廣西柳州市柳南區(qū)、城中區(qū)重點達(dá)標(biāo)名校2024屆中考數(shù)學(xué)考前最后一卷含解析_第1頁
廣西柳州市柳南區(qū)、城中區(qū)重點達(dá)標(biāo)名校2024屆中考數(shù)學(xué)考前最后一卷含解析_第2頁
廣西柳州市柳南區(qū)、城中區(qū)重點達(dá)標(biāo)名校2024屆中考數(shù)學(xué)考前最后一卷含解析_第3頁
廣西柳州市柳南區(qū)、城中區(qū)重點達(dá)標(biāo)名校2024屆中考數(shù)學(xué)考前最后一卷含解析_第4頁
廣西柳州市柳南區(qū)、城中區(qū)重點達(dá)標(biāo)名校2024屆中考數(shù)學(xué)考前最后一卷含解析_第5頁
已閱讀5頁,還剩17頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

廣西柳州市柳南區(qū)、城中區(qū)重點達(dá)標(biāo)名校2024屆中考數(shù)學(xué)考前最后一卷注意事項1.考生要認(rèn)真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1.如圖,⊙O的半徑為1,△ABC是⊙O的內(nèi)接三角形,連接OB、OC,若∠BAC與∠BOC互補(bǔ),則弦BC的長為()A. B.2 C.3 D.1.52.如圖,在直角坐標(biāo)系xOy中,若拋物線l:y=﹣x2+bx+c(b,c為常數(shù))的頂點D位于直線y=﹣2與x軸之間的區(qū)域(不包括直線y=﹣2和x軸),則l與直線y=﹣1交點的個數(shù)是()A.0個 B.1個或2個C.0個、1個或2個 D.只有1個3.如圖,反比例函數(shù)(x>0)的圖象經(jīng)過矩形OABC對角線的交點M,分別于AB、BC交于點D、E,若四邊形ODBE的面積為9,則k的值為()A.1 B.2 C.3 D.44.在直角坐標(biāo)平面內(nèi),已知點M(4,3),以M為圓心,r為半徑的圓與x軸相交,與y軸相離,那么r的取值范圍為()A. B. C. D.5.若點A(2,),B(-3,),C(-1,)三點在拋物線的圖象上,則、、的大小關(guān)系是()A.B.C.D.6.如圖,用一個半徑為6cm的定滑輪帶動重物上升,假設(shè)繩索(粗細(xì)不計)與滑輪之間沒有滑動,繩索端點G向下移動了3πcm,則滑輪上的點F旋轉(zhuǎn)了()A.60° B.90° C.120° D.45°7.如圖,將函數(shù)的圖象沿y軸向上平移得到一條新函數(shù)的圖象,其中點A(-4,m),B(-1,n),平移后的對應(yīng)點分別為點A'、B'.若曲線段AB掃過的面積為9(圖中的陰影部分),則新圖象的函數(shù)表達(dá)式是()A. B. C. D.8.下列二次根式中,的同類二次根式是()A. B. C. D.9.不透明袋子中裝有一個幾何體模型,兩位同學(xué)摸該模型并描述它的特征.甲同學(xué):它有4個面是三角形;乙同學(xué):它有8條棱.該模型的形狀對應(yīng)的立體圖形可能是()A.三棱柱 B.四棱柱 C.三棱錐 D.四棱錐10.已知一個多邊形的內(nèi)角和是外角和的2倍,則此多邊形的邊數(shù)為()A.6 B.7 C.8 D.9二、填空題(共7小題,每小題3分,滿分21分)11.如圖,在平面直角坐標(biāo)系中,直線y=﹣3x+3與x軸、y軸分別交于A、B兩點,以AB為邊在第一象限作正方形,點D恰好在雙曲線上,則k值為_____.12.正多邊形的一個外角是,則這個多邊形的內(nèi)角和的度數(shù)是___________________.13.如圖,CE是?ABCD的邊AB的垂直平分線,垂足為點O,CE與DA的延長線交于點E.連接AC,BE,DO,DO與AC交于點F,則下列結(jié)論:①四邊形ACBE是菱形;②∠ACD=∠BAE;③AF:BE=2:1;④S四邊形AFOE:S△COD=2:1.其中正確的結(jié)論有_____.(填寫所有正確結(jié)論的序號)14.如圖,矩形ABCD的對角線AC與BD交于點O,過點O作BD的垂線分別交AD,BC于E,F(xiàn)兩點.若AC=,∠AEO=120°,則FC的長度為_____.15.某市政府為了改善城市容貌,綠化環(huán)境,計劃經(jīng)過兩年時間,使綠地面積增加44%,則這兩年平均綠地面積的增長率為______.16.如圖,在邊長為3的正方形ABCD中,點E是BC邊上的點,EC=2,∠AEP=90°,且EP交正方形外角的平分線CP于點P,則PC的長為_____.17.為增強(qiáng)學(xué)生身體素質(zhì),提高學(xué)生足球運(yùn)動競技水平,我市開展“市長杯”足球比賽,賽制為單循環(huán)形式(每兩隊之間賽一場).