版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
2022-2023學(xué)年高三上數(shù)學(xué)期末模擬試卷考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應(yīng)位置上。2.請(qǐng)用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準(zhǔn)考證號(hào)。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.中國古建筑借助榫卯將木構(gòu)件連接起來,構(gòu)件的凸出部分叫榫頭,凹進(jìn)部分叫卯眼,圖中木構(gòu)件右邊的小長方體是榫頭.若如圖擺放的木構(gòu)件與某一帶卯眼的木構(gòu)件咬合成長方體,則咬合時(shí)帶卯眼的木構(gòu)件的俯視圖可以是A. B. C. D.2.已知復(fù)數(shù)滿足,(為虛數(shù)單位),則()A. B. C. D.33.已知函數(shù)(其中為自然對(duì)數(shù)的底數(shù))有兩個(gè)零點(diǎn),則實(shí)數(shù)的取值范圍是()A. B.C. D.4.使得的展開式中含有常數(shù)項(xiàng)的最小的n為()A. B. C. D.5.是定義在上的增函數(shù),且滿足:的導(dǎo)函數(shù)存在,且,則下列不等式成立的是()A. B.C. D.6.已知復(fù)數(shù)滿足,則的共軛復(fù)數(shù)是()A. B. C. D.7.要排出高三某班一天中,語文、數(shù)學(xué)、英語各節(jié),自習(xí)課節(jié)的功課表,其中上午節(jié),下午節(jié),若要求節(jié)語文課必須相鄰且節(jié)數(shù)學(xué)課也必須相鄰(注意:上午第五節(jié)和下午第一節(jié)不算相鄰),則不同的排法種數(shù)是()A. B. C. D.8.已知函數(shù)的圖像上有且僅有四個(gè)不同的關(guān)于直線對(duì)稱的點(diǎn)在的圖像上,則的取值范圍是()A. B. C. D.9.已知非零向量,滿足,則“”是“”的()A.充分不必要條件 B.必要不充分條件 C.充要條件 D.既不充分也不必要條件解:10.過拋物線的焦點(diǎn)的直線交該拋物線于,兩點(diǎn),為坐標(biāo)原點(diǎn).若,則直線的斜率為()A. B. C. D.11.設(shè)等比數(shù)列的前項(xiàng)和為,若,則的值為()A. B. C. D.12.在中,為邊上的中點(diǎn),且,則()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知函數(shù),曲線與直線相交,若存在相鄰兩個(gè)交點(diǎn)間的距離為,則可取到的最大值為__________.14.已知正數(shù)a,b滿足a+b=1,則的最小值等于__________,此時(shí)a=____________.15.如果橢圓的對(duì)稱軸為坐標(biāo)軸,短軸的一個(gè)端點(diǎn)與兩焦點(diǎn)組成一正三角形,焦點(diǎn)在x軸上,且=,那么橢圓的方程是.16.《九章算術(shù)》是中國古代的數(shù)學(xué)名著,其中《方田》一章給出了弧田面積的計(jì)算公式.如圖所示,弧田是由圓弧AB和其所對(duì)弦AB圍成的圖形,若弧田的弧AB長為4π,弧所在的圓的半徑為6,則弧田的弦AB長是__________,弧田的面積是__________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知正數(shù)x,y,z滿足xyzt(t為常數(shù)),且的最小值為,求實(shí)數(shù)t的值.18.(12分)如圖,已知平面與直線均垂直于所在平面,且.