版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
甘肅省張掖市2025屆高一數(shù)學(xué)第二學(xué)期期末檢測(cè)模擬試題注意事項(xiàng):1.答題前,考生先將自己的姓名、準(zhǔn)考證號(hào)碼填寫(xiě)清楚,將條形碼準(zhǔn)確粘貼在條形碼區(qū)域內(nèi)。2.答題時(shí)請(qǐng)按要求用筆。3.請(qǐng)按照題號(hào)順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書(shū)寫(xiě)的答案無(wú)效;在草稿紙、試卷上答題無(wú)效。4.作圖可先使用鉛筆畫(huà)出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本大題共10小題,每小題5分,共50分。在每個(gè)小題給出的四個(gè)選項(xiàng)中,恰有一項(xiàng)是符合題目要求的1.在中,,則=()A. B. C. D.2.直線l:與圓C:交于A,B兩點(diǎn),則當(dāng)弦AB最短時(shí)直線l的方程為A. B.C. D.3.在正項(xiàng)等比數(shù)列中,,數(shù)列的前項(xiàng)之和為()A. B. C. D.4.化簡(jiǎn)的結(jié)果是()A. B. C. D.5.某城市為了解游客人數(shù)的變化規(guī)律,提高旅游服務(wù)質(zhì)量,收集并整理了2014年1月至2016年12月期間月接待游客量(單位:萬(wàn)人)的數(shù)據(jù),繪制了如圖所示的折線圖.根據(jù)該折線圖,下列結(jié)論錯(cuò)誤的是()A.月接待游客量逐月增加B.年接待游客量逐年增加C.各年的月接待游客量高峰期大致在7,8月D.各年1月至6月的月接待游客量相對(duì)于7月至12月,波動(dòng)性更小,變化比較平穩(wěn)6.已知兩條直線與兩個(gè)平面,給出下列命題:①若,則;②若,則;③若,則;④若,則;其中正確的命題個(gè)數(shù)為A.1 B.2 C.3 D.47.一個(gè)圓柱的底面直徑與高都等于球的直徑,設(shè)圓柱的側(cè)面積為,球的表面積為,則()A. B. C. D.18.在△ABC中,內(nèi)角A,B,C的對(duì)邊分別是a,b,c,若cosB=,=2,且S△ABC=,則b的值為()A.4 B.3 C.2 D.19.不等式所表示的平面區(qū)域是()A. B.C. D.10.已知命題,則命題的否定為()A. B.C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.《九章算術(shù)》是體現(xiàn)我國(guó)古代數(shù)學(xué)成就的杰出著作,其中(方田)章給出的計(jì)算弧田面積的經(jīng)驗(yàn)公式為:弧田面積(弦矢矢2),弧田(如圖陰影部分)由圓弧及其所對(duì)的弦圍成,公式中“弦”指圓弧所對(duì)弦的長(zhǎng),“矢”等于半徑長(zhǎng)與圓心到弦的距離之差,現(xiàn)有弧長(zhǎng)為米,半徑等于米的弧田,則弧所對(duì)的弦的長(zhǎng)是_____米,按照上述經(jīng)驗(yàn)公式計(jì)算得到的弧田面積是___________平方米.12.直線的傾斜角的大小是_________.13.已知數(shù)列中,且當(dāng)時(shí),則數(shù)列的前項(xiàng)和=__________.14.已知正三棱柱木塊,其中,,一只螞蟻?zhàn)渣c(diǎn)出發(fā)經(jīng)過(guò)線段上的一點(diǎn)到達(dá)點(diǎn),當(dāng)沿螞蟻?zhàn)哌^(guò)的最短路徑,截開(kāi)木塊時(shí),兩部分幾何體的體積比為_(kāi)_____.15.已知函數(shù),,則的最大值是__________.16.化簡(jiǎn):______.(要求將結(jié)果寫(xiě)成最簡(jiǎn)形式)三、解答題:本大題共5小題,共70分。解答時(shí)應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17.如圖,某地三角工廠分別位于邊長(zhǎng)為2的正方形的兩個(gè)頂點(diǎn)及中點(diǎn)處.為處理這三角工廠的污水,在該正方形區(qū)域內(nèi)(含邊界)與等距的點(diǎn)處建一個(gè)污水處理廠,并鋪設(shè)三條排污管道,記輔設(shè)管道總長(zhǎng)為千米.(1)按下列要求建立函數(shù)關(guān)系式:(i)設(shè),將表示成的函數(shù);(ii)設(shè),將表示成的函數(shù);(2)請(qǐng)你選用一個(gè)函數(shù)關(guān)系,確定污水廠位置,使鋪設(shè)管道總長(zhǎng)最短.18.如圖,三棱柱中,,D為AB上一點(diǎn),且平面.(1)求證:;(2)若四邊形是矩形,且平面平面ABC,直線與平面ABC所成角的正切值等于2,,,求三樓柱的體積.19.已知向量,,函數(shù).(1)若,,求的值;(2)若函數(shù)在區(qū)間上是單調(diào)遞增函數(shù),求正數(shù)的取值范圍.20.如圖所示,在直三棱柱中,,,M、N分別為、的中點(diǎn).求證:平面;求證:平面.21.設(shè)數(shù)列的前項(xiàng)和為,若且求若數(shù)列滿足,求數(shù)列的前項(xiàng)和.