現(xiàn)計劃安排21場比賽,應(yīng)邀請多少個球隊參賽?設(shè)邀請x個球隊參賽,根據(jù)題意,可列方程為_____.三、解答題(共7小題,滿分69分)18.(10分)某校運(yùn)動會需購買A、B兩種獎品,若購買A種獎品3件和B種獎品2件,共需60元;若購買A種獎品5件和B種獎品3件,共需95元.(1)求A、B兩種獎品的單價各是多少元?(2)學(xué)校計劃購買A、B兩種獎品共100件,且A種獎品的數(shù)量不大于B種獎品數(shù)量的3倍,設(shè)購買A種獎品m件,購買費(fèi)用為W元,寫出W(元)與m(件)之間的函數(shù)關(guān)系式.請您確定當(dāng)購買A種獎品多少件時,費(fèi)用W的值最少.19.(5分)如圖,有長為14m的籬笆,現(xiàn)一面利用墻(墻的最大可用長度a為10m)圍成中間隔有一道籬笆的長方形花圃,設(shè)花圃的寬AB為xm,面積為Sm1.求S與x的函數(shù)關(guān)系式及x值的取值范圍;要圍成面積為45m1的花圃,AB的長是多少米?當(dāng)AB的長是多少米時,圍成的花圃的面積最大?20.(8分)為了弘揚(yáng)我國古代數(shù)學(xué)發(fā)展的偉大成就,某校九年級進(jìn)行了一次數(shù)學(xué)知識競賽,并設(shè)立了以我國古代數(shù)學(xué)家名字命名的四個獎項:“祖沖之獎”、“劉徽獎”、“趙爽獎”和“楊輝獎”,根據(jù)獲獎情況繪制成如圖1和圖2所示的條形統(tǒng)計圖和扇形統(tǒng)計圖,并得到了獲“祖沖之獎”的學(xué)生成績統(tǒng)計表:“祖沖之獎”的學(xué)生成績統(tǒng)計表:分?jǐn)?shù)/分80859095人數(shù)/人42104根據(jù)圖表中的信息,解答下列問題:(1)這次獲得“劉徽獎”的人數(shù)是_____,并將條形統(tǒng)計圖補(bǔ)充完整;(2)獲得“祖沖之獎”的學(xué)生成績的中位數(shù)是_____分,眾數(shù)是_____分;(3)在這次數(shù)學(xué)知識竟賽中有這樣一道題:一個不透明的盒子里有完全相同的三個小球,球上分別標(biāo)有數(shù)字“﹣2”,“﹣1”和“2”,隨機(jī)摸出一個小球,把小球上的數(shù)字記為x放回后再隨機(jī)摸出一個小球,把小球上的數(shù)字記為y,把x作為橫坐標(biāo),把y作為縱坐標(biāo),記作點(x,y).用列表法或樹狀圖法求這個點在第二象限的概率.21.(10分)某地2015年為做好“精準(zhǔn)扶貧”,投入資金1280萬元用于異地安置,并規(guī)劃投入資金逐年增加,2017年在2015年的基礎(chǔ)上增加投入資金1600萬元.從2015年到2017年,該地投入異地安置資金的年平均增長率為多少?在2017年異地安置的具體實施中,該地計劃投入資金不低于500萬元用于優(yōu)先搬遷租房獎勵,規(guī)定前1000戶(含第1000戶)每戶每天獎勵8元,1000戶以后每戶每天補(bǔ)助5元,按租房400天計算,試求今年該地至少有多少戶享受到優(yōu)先搬遷租房獎勵?22.(10分)平面直角坐標(biāo)系中(如圖),已知拋物線經(jīng)過點和,與y軸相交于點C,頂點為P.(1)求這條拋物線的表達(dá)式和頂點P的坐標(biāo);(2)點E在拋物線的對稱軸上,且,求點E的坐標(biāo);(3)在(2)的條件下,記拋物線的對稱軸為直線MN,點Q在直線MN右側(cè)的拋物線上,,求點Q的坐標(biāo).23.(12分)定義:在三角形中,把一邊的中點到這條邊的高線的距離叫做這條邊的中垂距.例:如圖①,在△ABC中,D為邊BC的中點,AE⊥BC于E,則線段DE的長叫做邊BC的中垂距.(1)設(shè)三角形一邊的中垂距為d(d≥0).若d=0,則這樣的三角形一定是,推斷的數(shù)學(xué)依據(jù)是.(2)如圖②,在△ABC中,∠B=15°,AB=3,BC=8,AD為邊BC的中線,求邊BC的中垂距.(3)如圖③,在矩形ABCD中,AB=6,AD=1.點E為邊CD的中點,連結(jié)AE并延長交BC的延長線于點F,連結(jié)AC.求△ACF中邊AF的中垂距.24.(14分)某商場計劃購進(jìn)一批甲、乙兩種玩具,已知一件甲種玩具的進(jìn)價與一件乙種玩具的進(jìn)價的和為40元,用90元購進(jìn)甲種玩具的件數(shù)與用150元購進(jìn)乙種玩具的件數(shù)相同.求每件甲種、乙種玩具的進(jìn)價分別是多少元?商場計劃購進(jìn)甲、乙兩種玩具共48件,其中甲種玩具的件數(shù)少于乙種玩具的件數(shù),商場決定此次進(jìn)貨的總資金不超過1000元,求商場共有幾種進(jìn)貨方案?

