陜西省西安市鐵一中2025屆數(shù)學(xué)高一下期末統(tǒng)考模擬試題含解析_第1頁
陜西省西安市鐵一中2025屆數(shù)學(xué)高一下期末統(tǒng)考模擬試題含解析_第2頁
陜西省西安市鐵一中2025屆數(shù)學(xué)高一下期末統(tǒng)考模擬試題含解析_第3頁
陜西省西安市鐵一中2025屆數(shù)學(xué)高一下期末統(tǒng)考模擬試題含解析_第4頁
陜西省西安市鐵一中2025屆數(shù)學(xué)高一下期末統(tǒng)考模擬試題含解析_第5頁
已閱讀5頁,還剩12頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

陜西省西安市鐵一中2025屆數(shù)學(xué)高一下期末統(tǒng)考模擬試題請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應(yīng)的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.已知為三條不同直線,為三個不同平面,則下列判斷正確的是()A.若,,,,則B.若,,則C.若,,,則D.若,,,則2.在非直角中,“”是“”的()A.充分不必要條件 B.必要不充分條件 C.充要條件 D.既不充分也不必要3.下列命題正確的是()A.有兩個面平行,其余各面都是四邊形的幾何體叫棱柱.B.有兩個面平行,其余各面都是平行四邊形的幾何體叫棱柱.C.有兩個面平行,其余各面都是四邊形,并且每相鄰兩個四邊形的公共邊都互相平行的幾何體叫棱柱.D.用一個平面去截棱錐,底面與截面之間的部分組成的幾何體叫棱臺.4.已知為定義在上的函數(shù),其圖象關(guān)于軸對稱,當(dāng)時,有,且當(dāng)時,,若方程()恰有5個不同的實數(shù)解,則的取值范圍是()A. B. C. D.5.在中,內(nèi)角,,所對的邊分別為,,.若的面積為,則角=()A. B.C. D.6.設(shè)向量,且,則實數(shù)的值為()A. B. C. D.7.若實數(shù)滿足約束條件,則的最大值為()A.9 B.7 C.6 D.38.設(shè)變量滿足約束條件,則目標(biāo)函數(shù)的最大值是()A.7 B.5 C.3 D.29.如圖,正方體的棱長為,那么四棱錐的體積是()A.B.C.D.10.在中,,,,則的面積為A. B. C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.在平面直角坐標(biāo)系中,角的頂點在原點,始邊與軸的正半軸重合,終邊過點,則______12.一個幾何體的三視圖如圖所示(單位:m),則該幾何體的體積為.13.在三棱錐P-ABC中,平面PAB⊥平面ABC,ΔABC是邊長為23的等邊三角形,其中PA=PB=14.如圖,在正方體中,、分別是、的中點,則異面直線與所成角的大小是______.15.若集合,,則集合________.16.在中,,,面積為,則________.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17.?dāng)?shù)列滿足,.(1)試求出,,;(2)猜想數(shù)列的通項公式并用數(shù)學(xué)歸納法證明.18.已知的三個內(nèi)角,,的對邊分別為,,,且滿足.(1)求角的大??;(2)若,,,求的長19.在△中,角、、所對的邊分別為、、,且.(1)求的值;(2)若,求的最大值;(3)若,,為的中點,求線段的長度.20.在等差數(shù)列中,.(Ⅰ)求的通項公式;(Ⅱ)求數(shù)列的前項和.21.已知數(shù)列滿足(,且),且,設(shè),,數(shù)列滿足.(1)求證:數(shù)列是等比數(shù)列并求出數(shù)列的通項公式;(2)求數(shù)列的前n項和;(3)對于任意,,恒成立,求實數(shù)m的取值范圍.

參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、C【解析】

根據(jù)線線位置關(guān)系,線面位置關(guān)系,以及面面位置關(guān)系,逐項判斷,即可得出結(jié)果.【詳解】A選項,當(dāng)時,由,可得,此時由,可得或或與相交;所以A錯誤;B選項,若,,則,或相交,或異面;所以B錯誤;C選項,若,,,根據(jù)線面平行的性質(zhì),可得,所以C正確;D選項,若,,則或,又,則,或相交,或異面;所以D錯誤;故選C【點睛】本題主要考查線面,面面有關(guān)命題的判定,熟記空間中點線面位置關(guān)系即可,屬于??碱}型.2、C【解析】