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個(gè)小題給出的四個(gè)選項(xiàng)中,恰有一項(xiàng)是符合題目要求的1、C【解析】
解:因?yàn)橛烧叶ɡ?,所以又c<a所以,所?、A【解析】
先求出直線經(jīng)過(guò)的定點(diǎn),再求出弦AB最短時(shí)直線l的方程.【詳解】由題得,所以直線l過(guò)定點(diǎn)P.當(dāng)CP⊥l時(shí),弦AB最短.由題得,所以.所以直線l的方程為.故選:A【點(diǎn)睛】本題主要考查直線過(guò)定點(diǎn)問(wèn)題,考查直線方程的求法,考查直線和圓的位置關(guān)系,意在考查學(xué)生對(duì)這些知識(shí)的理解掌握水平和分析推理能力.3、B【解析】
根據(jù)等比數(shù)列的性質(zhì),即可解出答案?!驹斀狻抗蔬xB【點(diǎn)睛】本題考查等比數(shù)列的性質(zhì),同底對(duì)數(shù)的運(yùn)算,屬于基礎(chǔ)題。4、D【解析】
直接利用同角三角函數(shù)基本關(guān)系式以及二倍角公式化簡(jiǎn)求值即可.【詳解】.故選.【點(diǎn)睛】本題主要考查應(yīng)用同角三角函數(shù)基本關(guān)系式和二倍角公式對(duì)三角函數(shù)的化簡(jiǎn)求值.5、A【解析】
觀察折線圖可知月接待游客量每年7,8月份明顯高于12月份,且折線圖呈現(xiàn)增長(zhǎng)趨勢(shì),高峰都出現(xiàn)在7、8月份,1月至6月的月接待游客量相對(duì)于7月至12月波動(dòng)性更小.【詳解】對(duì)于選項(xiàng)A,由圖易知月接待游客量每年7,8月份明顯高于12月份,故A錯(cuò);對(duì)于選項(xiàng)B,觀察折線圖的變化趨勢(shì)可知年接待游客量逐年增加,故B正確;對(duì)于選項(xiàng)C,D,由圖可知顯然正確.故選A.【點(diǎn)睛】本題考查折線圖,考查考生的識(shí)圖能力,屬于基礎(chǔ)題.6、A【解析】
結(jié)合線面平行定理和舉例判斷.【詳解】若,則可能平行或異面,故①錯(cuò)誤;若,則可能與的交線平行,故②錯(cuò)誤;若,則,所以,故③正確;若,則可能平行,相交或異面,故④錯(cuò)誤;故選A.【點(diǎn)睛】本題線面關(guān)系的判斷,主要依據(jù)線面定理和舉例排除.7、D【解析】
由圓柱的側(cè)面積及球的表面積公式求解即可.【詳解】解:設(shè)圓柱的底面半徑為,則,則圓柱的側(cè)面積為,球的表面積為,則,故選:D.【點(diǎn)睛】本題考查了圓柱的側(cè)面積的求法,重點(diǎn)考查了球的表面積公式,屬基礎(chǔ)題.8、C【解析】試題分析:根據(jù)正弦定理可得,.在中,,.,,.,.故C正確.考點(diǎn):1正弦定理;2余弦定理.9、D【解析】
根據(jù)二元一次不等式組表示平面區(qū)域進(jìn)行判斷即可.【詳解】不等式組等價(jià)為或則對(duì)應(yīng)的平面區(qū)域?yàn)镈,
故選:D.【點(diǎn)睛】本題主要考查二元一次不等式組表示平區(qū)域,比較基礎(chǔ).10、C【解析】
根據(jù)全稱(chēng)命題的否定是特稱(chēng)命題,可直接得出結(jié)果.【詳解】命題“”的否定是“”.故選C【點(diǎn)睛】本題主要考查全稱(chēng)命題的否定,只需改量詞和結(jié)論即可,屬于基礎(chǔ)題型.二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】
在中,由題意可知:,弧長(zhǎng)為,即可以求出,則求得的值,根據(jù)題意可求矢和弦的值及弦長(zhǎng),利用公式可以完成.【詳解】如上圖在中,可得:,可以得:矢=所以:弧田面積(弦矢矢2)=所以填寫(xiě)(1).(2).【點(diǎn)睛】本題是數(shù)學(xué)文化考題,扇形為載體的新型定義題,求弦長(zhǎng)屬于簡(jiǎn)單的解三角形問(wèn)題,而作為第二空,我們首先知道公式中涉及到了“矢”,所以我們必須把“矢”的定義弄清楚,再借助定義求出它的值,最后只是簡(jiǎn)單代入公式計(jì)算即能完成.12、【解析】試題分析:由題意,即,∴.考點(diǎn):直線的傾斜角.13、【解析】