參考答案一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1、A【解析】分析:作OH⊥BC于H,首先證明∠BOC=120,在Rt△BOH中,BH=OB?sin60°=1×,即可推出BC=2BH=,詳解:作OH⊥BC于H.∵∠BOC=2∠BAC,∠BOC+∠BAC=180°,∴∠BOC=120°,∵OH⊥BC,OB=OC,∴BH=HC,∠BOH=∠HOC=60°,在Rt△BOH中,BH=OB?sin60°=1×=,∴BC=2BH=.故選A.點睛:本題考查三角形的外接圓與外心、銳角三角函數(shù)、垂徑定理等知識,解題的關(guān)鍵是學(xué)會添加常用輔助線.2、C【解析】

根據(jù)題意,利用分類討論的數(shù)學(xué)思想可以得到l與直線y=﹣1交點的個數(shù),從而可以解答本題.【詳解】∵拋物線l:y=﹣x2+bx+c(b,c為常數(shù))的頂點D位于直線y=﹣2與x軸之間的區(qū)域,開口向下,∴當(dāng)頂點D位于直線y=﹣1下方時,則l與直線y=﹣1交點個數(shù)為0,當(dāng)頂點D位于直線y=﹣1上時,則l與直線y=﹣1交點個數(shù)為1,當(dāng)頂點D位于直線y=﹣1上方時,則l與直線y=﹣1交點個數(shù)為2,故選C.【點睛】考查拋物線與x軸的交點、二次函數(shù)的性質(zhì),解答本題的關(guān)鍵是明確題意,利用函數(shù)的思想和分類討論的數(shù)學(xué)思想解答.3、C【解析】

