湖南省天壹名校聯(lián)盟2025屆數(shù)學高一下期末教學質量檢測模擬試題含解析_第1頁
湖南省天壹名校聯(lián)盟2025屆數(shù)學高一下期末教學質量檢測模擬試題含解析_第2頁
湖南省天壹名校聯(lián)盟2025屆數(shù)學高一下期末教學質量檢測模擬試題含解析_第3頁
湖南省天壹名校聯(lián)盟2025屆數(shù)學高一下期末教學質量檢測模擬試題含解析_第4頁
湖南省天壹名校聯(lián)盟2025屆數(shù)學高一下期末教學質量檢測模擬試題含解析_第5頁
已閱讀5頁,還剩8頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

湖南省天壹名校聯(lián)盟2025屆數(shù)學高一下期末教學質量檢測模擬試題注意事項:1.答卷前,考生務必將自己的姓名、準考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內相應位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔??荚嚱Y束后,請將本試卷和答題卡一并交回。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.把函數(shù)的圖像上所有的點向左平行移動個單位長度,再把所得圖像上所有點的橫坐標縮短到原來的(縱坐標不變),得到的圖像所表示的函數(shù)是()A. B.C. D.2.已知向量,,,則與的夾角為()A. B. C. D.3.已知,則角的終邊所在的象限為()A.第一象限 B.第二象限 C.第三象限 D.第四象限4.在等差數(shù)列中,若公差,則()A. B. C. D.5.下列表達式正確的是()①,②若,則③若,則④若,則A.①② B.②③ C.①③ D.③④6.已知基本單位向量,,則的值為()A.1 B.5 C.7 D.257.已知全集則()A. B. C. D.8.已知,則().A. B. C. D.9.為了得到函數(shù)的圖象,可以將函數(shù)的圖象()A.向右平移個單位長度 B.向左平移個單位長度C.向右平移個單位長度 D.向左平移個單位長度10.已知向量,,若,則的值為()A. B.1 C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.已知數(shù)列滿足,若對任意都有,則實數(shù)的取值范圍是_________.12.某扇形的面積為1,它的周長為4cm,那么扇形的圓心角的大小為____________.13.若,且,則=_______.14.已知,,是與的等比中項,則最小值為_________.15.某中學初中部共有名老師,高中部共有名教師,其性別比例如圖所示,則該校女教師的人數(shù)為__________.16.函數(shù)的零點個數(shù)為__________.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17.如圖,在正方體中,是的中點.(1)求證:平面;(2)求證:平面平面.18.已知集合,其中,由中的元素構成兩個相應的集合:,.其中是有序數(shù)對,集合和中的元素個數(shù)分別為和.若對于任意的,總有,則稱集合具有性質.(Ⅰ)檢驗集合與是否具有性質并對其中具有性質的集合,寫出相應的集合和.(Ⅱ)對任何具有性質的集合,證明.(Ⅲ)判斷和的大小關系,并證明你的結論.19.已知圓經(jīng)過、、三點.(1)求圓的標準方程;(2)若過點的直線被圓截得的弦的長為,求直線的傾斜角.20.已知圓.(1)求圓的半徑和圓心坐標;(2)斜率為的直線與圓相交于、兩點,求面積最大時直線的方程.21.已知,,當為何值時:(1)與垂直;(2)與平行.

參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、C【解析】

根據(jù)左右平移和周期變換原則變換即可得到結果.【詳解】向左平移個單位得:將橫坐標縮短為原來的得:本題正確選項:【點睛】本題考查三角函數(shù)的左右平移變換和周期變換的問題,屬于基礎題.2、D【解析】

直接利用向量的數(shù)量積轉化求解向量的夾角即可.【詳解】因為,所以與的夾角為.故選:D.【點睛】本題主要考查向量的夾角的運算,以及運用向量的數(shù)量積運算和向量的模.3、D【解析】由可知:則的終邊所在的象限為第四象限故選4、B【解析】

根據(jù)等差數(shù)列的通項公式求解即可得到結果.【詳解】∵等差數(shù)列中,,公差,∴.故選B.【點睛】等差數(shù)列中的計算問題都可轉為基本量(首項和公差)來處理,運用公式時要注意項和項數(shù)的對應關系.本題也可求出等差數(shù)列的通項公式后再求出的值,屬于簡單題.5、D【解析】

根據(jù)基本不等式、不等式的性質即可【詳解】對于①,.當,即時取,而,.即①不成立。對于②若,則,若,顯然不成立。對于③若,則,則正確。對于④若,則,則,正確。所以選擇D【點睛】本題主要考查了基本不等式以及不等式的性質,基本不等式一定要滿足一正二定三相等。屬于中等題。6、B【解析】

計算出向量的坐標,再利用向量的求模公式計算出的值.【詳解】由題意可得,因此,,故選B.【點睛】本題考查向量模的計算,解題的關鍵就是求出向量的坐標,并利用坐標求出向量的模,考查運算求解能力,屬于基礎題.7、B【解析】

先求M的補集,再與N求交集.【詳解】∵全集U={0,1,2,3,4},M={0,1,2},∴?UM={3,4}.∵N={2,3},∴(?UM)∩N={3}.故選:B.【點睛】本題考查了交、并、補集的混合運算,是基礎題.8、C【解析】

分子分母同時除以,利用同角三角函數(shù)的商關系化簡求值即可.【詳解】因為,所以,于是有,故本題選C.【點睛】本題考查了同角三角函數(shù)的商關系,考查了數(shù)學運算能力.9、A【解析】

先將轉化為,再判斷的符號即可得出結論.【詳解】解:因為,所以只需把向右平移個單位.故選:A【點睛】函數(shù)左右平移變換時,一是要注意平移方向:按“左加右減",如由的圖象變?yōu)榈膱D象,是由變?yōu)?所以是向左平移個單位;二是要注意前面的系數(shù)是不是,如果不是,左右平移時,要先提系數(shù),再來計算.10、B【解析】

直接利用向量的數(shù)量積列出方程求解即可.【詳解】向量,,若,可得2﹣2=0,解得=1,故選B.【點睛】本題考查向量的數(shù)量積的應用,考查計算能力,屬于基礎題.二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】

由題若對于任意的都有,可得解出即可得出.【詳解】∵,若對任意都有,

∴.

