化簡求得參數(shù),即可求得結(jié)果.【詳解】設(shè),(,).易知直線l的斜率存在且不為0,設(shè)為,則直線l的方程為.與拋物線方程聯(lián)立得,所以,.因為,所以,得,所以,即,,所以.故選:B.【點睛】本題考查直線與拋物線的位置關(guān)系,考查韋達(dá)定理及向量的坐標(biāo)之間的關(guān)系,考查計算能力,屬于中檔題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】

由已知及正弦定理,三角函數(shù)恒等變換的應(yīng)用可得,從而求得,結(jié)合范圍,即可得到答案運用余弦定理和三角形面積公式,結(jié)合完全平方公式,即可得到答案【詳解】由已知及正弦定理可得,可得:解得,即,由面積公式可得:,即由余弦定理可得:即有解得【點睛】本題主要考查了運用正弦定理、余弦定理和面積公式解三角形,題目較為基礎(chǔ),只要按照題意運用公式即可求出答案14、2【解析】

設(shè)等比數(shù)列的公比設(shè)為再根據(jù)成等差數(shù)列利用基本量法求解再根據(jù)等比數(shù)列各項間的關(guān)系求解即可.【詳解】解:等比數(shù)列的公比設(shè)為成等差數(shù)列,可得若則顯然不成立,故則,化為解得,則故答案為:.【點睛】本題主要考查了等比數(shù)列的基本量求解以及運用,屬于中檔題.15、9【解析】

根據(jù)集合交集的定義即得.【詳解】集合,,,,則a的值是9.故答案為:9【點睛】本題考查集合的交集,是基礎(chǔ)題.16、【解析】

根據(jù)條件轉(zhuǎn)化為函數(shù)在上的值域是函數(shù)在上的值域的子集;分別求值域即可得到結(jié)論.【詳解】解:依題意,,即函數(shù)在上的值域是函數(shù)在上的值域的子集.因為在上的值域為()或(),在上的值域為,故或,解得故答案為:.【點睛】本題考查了分段函數(shù)的值域求參數(shù)的取值范圍,屬于中檔題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1);(2)【解析】

(1)利用正弦定理將邊化成角,可得,展開并整理可得,從而可求出角;(2)由余弦定理得,進(jìn)而可得,由,可求出的值,設(shè)邊上的高為,可得的面積為,從而可求出.【詳解】(1)由題意,由正弦定理得.因為,所以,所以,展開得,整理得.因為,所以,故,即.(2)由余弦定理得,則,得,故,故的面積為.設(shè)邊上的高為,有,故,所以邊上的高為.【點睛】本題考查正弦、余弦定理在解三角形中的應(yīng)用,考查三角形的面積公式的應(yīng)用,考查學(xué)生的計算求解能力,屬于中檔題.18、(1)證明見解析(2)【解析】

(1)由,故,所以四邊形為菱形,再通過,證得,所以四邊形為正方形,得到.(2)根據(jù)(1)的論證,建立空間直角坐標(biāo),設(shè)平面的法向量為,由求得,再由,利用線面角的向量法公式求解.【詳解】(1)因為,故,所以四邊形為菱形,而平面,故.因為,故,故,即四邊形為正方形,故.(2)依題意,.在正方形中,,故以為原點,所在直線分別為、、軸,建立如圖所示的空間直角坐標(biāo)系;如圖所示:不紡設(shè),則,又因為,所以.所以.設(shè)平面的法向量為,則,即,令,則.于是.又因為,設(shè)直線與平面所成角為,則,所以直線與平面所成角的正弦值為.【點睛】本題考查空間線面的位置關(guān)系、線面成角,還考查空間想象能力以及數(shù)形結(jié)合思想,屬于中檔題.19、(1);(2).【解析】

(1)方程的兩根為,由題意得,在利用等差數(shù)列的通項公式即可得出;(2)利用“錯位相減法”、等比數(shù)列的前項和公式即可求出.【詳解】方程x2-5x+6=0的兩根為2,3.由題意得a2=2,a4=3.設(shè)數(shù)列{an}的公差為d,則a4-a2=2d,故d=,從而得a1=.所以{an}的通項公式為an=n+1.(2)設(shè)的前n項和為Sn,由(1)知=,則Sn=++…++,Sn=++…++,兩式相減得Sn=+-=+-,所以Sn=2-.考點:等差數(shù)列的性質(zhì);數(shù)列的求和.【方法點晴】本題主要考查了等差數(shù)列的通項公式、“錯位相減法”、等比數(shù)列的前項和公式、一元二次方程的解法等知識點的綜合應(yīng)用,解答中方程的兩根為,由題意得,即可求解數(shù)列的通項公式,進(jìn)而利用錯位相減法求和是解答的關(guān)鍵,著重考查了學(xué)生的推理能力與運算能力,屬于中檔試題.20、(1)列聯(lián)表見解析,99%;(2),;(3)第二種優(yōu)惠方案更劃算.【解析】

(1)根據(jù)已知數(shù)據(jù)得出列聯(lián)表,再根據(jù)獨立性檢驗得出結(jié)論;(2)有數(shù)據(jù)可知,女性中“手機(jī)支付族”的概率為,知服從二項分布,即,可求得其期望和方差;(3)若選方案一,則需付款元,若選方案二,設(shè)實際付款元,,則的取值為1200,1080,1020,求出實際付款的期望,再比較兩個方案中的付款的金額的大小,可得出選擇的方案.【詳解】(1)由已知得出聯(lián)列表:,所以,有99%的把握認(rèn)為“手機(jī)支付族”與“性別”有關(guān);(2)有數(shù)據(jù)可知,女性中“手機(jī)支付族”的概率為,,;(3)若選方案一,則需付款元若選方案二,設(shè)實際付款元,,則的取值為1200,1080,1020,,,,選擇第二種優(yōu)惠方案更劃算【點睛】本題考查獨立性檢驗,二項分布的期望和方差,以及由期望值確定決策方案,屬于中檔題.21、(1)見解析(2)的最小值為【解析】

(1)由題可得函數(shù)的定義域為,,當(dāng)時,,令,可得;令,可得,所以

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論