本題可從反比例函數(shù)圖象上的點E、M、D入手,分別找出△OCE、△OAD、矩形OABC的面積與|k|的關(guān)系,列出等式求出k值.【詳解】由題意得:E、M、D位于反比例函數(shù)圖象上,則,過點M作MG⊥y軸于點G,作MN⊥x軸于點N,則S□ONMG=|k|.又∵M(jìn)為矩形ABCO對角線的交點,∴S矩形ABCO=4S□ONMG=4|k|,∵函數(shù)圖象在第一象限,k>0,∴.解得:k=1.故選C.【點睛】本題考查反比例函數(shù)系數(shù)k的幾何意義,過雙曲線上的任意一點分別向兩條坐標(biāo)軸作垂線,與坐標(biāo)軸圍成的矩形面積就等于|k|,本知識點是中考的重要考點,同學(xué)們應(yīng)高度關(guān)注.4、D【解析】

先求出點M到x軸、y軸的距離,再根據(jù)直線和圓的位置關(guān)系得出即可.【詳解】解:∵點M的坐標(biāo)是(4,3),

∴點M到x軸的距離是3,到y(tǒng)軸的距離是4,

∵點M(4,3),以M為圓心,r為半徑的圓與x軸相交,與y軸相離,

∴r的取值范圍是3<r<4,

故選:D.【點睛】本題考查點的坐標(biāo)和直線與圓的位置關(guān)系,能熟記直線與圓的位置關(guān)系的內(nèi)容是解此題的關(guān)鍵.5、C【解析】首先求出二次函數(shù)的圖象的對稱軸x==2,且由a=1>0,可知其開口向上,然后由A(2,)中x=2,知最小,再由B(-3,),C(-1,)都在對稱軸的左側(cè),而在對稱軸的左側(cè),y隨x得增大而減小,所以.總結(jié)可得.故選C.點睛:此題主要考查了二次函數(shù)的圖像與性質(zhì),解答此題的關(guān)鍵是(1)找到二次函數(shù)的對稱軸;(2)掌握二次函數(shù)的圖象性質(zhì).6、B【解析】

由弧長的計算公式可得答案.【詳解】解:由圓弧長計算公式,將l=3π代入,可得n=90,故選B.【點睛】本題主要考查圓弧長計算公式,牢記并運(yùn)用公式是解題的關(guān)鍵.7、D【解析】分析:過A作AC∥x軸,交B′B的延長線于點C,過A′作A′D∥x軸,交B′B的于點D,則C(-1,m),AC=-1-(-1)=3,根據(jù)平移的性質(zhì)以及曲線段AB掃過的面積為9(圖中的陰影部分),得出AA′=3,然后根據(jù)平移規(guī)律即可求解.詳解:過A作AC∥x軸,交B′B的延長線于點C,過A′作A′D∥x軸,交B′B的于點D,則C(-1,m),∴AC=-1-(-1)=3,∵曲線段AB掃過的面積為9(圖中的陰影部分),∴矩形ACDA′的面積等于9,∴AC·AA′=3AA′=9,∴AA′=3,∴新函數(shù)的圖是將函數(shù)y=(x-2)2+1的圖象沿y軸向上平移3個單位長度得到的,∴新圖象的函數(shù)表達(dá)式是y=(x-2)2+1+3=(x-2)2+1.故選D.點睛:此題主要考查了二次函數(shù)圖象變換以及矩形的面積求法等知識,根據(jù)已知得出AA′的長度是解題關(guān)鍵.8、C【解析】

先將每個選項的二次根式化簡后再判斷.【詳解】解:A:,與不是同類二次根式;B:被開方數(shù)是2x,故與不是同類二次根式;C:=,與是同類二次根式;D:=2,與不是同類二次根式.故選C.【點睛】本題考查了同類二次根式的概念.9、D【解析】試題分析:根據(jù)有四個三角形的面,且有8條棱,可知是四棱錐.而三棱柱有兩個三角形的面,四棱柱沒有三角形的面,三棱錐有四個三角形的面,但是只有6條棱.故選D考點:幾何體的形狀10、A【解析】試題分析:根據(jù)多邊形的外角和是310°,即可求得多邊形的內(nèi)角的度數(shù)為720°,依據(jù)多邊形的內(nèi)角和公式列方程即可得(n﹣2)180°=720°,解得:n=1.故選A.考點:多邊形的內(nèi)角和定理以及多邊形的外角和定理二、填空題(共7小題,每小題3分,滿分21分)11、1【解析】作DH⊥x軸于H,如圖,