(1)求證:平面;(2)若,求與平面所成角的正弦值.19.(12分)分別為的內(nèi)角的對(duì)邊.已知.(1)若,求;(2)已知,當(dāng)?shù)拿娣e取得最大值時(shí),求的周長.20.(12分)已知函數(shù),其中.(1)當(dāng)時(shí),求在的切線方程;(2)求證:的極大值恒大于0.21.(12分)如圖,正方體的棱長為2,為棱的中點(diǎn).(1)面出過點(diǎn)且與直線垂直的平面,標(biāo)出該平面與正方體各個(gè)面的交線(不必說明畫法及理由);(2)求與該平面所成角的正弦值.22.(10分)在①,②,③這三個(gè)條件中任選一個(gè),補(bǔ)充在下面問題中,并解答.已知等差數(shù)列的公差為,等差數(shù)列的公差為.設(shè)分別是數(shù)列的前項(xiàng)和,且,,(1)求數(shù)列的通項(xiàng)公式;(2)設(shè),求數(shù)列的前項(xiàng)和.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、A【解析】
詳解:由題意知,題干中所給的是榫頭,是凸出的幾何體,求得是卯眼的俯視圖,卯眼是凹進(jìn)去的,即俯視圖中應(yīng)有一不可見的長方形,且俯視圖應(yīng)為對(duì)稱圖形故俯視圖為故選A.點(diǎn)睛:本題主要考查空間幾何體的三視圖,考查學(xué)生的空間想象能力,屬于基礎(chǔ)題。2、A【解析】,故,故選A.3、B【解析】
求出導(dǎo)函數(shù),確定函數(shù)的單調(diào)性,確定函數(shù)的最值,根據(jù)零點(diǎn)存在定理可確定參數(shù)范圍.【詳解】,當(dāng)時(shí),,單調(diào)遞增,當(dāng)時(shí),,單調(diào)遞減,∴在上只有一個(gè)極大值也是最大值,顯然時(shí),,時(shí),,因此要使函數(shù)有兩個(gè)零點(diǎn),則,∴.故選:B.【點(diǎn)睛】本題考查函數(shù)的零點(diǎn),考查用導(dǎo)數(shù)研究函數(shù)的最值,根據(jù)零點(diǎn)存在定理確定參數(shù)范圍.4、B【解析】二項(xiàng)式展開式的通項(xiàng)公式為,若展開式中有常數(shù)項(xiàng),則,解得,當(dāng)r取2時(shí),n的最小值為5,故選B【考點(diǎn)定位】本題考查二項(xiàng)式定理的應(yīng)用.5、D【解析】
根據(jù)是定義在上的增函數(shù)及有意義可得,構(gòu)建新函數(shù),利用導(dǎo)數(shù)可得為上的增函數(shù),從而可得正確的選項(xiàng).【詳解】因?yàn)槭嵌x在上的增函數(shù),故.又有意義,故,故,所以.令,則,故在上為增函數(shù),所以即,整理得到.故選:D.【點(diǎn)睛】本題考查導(dǎo)數(shù)在函數(shù)單調(diào)性中的應(yīng)用,一般地,數(shù)的大小比較,可根據(jù)數(shù)的特點(diǎn)和題設(shè)中給出的原函數(shù)與導(dǎo)數(shù)的關(guān)系構(gòu)建新函數(shù),本題屬于中檔題.6、B【解析】
根據(jù)復(fù)數(shù)的除法運(yùn)算法則和共軛復(fù)數(shù)的定義直接求解即可.【詳解】由,得,所以.故選:B【點(diǎn)睛】本題考查了復(fù)數(shù)的除法的運(yùn)算法則,考查了復(fù)數(shù)的共軛復(fù)數(shù)的定義,屬于基礎(chǔ)題.7、C【解析】