∴,

解得.

故答案為.【點睛】本題考查了數(shù)列與函數(shù)的單調性、不等式的解法,考查了推理能力與計算能力,屬于中檔題.12、【解析】

根據(jù)扇形的面積和周長列方程組解得半徑和弧長,再利用弧長公式可求得結果.【詳解】設扇形的半徑為,弧長為,圓心角為,則,解得,所以.故答案為:【點睛】本題考查了扇形的面積公式,考查了扇形中弧長公式,屬于基礎題.13、【解析】

由的值及,可得的值,計算可得的值.【詳解】解:由,且,由,可得,故,故答案為:.【點睛】本題主要考查了同角三角函數(shù)的基本關系,熟練掌握其基本關系是解題的關鍵.14、1【解析】

根據(jù)等比中項定義得出的關系,然后用“1”的代換轉化為可用基本不等式求最小值.【詳解】由題意,所以,所以,當且僅當,即時等號成立.所以最小值為1.故答案為:1.【點睛】本題考查等比中項的定義,考查用基本不等式求最值.解題關鍵是用“1”的代換找到定值,從而可用基本不等式求最值.15、【解析】

由初中部、高中部男女比例的餅圖,初中部女老師占70%,高中部女老師占40%,分別算出女老師人數(shù),再相加.【詳解】初中部女老師占70%,高中部女老師占40%,該校女教師的人數(shù)為.【點睛】考查統(tǒng)計中讀圖能力,從圖中提取基本信息的基本能力.16、3【解析】

運用三角函數(shù)的誘導公式先將函數(shù)化簡,再在同一直角坐標系中做出兩支函數(shù)的圖像,觀察其交點的個數(shù)即得解.【詳解】由三角函數(shù)的誘導公式得,所以令,求零點的個數(shù)轉化求方程根的個數(shù),因此在同一直角坐標系分別做出和的圖象,觀察兩支圖象的交點的個數(shù)為個,注意在做的圖像時當時,,故得解.【點睛】本題考查三角函數(shù)的有界性和余弦函數(shù)與對數(shù)函數(shù)的交點情況,屬于中檔題.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17、(1)見解析;(2)見解析.【解析】試題分析:(1)設,連接,因為O,E分別為AC,中點,所以(2)平面,所以平面平面考點:線面平行垂直的判定點評:平面內一直線與平面外一直線平行,則線面平行;直線垂直于平面內兩相交直線則直線垂直于平面,進而得到兩面垂直18、(Ⅰ)集合不具有性質,集合具有性質,相應集合,,集合,(Ⅱ)見解析(Ⅲ)【解析】解:集合不具有性質.集合具有性質,其相應的集合和是,.(II)證明:首先,由中元素構成的有序數(shù)對共有個.因為,所以;又因為當時,時,,所以當時,.從而,集合中元素的個數(shù)最多為,即.(III)解:,證明如下:(1)對于,根據(jù)定義,,,且,從而.如果與是的不同元素,那么與中至少有一個不成立,從而與中也至少有一個不成立.故與也是的不同元素.可見,中元素的個數(shù)不多于中元素的個數(shù),即,(2)對于,根據(jù)定義,,,且,從而.如果與是的不同元素,那么與中至少有一個不成立,從而與中也不至少有一個不成立,故與也是的不同元素.可見,中元素的個數(shù)不多于中元素的個數(shù),即,由(1)(2)可知,.19、(1);(2)或.【解析】

(1)設出圓的一般方程,然后代入三個點的坐標,聯(lián)立方程組可解得;(2)討論直線的斜率是否存在,根據(jù)點到直線的距離和勾股定理列式可得直線的傾斜角.【詳解】(1)設圓的一般方程為,將點、、的坐標代入圓的方程得,解得,所以,圓的一般方程為,標準方程為;(2)設圓心到直線的距離為,則.①當直線的斜率不存在時,即直線到圓心的距離為,滿足題意,此時直線的傾斜角為;②當直線的斜率存在時,設直線的方程為,即,則圓心到直線的距離為,解得,此時,直線的傾斜角為.綜上所述,直線的傾斜角為或.【點睛】本題考查圓的方程的求解,同時也考查了利用直線截圓的弦長求直線的傾斜角,一般轉化為求圓心到直線的距離,并結合點到直線的距離公式以及勾股定理列等式求解,考查計算能力,屬中檔題.20、(1)圓的圓心坐標為,半徑為;(2)或.【解析】

(1)將圓的方程化為標準方程,可得出圓的圓心坐標和半徑;(2)設直線的方程為,即,設圓心到直線的距離,計算出直線截圓的弦長,利用基本不等式可得出的最大值以及等號成立時對應的的值,利用點的到直線的距離可解出實數(shù)的值.【詳解】(1)將圓的方程化為標準方程得,因此,圓的圓心坐標為,半徑為;(2)設直線的方程為,即,設圓心到直線的距離,則,且,的面積為,當且僅當時等號成立,由點到直線的距離公式得,解得或.因此,直線的方程為或.【點睛】本題考查圓的一般方程與標準方程之間的互化,以及直線截圓所形成的

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論