當(dāng)y=0時,-3x+3=0,解得x=1,則A(1,0),

當(dāng)x=0時,y=-3x+3=3,則B(0,3),

∵四邊形ABCD為正方形,

∴AB=AD,∠BAD=90°,

∴∠BAO+∠DAH=90°,

而∠BAO+∠ABO=90°,

∴∠ABO=∠DAH,

在△ABO和△DAH中∴△ABO≌△DAH,

∴AH=OB=3,DH=OA=1,

∴D點坐標(biāo)為(1,1),

∵頂點D恰好落在雙曲線y=上,

∴a=1×1=1.故答案是:1.12、540°【解析】

根據(jù)多邊形的外角和為360°,因此可以求出多邊形的邊數(shù)為360°÷72°=5,根據(jù)多邊形的內(nèi)角和公式(n-2)·180°,可得(5-2)×180°=540°.考點:多邊形的內(nèi)角和與外角和13、①②④.【解析】

根據(jù)菱形的判定方法、平行線分線段成比例定理、直角三角形斜邊中線的性質(zhì)一一判斷即可.【詳解】∵四邊形ABCD是平行四邊形,∴AB∥CD,AB=CD,∵EC垂直平分AB,∴OA=OB=AB=DC,CD⊥CE,∵OA∥DC,∴=,∴AE=AD,OE=OC,∵OA=OB,OE=OC,∴四邊形ACBE是平行四邊形,∵AB⊥EC,∴四邊形ACBE是菱形,故①正確,∵∠DCE=90°,DA=AE,∴AC=AD=AE,∴∠ACD=∠ADC=∠BAE,故②正確,∵OA∥CD,∴,∴,故③錯誤,設(shè)△AOF的面積為a,則△OFC的面積為2a,△CDF的面積為4a,△AOC的面積=△AOE的面積=1a,∴四邊形AFOE的面積為4a,△ODC的面積為6a∴S四邊形AFOE:S△COD=2:1.故④正確.故答案是:①②④.【點睛】此題考查平行四邊形的性質(zhì)、菱形的判定和性質(zhì)、平行線分線段成比例定理、等高模型等知識,解題的關(guān)鍵是靈活運(yùn)用所學(xué)知識解決問題,學(xué)會利用參數(shù)解決問題.14、1【解析】

先根據(jù)矩形的性質(zhì),推理得到OF=CF,再根據(jù)Rt△BOF求得OF的長,即可得到CF的長.【詳解】解:∵EF⊥BD,∠AEO=120°,

∴∠EDO=30°,∠DEO=60°,

∵四邊形ABCD是矩形,

∴∠OBF=∠OCF=30°,∠BFO=60°,

∴∠FOC=60°-30°=30°,

∴OF=CF,

又∵Rt△BOF中,BO=BD=AC=,

∴OF=tan30°×BO=1,

∴CF=1,

故答案為:1.【點睛】本題考查矩形的性質(zhì)以及解直角三角形的運(yùn)用,解題關(guān)鍵是掌握:矩形的對角線相等且互相平分.15、10%【解析】

本題可設(shè)這兩年平均每年的增長率為x,因為經(jīng)過兩年時間,讓市區(qū)綠地面積增加44%,則有(1+x)1=1+44%,解這個方程即可求出答案.【詳解】解:設(shè)這兩年平均每年的綠地增長率為x,根據(jù)題意得,

(1+x)1=1+44%,

解得x1=-1.1(舍去),x1=0.1.

答:這兩年平均每年綠地面積的增長率為10%.故答案為10%【點睛】此題考查增長率的問題,一般公式為:原來的量×(1±x)1=現(xiàn)在的量,增長用+,減少用-.但要注意解的取舍,及每一次增長的基礎(chǔ).16、【解析】