根據(jù)題意,分兩種情況進(jìn)行討論:①語文和數(shù)學(xué)都安排在上午;②語文和數(shù)學(xué)一個(gè)安排在上午,一個(gè)安排在下午.分別求出每一種情況的安排方法數(shù)目,由分類加法計(jì)數(shù)原理可得答案.【詳解】根據(jù)題意,分兩種情況進(jìn)行討論:①語文和數(shù)學(xué)都安排在上午,要求節(jié)語文課必須相鄰且節(jié)數(shù)學(xué)課也必須相鄰,將節(jié)語文課和節(jié)數(shù)學(xué)課分別捆綁,然后在剩余節(jié)課中選節(jié)到上午,由于節(jié)英語課不加以區(qū)分,此時(shí),排法種數(shù)為種;②語文和數(shù)學(xué)都一個(gè)安排在上午,一個(gè)安排在下午.語文和數(shù)學(xué)一個(gè)安排在上午,一個(gè)安排在下午,但節(jié)語文課不加以區(qū)分,節(jié)數(shù)學(xué)課不加以區(qū)分,節(jié)英語課也不加以區(qū)分,此時(shí),排法種數(shù)為種.綜上所述,共有種不同的排法.故選:C.【點(diǎn)睛】本題考查排列、組合的應(yīng)用,涉及分類計(jì)數(shù)原理的應(yīng)用,屬于中等題.8、D【解析】
根據(jù)對(duì)稱關(guān)系可將問題轉(zhuǎn)化為與有且僅有四個(gè)不同的交點(diǎn);利用導(dǎo)數(shù)研究的單調(diào)性從而得到的圖象;由直線恒過定點(diǎn),通過數(shù)形結(jié)合的方式可確定;利用過某一點(diǎn)曲線切線斜率的求解方法可求得和,進(jìn)而得到結(jié)果.【詳解】關(guān)于直線對(duì)稱的直線方程為:原題等價(jià)于與有且僅有四個(gè)不同的交點(diǎn)由可知,直線恒過點(diǎn)當(dāng)時(shí),在上單調(diào)遞減;在上單調(diào)遞增由此可得圖象如下圖所示:其中、為過點(diǎn)的曲線的兩條切線,切點(diǎn)分別為由圖象可知,當(dāng)時(shí),與有且僅有四個(gè)不同的交點(diǎn)設(shè),,則,解得:設(shè),,則,解得:,則本題正確選項(xiàng):【點(diǎn)睛】本題考查根據(jù)直線與曲線交點(diǎn)個(gè)數(shù)確定參數(shù)范圍的問題;涉及到過某一點(diǎn)的曲線切線斜率的求解問題;解題關(guān)鍵是能夠通過對(duì)稱性將問題轉(zhuǎn)化為直線與曲線交點(diǎn)個(gè)數(shù)的問題,通過確定直線恒過的定點(diǎn),采用數(shù)形結(jié)合的方式來進(jìn)行求解.9、C【解析】
根據(jù)向量的數(shù)量積運(yùn)算,由向量的關(guān)系,可得選項(xiàng).【詳解】,,∴等價(jià)于,故選:C.【點(diǎn)睛】本題考查向量的數(shù)量積運(yùn)算和命題的充分、必要條件,屬于基礎(chǔ)題.10、D【解析】
根據(jù)拋物線的定義,結(jié)合,求出的坐標(biāo),然后求出的斜率即可.【詳解】解:拋物線的焦點(diǎn),準(zhǔn)線方程為,設(shè),則,故,此時(shí),即.則直線的斜率.故選:D.【點(diǎn)睛】本題考查了拋物線的定義,直線斜率公式,屬于中檔題.11、C【解析】
求得等比數(shù)列的公比,然后利用等比數(shù)列的求和公式可求得的值.【詳解】設(shè)等比數(shù)列的公比為,,,,因此,.故選:C.【點(diǎn)睛】本題考查等比數(shù)列求和公式的應(yīng)用,解答的關(guān)鍵就是求出等比數(shù)列的公比,考查計(jì)算能力,屬于基礎(chǔ)題.12、A【解析】
由為邊上的中點(diǎn),表示出,然后用向量模的計(jì)算公式求模.【詳解】解:為邊上的中點(diǎn),,故選:A【點(diǎn)睛】在三角形中,考查中點(diǎn)向量公式和向量模的求法,是基礎(chǔ)題.二、填空題:本題共4小題,每小題5分,共20分。13、4【解析】
