2023-2024學(xué)年甘肅省蘭州市蘭化一中高一下數(shù)學(xué)期末達(dá)標(biāo)檢測模擬試題含解析_第1頁
2023-2024學(xué)年甘肅省蘭州市蘭化一中高一下數(shù)學(xué)期末達(dá)標(biāo)檢測模擬試題含解析_第2頁
2023-2024學(xué)年甘肅省蘭州市蘭化一中高一下數(shù)學(xué)期末達(dá)標(biāo)檢測模擬試題含解析_第3頁
2023-2024學(xué)年甘肅省蘭州市蘭化一中高一下數(shù)學(xué)期末達(dá)標(biāo)檢測模擬試題含解析_第4頁
2023-2024學(xué)年甘肅省蘭州市蘭化一中高一下數(shù)學(xué)期末達(dá)標(biāo)檢測模擬試題含解析_第5頁
已閱讀5頁,還剩10頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

2023-2024學(xué)年甘肅省蘭州市蘭化一中高一下數(shù)學(xué)期末達(dá)標(biāo)檢測模擬試題考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標(biāo)記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.在中,角的對邊分別為,且,,,則的周長為()A. B. C. D.2.如圖,正四面體,是棱上的動點,設(shè)(),分別記與,所成角為,,則()A. B. C.當(dāng)時, D.當(dāng)時,3.已知=4,=3,,則與的夾角為()A. B. C. D.4.已知等差數(shù)列中,,則()A. B.C. D.5.過點P(﹣2,m)和Q(m,4)的直線斜率等于1,那么m的值等于()A.1或3 B.4 C.1 D.1或46.設(shè)a,b,c為的內(nèi)角所對的邊,若,且,那么外接圓的半徑為A.1 B. C.2 D.47.一枚骰子連續(xù)投兩次,則兩次向上點數(shù)均為1的概率是()A. B. C. D.8.將函數(shù)的圖象向左平移個單位長度,再將圖象上各點的橫坐標(biāo)伸長到原來的2倍(縱坐標(biāo)不變),得到函數(shù)的圖象,若對任意的均有成立,則的最小值為()A. B. C. D.9.等差數(shù)列{}中,=2,=7,則=()A.10 B.20 C.16 D.1210.等差數(shù)列中,已知,則()A.1 B.2 C.3 D.4二、填空題:本大題共6小題,每小題5分,共30分。11.已知直線是函數(shù)(其中)圖象的一條對稱軸,則的值為________.12.正方體中,分別是的中點,則所成的角的余弦值是__________.13.在圓心為,半徑為的圓內(nèi)接中,角,,的對邊分別為,,,且,則的面積為__________.14.等比數(shù)列中首項,公比,則______.15.在中,為邊中點,且,,則______.16.若實數(shù)滿足,則取值范圍是____________。三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17.從全校參加科技知識競賽初賽的學(xué)生試卷中,抽取一個樣本,考察競賽的成績分布.將樣本分成5組,繪成頻率分布直方圖(如圖),圖中從左到右各小組的小長方形的高之比是,最后一組的頻數(shù)是6.請結(jié)合頻率分布直方圖提供的信息,解答下列問題:(1)樣本的容量是多少?(2)求樣本中成績在分的學(xué)生人數(shù);(3)從樣本中成績在90.5分以上的同學(xué)中隨機(jī)地抽取2人參加決賽,求最高分甲被抽到的概率.18.在某單位的職工食堂中,食堂每天以3元/個的價格從面包店購進(jìn)面包,然后以5元/個的價格出售.如果當(dāng)天賣不完,剩下的面包以1元/個的價格全部賣給飼料加工廠.根據(jù)以往統(tǒng)計資料,得到食堂每天面包需求量的頻率分布直方圖如下圖所示.食堂某天購進(jìn)了80個面包,以x(單位:個,)表示面包的需求量,T(單位:元)表示利潤.(1)求食堂面包需求量的平均數(shù);(2)求T關(guān)于x的函數(shù)解析式;(3)根據(jù)直方圖估計利潤T不少于100元的概率.19.如圖,在△ABC中,cosC=,角B的平分線BD交AC于點D,設(shè)∠CBD=θ,其中tanθ=﹣1.(1)求sinA的值;(2)若,求AB的長.20.已知的內(nèi)角A,B,C所對的邊分別為a,b,c,且.(1)若,求的值;(2)若,求b,c的值.21.已知數(shù)列的前項和.(1)求數(shù)列通項公式;(2)令,求數(shù)列的前n項和.