先利用累乘法計(jì)算,再通過(guò)裂項(xiàng)求和計(jì)算.【詳解】,數(shù)列的前項(xiàng)和故答案為:【點(diǎn)睛】本題考查了累乘法,裂項(xiàng)求和,屬于數(shù)列的??碱}型.14、【解析】
將正三棱柱的側(cè)面沿棱展開(kāi)成平面,連接與的交點(diǎn)即為滿足最小時(shí)的點(diǎn),可知點(diǎn)為棱的中點(diǎn),即可計(jì)算出沿著螞蟻?zhàn)哌^(guò)的路徑截開(kāi)木塊時(shí)兩幾何體的體積之比.【詳解】將正三棱柱沿棱展開(kāi)成平面,連接與的交點(diǎn)即為滿足最小時(shí)的點(diǎn).由于,,再結(jié)合棱柱的性質(zhì),可得,一只螞蟻?zhàn)渣c(diǎn)出發(fā)經(jīng)過(guò)線段上的一點(diǎn)到達(dá)點(diǎn),當(dāng)沿螞蟻?zhàn)哌^(guò)的最短路徑,為的中點(diǎn),因?yàn)槿庵钦庵?,所以?dāng)沿螞蟻?zhàn)哌^(guò)的最短路徑,截開(kāi)木塊時(shí),兩部分幾何體的體積比為:.故答案為:.【點(diǎn)睛】本題考查棱柱側(cè)面最短路徑問(wèn)題,涉及棱柱側(cè)面展開(kāi)圖的應(yīng)用以及幾何體體積的計(jì)算,考查分析問(wèn)題解決問(wèn)題能力,是中檔題.15、3【解析】函數(shù)在上為減函數(shù),故最大值為.16、【解析】
結(jié)合誘導(dǎo)公式化簡(jiǎn),再結(jié)合兩角差正弦公式分析即可【詳解】故答案為:【點(diǎn)睛】本題考查三角函數(shù)的化簡(jiǎn),誘導(dǎo)公式的使用,屬于基礎(chǔ)題三、解答題:本大題共5小題,共70分。解答時(shí)應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17、(1)(i)(,其中).(ii).(2)污水廠設(shè)在與直線距離處【解析】
(1)(i)設(shè)的中點(diǎn)為,則,,,,由此可得關(guān)于的函數(shù);(ii)由題意,則,,由此可得關(guān)于的函數(shù);(2)設(shè),,則,然后利用基本不等式求最值.【詳解】解:(1)(i)設(shè)中點(diǎn),則,,,,∴(,其中);(ii),,;(2)設(shè),,則,,當(dāng),即時(shí),取最小值,∴污水廠設(shè)在與直線距離處時(shí),鋪設(shè)管道總長(zhǎng)最短,最短長(zhǎng)度為千米.【點(diǎn)睛】本題主要考查根據(jù)實(shí)際問(wèn)題選擇函數(shù)模型,訓(xùn)練了利用換元法及基本不等式求最值,屬于中檔題.18、(1)見(jiàn)詳解;(2)【解析】
(1)連接交于點(diǎn),連接,利用線面平行的性質(zhì)定理可得,從而可得為的中點(diǎn),進(jìn)而可證出(2)利用面面垂直的性質(zhì)定理可得平面,從而可得三棱柱為直三棱柱,在中,根據(jù)等腰三角形的性質(zhì)可得,進(jìn)而可得棱柱的高為,利用柱體的體積公式即可求解.【詳解】(1)連接交于點(diǎn),連接,如圖:由平面,且平面平面,所以,由為的中點(diǎn),所以為的中點(diǎn),又,(2)由四邊形是矩形,且平面平面ABC,所以平面,即三棱柱為直三棱柱,在中,,,,所以,因?yàn)橹本€與平面ABC所成角的正切值等于2,在中,,所以..【點(diǎn)睛】本題考查了線面平行的性質(zhì)定理、面面垂直的性質(zhì)定理,同時(shí)考查了線面角以及柱體的體積公式,屬于基礎(chǔ)題.19、(1);(2)【解析】