由于曲線與直線相交,存在相鄰兩個(gè)交點(diǎn)間的距離為,所以函數(shù)的周期,可得到的取值范圍,再由解出的兩類不同的值,然后列方程求出,再結(jié)合的取值范圍可得的最大值.【詳解】,可得,由,則或,即或,由題意得,所以,則或,所以可取到的最大值為4.故答案為:4【點(diǎn)睛】此題考查正弦函數(shù)的圖像和性質(zhì)的應(yīng)用及三角方程的求解,熟練應(yīng)用三角函數(shù)的圖像和性質(zhì)是解題的關(guān)鍵,考查了推理能力和計(jì)算能力,屬于中檔題.14、3【解析】
根據(jù)題意,分析可得,由基本不等式的性質(zhì)可得最小值,進(jìn)而分析基本不等式成立的條件可得a的值,即可得答案.【詳解】根據(jù)題意,正數(shù)a、b滿足,則,當(dāng)且僅當(dāng)時(shí),等號(hào)成立,故的最小值為3,此時(shí).故答案為:3;.【點(diǎn)睛】本題考查基本不等式及其應(yīng)用,考查轉(zhuǎn)化與化歸能力,屬于基礎(chǔ)題.15、【解析】
由題意可設(shè)橢圓方程為:∵短軸的一個(gè)端點(diǎn)與兩焦點(diǎn)組成一正三角形,焦點(diǎn)在軸上∴又,∴,∴橢圓的方程為,故答案為.考點(diǎn):橢圓的標(biāo)準(zhǔn)方程,解三角形以及解方程組的相關(guān)知識(shí).16、612π﹣9【解析】
過作,交于,先求得圓心角的弧度數(shù),然后解解三角形求得的長.利用扇形面積減去三角形的面積,求得弧田的面積.【詳解】∵如圖,弧田的弧AB長為4π,弧所在的圓的半徑為6,過作,交于,根據(jù)圓的幾何性質(zhì)可知,垂直平分.∴α=∠AOB==,可得∠AOD=,OA=6,∴AB=2AD=2OAsin=2×=6,∴弧田的面積S=S扇形OAB﹣S△OAB=4π×6﹣=12π﹣9.故答案為:6,12π﹣9.【點(diǎn)睛】本小題主要考查弓形弦長和弓形面積的計(jì)算,考查中國古代數(shù)學(xué)文化,屬于中檔題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、t=1【解析】
把變形為結(jié)合基本不等式進(jìn)行求解.【詳解】因?yàn)榧?,?dāng)且僅當(dāng),,時(shí),上述等號(hào)成立,所以,即,又x,y,z>0,所以xyzt=1.【點(diǎn)睛】本題主要考查基本不等式的應(yīng)用,利用基本不等式求解最值時(shí)要注意轉(zhuǎn)化為適用形式,同時(shí)要關(guān)注不等號(hào)是否成立,側(cè)重考查數(shù)學(xué)運(yùn)算的核心素養(yǎng).18、(1)見解析;(2)【解析】
(Ⅰ)證明:過點(diǎn)作于點(diǎn),∵平面⊥平面,∴平面又∵⊥平面∴∥,又∵平面∴∥平面(Ⅱ)∵平面∴,又∵∴∴∴點(diǎn)是的中點(diǎn),連結(jié),則∴平面∴∥,∴四邊形是矩形設(shè),得:,又∵,∴,從而,過作于點(diǎn),則∴是與平面所成角∴,∴與平面所成角的正弦值為考點(diǎn):面面垂直的性質(zhì)定理;線面平行的判定定理;線面垂直的性質(zhì)定理;直線與平面所成的角.點(diǎn)評(píng):本題主要考查了線面平行的證明和直線與平面所成的角,屬立體幾何中的??碱}型,較難.本題也可以用向量法來做:用向量法解題的關(guān)鍵是;首先正確的建立空間直角坐標(biāo)系,正確求解平面的一個(gè)法向量.注意計(jì)算要仔細(xì)、認(rèn)真.≌19、(1)(2)【解析】
(1)根據(jù)正弦定理,將,化角為邊,即可求出,再利用正弦定理即可求出;(2)根據(jù),選擇,所以當(dāng)?shù)拿娣e取得最大值時(shí),最大,結(jié)合(1)中條件,即可求出最大時(shí),對(duì)應(yīng)的的值,再根據(jù)余弦定理求出邊,進(jìn)而得到的周長.【詳解】(1)由,得,即.因?yàn)?,所?由,得.(2)因?yàn)?,所以,?dāng)且僅當(dāng)時(shí),等號(hào)成立.因?yàn)榈拿娣e.所以當(dāng)時(shí),的面積取得最大值,此時(shí),則,所以的周長為.【點(diǎn)睛】本題主要考查利用正弦定理和余弦定理解三角形,涉及到基本不等式的應(yīng)用,意在考查學(xué)生的轉(zhuǎn)化能力和數(shù)學(xué)運(yùn)算能力.20、(1)(2)證明見解析【解析】