由得出,利用切化弦的思想得出其等價條件,再利用充分必要性判斷出兩條件之間的關(guān)系.【詳解】若,則,易知,,,,,,,,,.因此,“”是“”的充要條件,故選C.【點睛】本題考查充分必要性的判斷,同時也考查了切化弦思想、兩角和差的正弦公式的應(yīng)用,在討論三角函數(shù)值符號時,要充分考慮角的取值范圍,考查分析問題和解決問題的能力,屬于中等題.3、C【解析】試題分析:有兩個面平行,其余各面都是四邊形的幾何體,A錯;有兩個面平行,其余各面都是平行四邊形的幾何體如圖所示,B錯;用一個平行于底面的平面去截棱錐,底面與截面之間的部分組成的幾何體叫棱臺,D錯;由棱柱的定義,C正確;考點:1、棱柱的概念;2、棱臺的概念.4、C【解析】當(dāng)時,有,所以,所以函數(shù)在上是周期為的函數(shù),從而當(dāng)時,,有,又,即,有易知為定義在上的偶函數(shù),所以可作出函數(shù)的圖象與直線有個不同的交點,所以,解得,故選C.點睛:本題主要考查了函數(shù)的奇偶性、周期性、對稱性,函數(shù)與方程等知識的綜合應(yīng)用,著重考查了數(shù)形結(jié)合思想研究直線與函數(shù)圖象的交點問題,解答時現(xiàn)討論得到分段函數(shù)的解析式,然后做出函數(shù)的圖象,將方程恰有5個不同的實數(shù)解轉(zhuǎn)化為直線與函數(shù)的圖象由5個不同的交點,由數(shù)形結(jié)合法列出不等式組是解答的關(guān)鍵.5、C【解析】

由三角形面積公式,結(jié)合所給條件式及余弦定理,即可求得角A.【詳解】中,內(nèi)角,,所對的邊分別為,,則由余弦定理可知而由題意可知,代入可得所以化簡可得因為所以故選:C【點睛】本題考查了三角形面積公式的應(yīng)用,余弦定理邊角轉(zhuǎn)化的應(yīng)用,屬于基礎(chǔ)題.6、D【解析】

根據(jù)向量垂直時數(shù)量積為0,列方程求出m的值.【詳解】向量,(m+1,﹣m),當(dāng)⊥時,?0,即﹣(m+1)﹣2m=0,解得m.故選D.【點睛】本題考查了平面向量的數(shù)量積的坐標(biāo)運算,考查了向量垂直的條件轉(zhuǎn)化,是基礎(chǔ)題.7、A【解析】由約束條件作出可行域如圖,聯(lián)立,解得,化目標(biāo)函數(shù)為,由圖可知,當(dāng)直線過時,直線在軸上的截距最大,有最大值為,故選A.【方法點晴】本題主要考查線性規(guī)劃中利用可行域求目標(biāo)函數(shù)的最值,屬簡單題.求目標(biāo)函數(shù)最值的一般步驟是“一畫、二移、三求”:(1)作出可行域(一定要注意是實線還是虛線);(2)找到目標(biāo)函數(shù)對應(yīng)的最優(yōu)解對應(yīng)點(在可行域內(nèi)平移變形后的目標(biāo)函數(shù),最先通過或最后通過的頂點就是最優(yōu)解);(3)將最優(yōu)解坐標(biāo)代入目標(biāo)函數(shù)求出最值.8、B【解析】

由約束條件作出可行域,化目標(biāo)函數(shù)為直線方程的斜截式,數(shù)形結(jié)合得到最優(yōu)解,聯(lián)立方程組求得最優(yōu)解的坐標(biāo),把最優(yōu)解的坐標(biāo)代入目標(biāo)函數(shù)得結(jié)論.【詳解】畫出約束條件,表示的可行域,如圖,由可得,將變形為,平移直線,由圖可知當(dāng)直經(jīng)過點時,直線在軸上的截距最大,最大值為,故選B.【點睛】本題主要考查線性規(guī)劃中,利用可行域求目標(biāo)函數(shù)的最值,屬于簡單題.求目標(biāo)函數(shù)最值的一般步驟是“一畫、二移、三求”:(1)作出可行域(一定要注意是實線還是虛線);(2)找到目標(biāo)函數(shù)對應(yīng)的最優(yōu)解對應(yīng)點(在可行域內(nèi)平移變形后的目標(biāo)函數(shù),最先通過或最后通過的頂點就是最優(yōu)解);(3)將最優(yōu)解坐標(biāo)代入目標(biāo)函數(shù)求出最值.9、B【解析】

根據(jù)錐體體積公式,求得四棱錐的體積.【詳解】根據(jù)正方體的幾何性質(zhì)可知平面,所以,故選B.【點睛】本小題主要考查四棱錐體積的計算,屬于基礎(chǔ)題.10、C【解析】

利用三角形中的正弦定理求出角B,利用三角形內(nèi)角和求出角C,再利用三角形的面積公式求出三角形的面積,求得結(jié)果.【詳解】因為中,,,,由正弦定理得:,所以,所以,所以,所以,故選C.【點睛】該題所考查的是有關(guān)三角形面積的求解問題,在解題的過程中,需要注意根據(jù)題中所給的條件,應(yīng)用正弦定理求得,從而求得,之后應(yīng)用三角形面積公式求得結(jié)果.二、填空題:本大題共6小題,每小題5分,共30分。11、-1【解析】

根據(jù)三角函數(shù)的定義求得,再代入的展開式進行求值.【詳解】角終邊過點,終邊在第三象限,根據(jù)三角函數(shù)的定義知:,【點睛】考查三角函數(shù)的定義及三角恒等變換,在變換過程中要注意符號的正負.12、【解析】該幾何體是由兩個高為1的圓錐與一個高為2的圓柱組合而成,所以該幾何體的體積為.考點:本題主要考查三視圖及幾何體體積的計算.13、65π【解析】