參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、C【解析】

根據(jù),得到,利用余弦定理,得到關(guān)于的方程,從而得到的值,得到的周長.【詳解】在中,由正弦定理因為,所以因為,,所以由余弦定理得即,解得,所以所以的周長為.故選C.【點睛】本題考查正弦定理的角化邊,余弦定理解三角形,屬于簡單題.2、D【解析】作交于時,為正三角形,,是與成的角,根據(jù)等腰三角形的性質(zhì),作交于,同理可得,當(dāng)時,,故選D.3、C【解析】

由已知中,,,我們可以求出的值,進(jìn)而根據(jù)數(shù)量積的夾角公式,求出,,進(jìn)而得到向量與的夾角;【詳解】,,,,,所以向量與的夾角為.故選C【點睛】本題主要考查平面向量的數(shù)量積運算和向量的夾角的計算,意在考查學(xué)生對這些知識的理解掌握水平,屬于基礎(chǔ)題.4、C【解析】

,.故選C.5、C【解析】試題分析:利用直線的斜率公式求解.解:∵過點P(﹣2,m)和Q(m,4)的直線斜率等于1,∴k==1,解得m=1.故選C.考點:直線的斜率.6、A【解析】

由得b2+c2-a2=bc.利用余弦定理,可得A=.再利用正弦定理可得2R=,可得R.【詳解】∵,∴,整理得b2+c2-a2=bc,根據(jù)余弦定理cosA=,可得cosA=∵A∈(0,π),∴A=由正弦定理可得2R==,解得R=1,故選A【點睛】已知三邊關(guān)系,可轉(zhuǎn)化為接近余弦定理的形式,直接運用余弦定理理解三角形,注意整體代入思想.7、D【解析】

連續(xù)投兩次骰子共有36種,求出滿足情況的個數(shù),即可求解.【詳解】一枚骰子投一次,向上的點數(shù)有6種,則連續(xù)投兩次骰子共有36種,兩次向上點數(shù)均為1的有1種情況,概率為.故選:D.【點睛】本題考查古典概型的概率,屬于基礎(chǔ)題.8、D【解析】

直接應(yīng)用正弦函數(shù)的平移變換和伸縮變換的規(guī)律性質(zhì),求出函數(shù)的解析式,對任意的均有,說明函數(shù)在時,取得最大值,得出的表達(dá)式,結(jié)合已知選出正確答案.【詳解】因為函數(shù)的圖象向左平移個單位長度,所以得到函數(shù),再將圖象上各點的橫坐標(biāo)伸長到原來的2倍(縱坐標(biāo)不變),得到函數(shù)的圖象,所以,對任意的均有成立,所以在時,取得最大值,所以有而,所以的最小值為.【點睛】本題考查了正弦型函數(shù)的圖象變換規(guī)律、函數(shù)圖象的性質(zhì),考查了函數(shù)最大值的概念,正確求出變換后的函數(shù)解析式是解題的關(guān)鍵.9、D【解析】

根據(jù)等差數(shù)列的性質(zhì)可知第五項減去第三項等于公差的2倍,由=+5得到2d等于5,然后再根據(jù)等差數(shù)列的性質(zhì)得到第七項等于第五項加上公差的2倍,把的值和2d的值代入即可求出的值,即可知=,故選D.10、B【解析】

已知等差數(shù)列中一個獨立條件,考慮利用等差中項求解.【詳解】因為為等差數(shù)列,所以,由,,故選B.【點睛】本題考查等差數(shù)列的性質(zhì),等差數(shù)列中若,則,或用基本量、表示,整體代換計算可得,屬于簡單題.二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】

根據(jù)正弦函數(shù)圖象的對稱性可得,由此可得答案.【詳解】依題意得,所以,即,因為,所以或,故答案為:【點睛】本題考查了正弦函數(shù)圖象的對稱軸,屬于基礎(chǔ)題.12、【解析】

取的中點,由得出異面直線與所成的角為,然后在由余弦定理計算出,可得出結(jié)果.【詳解】取的中點,由且可得為所成的角,設(shè)正方體棱長為,中利用勾股定理可得,又,由余弦定理可得,故答案為.【點睛】本題考查異面直線所成角的計算,一般利用平移直線找出異面直線所成的角,再選擇合適的三角形,利用余弦定理或銳角三角函數(shù)來計算,考查空間想象能力與計算能力,屬于中等題.13、【解析】