(1)利用數(shù)量積公式結(jié)合二倍角公式,輔助角公式化簡(jiǎn)函數(shù)解析式,由,結(jié)合的范圍以及平方關(guān)系得出的值,由結(jié)合兩角差的余弦公式求解即可;(2)由整體法結(jié)合正弦函數(shù)的單調(diào)性得出該函數(shù)的單調(diào)增區(qū)間,則區(qū)間應(yīng)該包含在的一個(gè)增區(qū)間內(nèi),根據(jù)包含關(guān)系列出不等式組,求解即可得出正數(shù)的取值范圍.【詳解】(1)因?yàn)椋?,?因?yàn)?,所以所?所以.(2).令,得,因?yàn)楹瘮?shù)在區(qū)間上是單調(diào)遞增函數(shù)所以存在,使得所以有,即因?yàn)?,所以又因?yàn)椋?,則,所以從而有,所以,所以.【點(diǎn)睛】本題主要考查了利用同角三角函數(shù)的基本關(guān)系,二倍角公式,兩角差的余弦公式化簡(jiǎn)求值以及根據(jù)正弦型函數(shù)的單調(diào)性求參數(shù)范圍,屬于較難題.20、(1)見(jiàn)解析;(2)見(jiàn)解析.【解析】
(1)推導(dǎo)出,從而平面,進(jìn)而,再由,,得是正方形,由此能證明平面.取的中點(diǎn)F,連BF、推導(dǎo)出四邊形BMNF是平行四邊形,從而,由此能證明平面.【詳解】證明:在直三棱柱中,側(cè)面底面ABC,且側(cè)面底面,,即,平面,平面,,,是正方形,,平面取的中點(diǎn)F,連BF、在中,N、F是中點(diǎn),,,又,,,,故四邊形BMNF是平行四邊形,,而面,平面,平面【點(diǎn)睛】本題考查線面垂直、線面平行的證明,考查
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年度農(nóng)機(jī)產(chǎn)業(yè)投資基金投資合同范本
- 二零二五年度土地租賃合同范本(含環(huán)保條款)
- 2025年度職業(yè)電競(jìng)戰(zhàn)隊(duì)教練聘請(qǐng)合同書(shū)4篇
- 2025年度生鮮配送服務(wù)合同與消費(fèi)者權(quán)益保護(hù)協(xié)議4篇
- 二零二五年高清監(jiān)控設(shè)備采購(gòu)合同范本3篇
- 2025年度臨時(shí)租用汽車(chē)合同標(biāo)準(zhǔn)協(xié)議-企業(yè)用車(chē)3篇
- 2025年度智能設(shè)備安裝服務(wù)合同(分享42安裝工版)
- 2025年度知識(shí)產(chǎn)權(quán)法務(wù)顧問(wèn)保密合同
- 課題申報(bào)參考:美國(guó)后“9·11”詩(shī)歌的政治參與意識(shí)與“公共性”范式研究
- 二零二五版木質(zhì)防火門(mén)安裝與維護(hù)服務(wù)合同3篇
- 2024年-2025年海船船員考試-船舶人員管理考試題及答案
- 2025屆安徽省皖南八校聯(lián)盟高二物理第一學(xué)期期末統(tǒng)考試題含解析
- 《BIM土建算量與云計(jì)價(jià)》完整課件
- 2024中國(guó)南光集團(tuán)限公司校園招聘高頻難、易錯(cuò)點(diǎn)500題模擬試題附帶答案詳解
- 2024-2030年中國(guó)氣凝膠干凝膠市場(chǎng)發(fā)展戰(zhàn)略與未來(lái)投資競(jìng)爭(zhēng)力剖析研究報(bào)告
- 新客戶建檔協(xié)議書(shū)范文范本
- 2024簡(jiǎn)單的租房合同樣本下載
- 2024-2030年中國(guó)AI智能鼠標(biāo)市場(chǎng)營(yíng)銷(xiāo)模式與競(jìng)爭(zhēng)前景分析研究報(bào)告
- 中考數(shù)學(xué)計(jì)算題練習(xí)100道(2024年中考真題)
- DL-T499-2001農(nóng)村低壓電力技術(shù)規(guī)程
- 【家庭教育】0-3歲嬰幼兒早教訓(xùn)練方案
評(píng)論
0/150
提交評(píng)論