在AB上取BN=BE,連接EN,根據(jù)已知及正方形的性質(zhì)利用ASA判定△ANE≌△ECP,從而得到NE=CP,在等腰直角三角形BNE中,由勾股定理即可解決問題.【詳解】在AB上取BN=BE,連接EN,作PM⊥BC于M.∵四邊形ABCD是正方形,∴AB=BC,∠B=∠DCB=∠DCM=90°.∵BE=BN,∠B=90°,∴∠BNE=45°,∠ANE=135°.∵PC平分∠DCM,∴∠PCM=45°,∴∠ECP=135°.∵AB=BC,BN=BE,∴AN=EC.∵∠AEP=90°,∴∠AEB+∠PEC=90°.∵∠AEB+∠NAE=90°,∴∠NAE=∠PEC,∴△ANE≌△ECP(ASA),∴NE=CP.∵BC=3,EC=2,∴NB=BE=1,∴NE==,∴PC=.故答案為:.【點睛】本題考查了正方形的性質(zhì)、全等三角形的判定和性質(zhì)、勾股定理等知識,解題的關(guān)鍵是學(xué)會添加常用輔助線,構(gòu)造全等三角形解決問題,屬于中考??碱}型.17、x(x﹣1)=1【解析】【分析】賽制為單循環(huán)形式(每兩隊之間都賽一場),x個球隊比賽總場數(shù)為x(x﹣1),即可列方程.【詳解】有x個隊,每個隊都要賽(x﹣1)場,但兩隊之間只有一場比賽,由題意得:x(x﹣1)=1,故答案為x(x﹣1)=1.【點睛】本題考查了一元二次方程的應(yīng)用,弄清題意,找準(zhǔn)等量關(guān)系列出方程是解題的關(guān)鍵.三、解答題(共7小題,滿分69分)18、(1)A、B兩種獎品的單價各是10元、15元;(2)W(元)與m(件)之間的函數(shù)關(guān)系式是W=﹣5m+1,當(dāng)購買A種獎品75件時,費(fèi)用W的值最少.【解析】

(1)設(shè)A種獎品的單價是x元、B種獎品的單價是y元,根據(jù)題意可以列出相應(yīng)的方程組,從而可以求得A、B兩種獎品的單價各是多少元;(2)根據(jù)題意可以得到W(元)與m(件)之間的函數(shù)關(guān)系式,然后根據(jù)A種獎品的數(shù)量不大于B種獎品數(shù)量的3倍,可以求得m的取值范圍,再根據(jù)一次函數(shù)的性質(zhì)即可解答本題.【詳解】(1)設(shè)A種獎品的單價是x元、B種獎品的單價是y元,根據(jù)題意得:解得:.答:A種獎品的單價是10元、B種獎品的單價是15元.(2)由題意可得:W=10m+15(100﹣m)=﹣5m+1.∵A種獎品的數(shù)量不大于B種獎品數(shù)量的3倍,∴m≤3(100﹣m),解得:m≤75∴當(dāng)m=75時,W取得最小值,此時W=﹣5×75+1=2.答:W(元)與m(件)之間的函數(shù)關(guān)系式是W=﹣5m+1,當(dāng)購買A種獎品75件時,費(fèi)用W的值最少.【點睛】本題考查了一次函數(shù)的應(yīng)用、二元一次方程組的應(yīng)用、一元一次不等式的應(yīng)用,解答本題的關(guān)鍵是明確題意,找出所求問題需要的條件,利用一次函數(shù)的性質(zhì)解答.19、(1)S=﹣3x1+14x,≤x<8;(1)5m;(3)46.67m1【解析】

(1)設(shè)花圃寬AB為xm,則長為(14-3x),利用長方形的面積公式,可求出S與x關(guān)系式,根據(jù)墻的最大長度求出x的取值范圍;(1)根據(jù)(1)所求的關(guān)系式把S=2代入即可求出x,即AB;(3)根據(jù)二次函數(shù)的性質(zhì)及x的取值范圍求出即可.【詳解】解:(1)根據(jù)題意,得S=x(14﹣3x),即所求的函數(shù)解析式為:S=﹣3x1+14x,又∵0<14﹣3x≤10,∴;(1)根據(jù)題意,設(shè)花圃寬AB為xm,則長為(14-3x),∴﹣3x1+14x=2.整理,得x1﹣8x+15=0,解得x=3或5,當(dāng)x=3時,長=14﹣9=15>10不成立,當(dāng)x=5時,長=14﹣15=9<10成立,∴AB長為5m;(3)S=14x﹣3x1=﹣3(x﹣4)1+48∵墻的最大可用長度為10m,0≤14﹣3x≤10,∴,∵對稱軸x=4,開口向下,∴當(dāng)x=m,有最大面積的花圃.【點睛】二次函數(shù)在實際生活中的應(yīng)用是本題的考點,根據(jù)題目給出的條件,找出合適的等量關(guān)系,列出方程是解題的關(guān)鍵.20、(1)劉徽獎的人數(shù)為人,補(bǔ)全統(tǒng)計圖見解析;(2)獲得“祖沖之獎”的學(xué)生成績的中位數(shù)是90分,眾數(shù)是90分;(3)(點在第二象限).【解析】