已知條件中含有這一表達(dá)式,可以聯(lián)想到余弦定理進(jìn)行條件替換;利用同弧所對圓心角為圓周角的兩倍,先求出角的三角函數(shù)值,再求的正弦值,進(jìn)而即可得解.【詳解】,,在中,代入(1)式得:,整理得:圓周角等于圓心角的兩倍,,(1)當(dāng)時,,,.(1)當(dāng)時,,點在的外面,此時,,.【點睛】本題對考生的計算能力要求較高,對解三角形和平面幾何知識進(jìn)行綜合考查.14、9【解析】

根據(jù)等比數(shù)列求和公式,將進(jìn)行轉(zhuǎn)化,然后得到關(guān)于和的等式,結(jié)合,討論出和的值,得到答案.【詳解】因為等比數(shù)列中首項,公比,所以成首項為,公比為的等比數(shù)列,共項,所以整理得因為所以可得,等式右邊為整數(shù),故等式左邊也需要為整數(shù),則應(yīng)是的約數(shù),所以可得,所以,當(dāng)時,得,此時當(dāng)時,得,此時當(dāng)時,得,此時,所以,故答案為:.【點睛】本題考查等比數(shù)列求和的基本量運算,涉及分類討論的思想,屬于中檔題.15、0【解析】

根據(jù)向量,,取模平方相減得到答案.【詳解】兩個等式平方相減得到:故答案為0【點睛】本題考查了向量的加減,模長,意在考查學(xué)生的計算能力.16、;【解析】

利用三角換元,設(shè),;利用輔助角公式將化為,根據(jù)三角函數(shù)值域求得結(jié)果.【詳解】可設(shè),,本題正確結(jié)果:【點睛】本題考查利用三角換元法求解取值范圍的問題,關(guān)鍵是能夠?qū)栴}轉(zhuǎn)化為三角函數(shù)值域的求解問題.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)48;(2)30;(3)【解析】

(1)設(shè)樣本容量為,列方程求解即可;(2)根據(jù)比例列式求解即可;(3)根據(jù)比例得成績在90.5分以上的同學(xué)有6人,抽取2人參加決賽,列舉出總的基本事件個數(shù),然后列舉出最高分甲被抽到的基本事件個數(shù),根據(jù)概率公式可得結(jié)果.【詳解】解:(1)設(shè)樣本容量為,則,解得,所以樣本的容量是48;(2)樣本中成績在分的學(xué)生人數(shù)為:人;(3)樣本中成績在90.5分以上的同學(xué)有人,設(shè)這6名同學(xué)分別為,其中就是甲,從這6名同學(xué)中隨機(jī)地抽取2人參加決賽有:共15個基本事件,其中最高分甲被抽到的有共5個基本事件,則最高分甲被抽到的概率為.【點睛】本題考查頻率,頻數(shù),樣本容量間的關(guān)系,考查古典概型的概率公式,重點是列舉出總的基本事件和滿足題目要求的基本事件,是基礎(chǔ)題.18、(1)84;(2);(3)【解析】

(1)每個小矩形的面積乘以該組中間值,所得數(shù)據(jù)求和就是平均數(shù);(2)根據(jù)需求量分段表示函數(shù)關(guān)系;(3)根據(jù)(1)利潤T不少于100元時,即,即,求出其頻率,即可估計概率.【詳解】(1)估計食堂面包需求量的平均數(shù)為:(2)解:由題意,當(dāng)時,利潤,當(dāng)時,利潤,即T關(guān)于x的函數(shù)解析式(3)解:由題意,設(shè)利潤T不少于100元為事件A,由(1)知,利潤T不少于100元時,即,即,由直方圖可知,當(dāng)時,所求概率為【點睛】此題考查頻率分布直方圖,根據(jù)頻率分布直方圖求平均數(shù),計算頻率,以及建立函數(shù)模型解決實際問題,綜合性比較強(qiáng).19、(1)(2)【解析】

(1)根據(jù)二倍角公式及同角基本關(guān)系式,求出cos∠ABC,進(jìn)而可求出sinA;(2)根據(jù)正弦定理求出AC,BC的關(guān)系,利用向量的數(shù)量積公式求出AC,可得BC,正弦定理可得答案.【詳解】(1)由∠CBD=θ,且tanθ1,所以θ∈(0,),所以cos∠ABC,則sin∠ABC,由cosC,得:sinC,sinA=sin[π﹣(∠ABC+∠C)]=sin(∠ABC+∠C).(2)由正弦定理,得,即BCAC;又?AC2?21,∴AC=5,∴ABAC=4.【點睛】本題考查了二倍角公式、同角基本關(guān)系式和正弦定理

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論