(1)求導(dǎo),代入,求出在處的導(dǎo)數(shù)值及函數(shù)值,由此即可求得切線方程;(2)分類討論得出極大值即可判斷.【詳解】(1),當(dāng)時(shí),,,則在的切線方程為;(2)證明:令,解得或,①當(dāng)時(shí),恒成立,此時(shí)函數(shù)在上單調(diào)遞減,∴函數(shù)無極值;②當(dāng)時(shí),令,解得,令,解得或,∴函數(shù)在上單調(diào)遞增,在,上單調(diào)遞減,∴;③當(dāng)時(shí),令,解得,令,解得或,∴函數(shù)在上單調(diào)遞增,在,上單調(diào)遞減,∴,綜上,函數(shù)的極大值恒大于0.【點(diǎn)睛】本小題主要考查利用導(dǎo)數(shù)求切線方程,考查利用導(dǎo)數(shù)研究函數(shù)的極值,考查分類討論的數(shù)學(xué)思想方法,屬于中檔題.21、(1)見解析(2).【解析】
(1)與平面垂直,過點(diǎn)作與平面平行的平面即可(2)建立空間直角坐標(biāo)系求線面角正弦值【詳解】解:(1)截面如下圖所示:其中,,,,分別為邊,,,,的中點(diǎn),則垂直于平面.(2)建立如圖所示的空間直角坐標(biāo)系,則,,,,,所以,,.設(shè)平面的一個(gè)法向量為,則.不妨取,則,所以與該平面所成角的正弦值為.(若將作為該平面法向量,需證明與該平面垂直)【點(diǎn)睛】考查確定平面的方法以及線面角的求法,中檔題.22、(1);(2)【解析】
方案一:(
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年廠房出租安全風(fēng)險(xiǎn)評(píng)估與報(bào)告協(xié)議4篇
- 個(gè)人信用貸款協(xié)議范本(2024年版)版B版
- 論文寫作全攻略
- 2025年度國際貿(mào)易代理風(fēng)險(xiǎn)控制合同范本4篇
- 2025年度高端裝備制造廠區(qū)租賃合同協(xié)議4篇
- 2025年度醫(yī)療設(shè)施場(chǎng)地租賃合同范本6篇
- 2025年度常年法律顧問服務(wù)合同企業(yè)勞動(dòng)爭議解決報(bào)價(jià)4篇
- 專項(xiàng)經(jīng)濟(jì)分析與信息咨詢服務(wù)協(xié)議版B版
- 2024經(jīng)濟(jì)中介服務(wù)合同格式
- 2025年度環(huán)保設(shè)備銷售與環(huán)保技術(shù)服務(wù)合同4篇
- 增強(qiáng)現(xiàn)實(shí)技術(shù)在藝術(shù)教育中的應(yīng)用
- TD/T 1060-2021 自然資源分等定級(jí)通則(正式版)
- 《創(chuàng)傷失血性休克中國急診專家共識(shí)(2023)》解讀
- 倉庫智能化建設(shè)方案
- 海外市場(chǎng)開拓計(jì)劃
- 2024年度國家社會(huì)科學(xué)基金項(xiàng)目課題指南
- 供應(yīng)鏈組織架構(gòu)與職能設(shè)置
- 幼兒數(shù)學(xué)益智圖形連線題100題(含完整答案)
- 七上-動(dòng)點(diǎn)、動(dòng)角問題12道好題-解析
- 2024年九省聯(lián)考新高考 數(shù)學(xué)試卷(含答案解析)
- 紅色歷史研學(xué)旅行課程設(shè)計(jì)
評(píng)論
0/150
提交評(píng)論