本題首先可以通過題意畫出圖像,然后通過三棱錐的圖像性質(zhì)以及三棱錐的外接球的相關(guān)性質(zhì)來確定圓心的位置,最后根據(jù)各邊所滿足的幾何關(guān)系列出算式,即可得出結(jié)果?!驹斀狻咳鐖D所示,作AB中點D,連接PD、CD,在CD上作三角形ABC的中心E,過點E作平面ABC的垂線,在垂線上取一點O,使得PO=OC。因為三棱錐底面是一個邊長為23的等邊三角形,E所以三棱錐的外接球的球心在過點E的平面ABC的垂線上,因為PO=OC,P、C兩點在三棱錐的外接球的球面上,所以O(shè)點即為球心,因為平面PAB⊥平面ABC,PA=PB,D為AB中點,所以PD⊥平面ABCCD=CA2-ADPD=P設(shè)球的半徑為r,則有PO=OC=r,OE=r(PD-OE)2+DE2=P故表面積為S=4πr【點睛】本題考查三棱錐的相關(guān)性質(zhì),主要考查三棱錐的外接球的相關(guān)性質(zhì),考查如何通過三棱錐的幾何特征來確定三棱錐的外接球與半徑,考查推理能力,考查化歸與轉(zhuǎn)化思想,是難題。14、【解析】

將所求兩條異面直線平移到一起,解三角形求得異面直線所成的角.【詳解】連接,根據(jù)三角形中位線得到,所以是異面直線與所成角.在三角形中,,所以三角形是等邊三角形,故.故填:.【點睛】本小題主要考查異面直線所成的角的求法,考查空間想象能力,屬于基礎(chǔ)題.15、【解析】由題意,得,,則.16、【解析】

由已知利用三角形面積公式可求c,進而利用余弦定理可求a的值,根據(jù)正弦定理即可計算求解.【詳解】,,面積為,解得,由余弦定理可得:,所以,故答案為:【點睛】本題主要考查了三角形面積公式,余弦定理,正弦定理在解三角形中的應(yīng)用,考查了計算能力和轉(zhuǎn)化思想,屬于基礎(chǔ)題.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17、(1),,(2),證明見詳解.【解析】

(1)由題意得,在中分別令可求結(jié)果;(2)由數(shù)列前四項可猜想,運用數(shù)學(xué)歸納法可證明.【詳解】解:(1),當(dāng)時,,,當(dāng)時,,,當(dāng)時,,,所以,,(2)猜想下面用數(shù)學(xué)歸納法證明:假設(shè)時,有成立,則當(dāng)時,有,故對成立.【點睛】該題考查由數(shù)列遞推式求數(shù)列的項、通項公式,考查數(shù)學(xué)歸納法,考查學(xué)生的運算求解能力.18、(1);(2).【解析】

(1)利用正弦定理化簡已知可得:,結(jié)合兩角和的正弦公式及誘導(dǎo)公式可得:,問題得解.(2)利用可得:,兩邊平方并結(jié)合已知及平面向量數(shù)量積的定義即可得解.【詳解】解:(1)因為,所以由正弦定理可得,即,因為,所以,,,故.(2)由已知得,所以,所以.【點睛】本題主要考查了正弦定理的應(yīng)用及兩角和的正弦公式,還考查了利用平面向量的數(shù)量積解決長度問題,考查轉(zhuǎn)化能力及計算能力,屬于中檔題.19、(1);(2);(3).【解析】

(1)由三角恒等變換的公式,化簡,代入即可求解.(2)在中,由余弦定理,結(jié)合基本不等式,求得,即可得到答案.(3)設(shè),在中,由余弦定理,求得,分別在和中,利用余弦定理,列出方程,即可求解.【詳解】(1)由題意,在中,,則又由.(2)在中,由余弦定理可得,即,可得,當(dāng)且僅當(dāng)?shù)忍柍闪?,所以的最大值?(3)設(shè),如圖所示,在中,由余弦定理可得,即,即,解得,在中,由余弦定理,可得,……①在中,由余弦定理,可得,……②因為,所以,由①+②,可得,即,解得,即.【點睛】本題主要考查了正弦定理,三角函數(shù)恒等變換的應(yīng)用,同角三角函數(shù)基本關(guān)系式,余弦定理在解三角形中的綜合應(yīng)用,其中解答中熟記三角恒等變換的公式,以及合理應(yīng)用正弦定理、余弦定理求解是解答的關(guān)鍵,著重考查了轉(zhuǎn)化思想與運算、求解能力,屬于基礎(chǔ)題.20、(Ⅰ);(Ⅱ).【解析】

(Ⅰ)利用等差數(shù)列的通項公式列出方程組,求出首項和公差,由此能求出的通項公式.

(Ⅱ)由,,能求出數(shù)列的前n項和.【詳解】(Ⅰ)設(shè)等差數(shù)列的公差為,則解得,∴.(Ⅱ).21、(1)見解析(2)(3).【解析】

(1)將式子寫為:得證,再通過等比數(shù)列公式得到的通項公式.(2)根據(jù)(1)得到進而得到數(shù)列

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論