(1)先根據(jù)祖沖之獎的人數(shù)及其百分比求得總?cè)藬?shù),再根據(jù)扇形圖求出趙爽獎、楊輝獎的人數(shù),繼而根據(jù)各獎項的人數(shù)之和等于總?cè)藬?shù)求得劉徽獎的人數(shù),據(jù)此可得;(2)根據(jù)中位數(shù)和眾數(shù)的定義求解可得;(3)列表得出所有等可能結(jié)果,再找到這個點在第二象限的結(jié)果,根據(jù)概率公式求解可得.【詳解】(1)∵獲獎的學(xué)生人數(shù)為20÷10%=200人,∴趙爽獎的人數(shù)為200×24%=48人,楊輝獎的人數(shù)為200×46%=92人,則劉徽獎的人數(shù)為200﹣(20+48+92)=40,補(bǔ)全統(tǒng)計圖如下:故答案為40;(2)獲得“祖沖之獎”的學(xué)生成績的中位數(shù)是90分,眾數(shù)是90分.故答案為90、90;(3)列表法:∵第二象限的點有(﹣2,2)和(﹣1,2),∴P(點在第二象限).【點睛】本題考查了用列表法或畫樹狀圖法求概率、頻數(shù)分布直方圖以及利用統(tǒng)計圖獲取信息的能力.利用統(tǒng)計圖獲取信息時,必須認(rèn)真觀察、分析、研究統(tǒng)計圖,才能作出正確的判斷和解決問題,也考查列表法或畫樹狀圖法求概率.21、(1)50%;(2)今年該地至少有1900戶享受到優(yōu)先搬遷租房獎勵.【解析】

(1)設(shè)年平均增長率為x,根據(jù)“2015年投入資金×(1+增長率)2=2017年投入資金”列出方程,解方程即可;(2)設(shè)今年該地有a戶享受到優(yōu)先搬遷租房獎勵,根據(jù)“前1000戶獲得的獎勵總數(shù)+1000戶以后獲得的獎勵總和≥500萬”列不等式求解即可.【詳解】(1)設(shè)該地投入異地安置資金的年平均增長率為x,根據(jù)題意,得:1280(1+x)2=1280+1600,解得:x=0.5或x=﹣2.25(舍),答:從2015年到2017年,該地投入異地安置資金的年平均增長率為50%;(2)設(shè)今年該地有a戶享受到優(yōu)先搬遷租房獎勵,根據(jù)題意,得:1000×8×400+(a﹣1000)×5×400≥5000000,解得:a≥1900,答:今年該地至少有1900戶享受到優(yōu)先搬遷租房獎勵.考點:一元二次方程的應(yīng)用;一元一次不等式的應(yīng)用.22、(1),頂點P的坐標(biāo)為;(2)E點坐標(biāo)為;(3)Q點的坐標(biāo)為.【解析】

(1)利用交點式寫出拋物線解析式,把一般式配成頂點式得到頂點P的坐標(biāo);(2)設(shè),根據(jù)兩點間的距離公式,利用得到,然后解方程求出t即可得到E點坐標(biāo);(3)直線交軸于,作于,如圖,利用得到,設(shè),則,再在中利用正切的定義得到,即,然后解方程求出m即可得到Q點坐標(biāo).【詳解】解:(1)拋物線解析式為,即,,頂點P的坐標(biāo)為;(2)拋物線的對稱軸為直線,設(shè),,,解得,E點坐標(biāo)為;(3)直線交x軸于F,作MN⊥直線x=2于H,如圖,,而,,設(shè),則,在中,,,整理得

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論