版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
24.3相似三角形24.3.1.相似三角形教學(xué)目標:1.知道相似三角形的概念;會根據(jù)概念判斷兩個三角形相似。2.能說出相似三角形的相似比,由相似比求出未知的邊長。教學(xué)過程:一、復(fù)習(xí)什么是相似形?識別兩個多邊形是否相似的標準是什么?二、新課1.相似三角形的有關(guān)概念:由復(fù)習(xí)中引入,如果兩個多邊形的對應(yīng)邊成比例,對應(yīng)角都相等,那么這兩個多邊形相似。三角形是最簡單的多邊形。由此可以說什么樣的兩個三角形相似?如果兩個三角形的三條邊都成比例,三個角對應(yīng)相等,那么這兩個三角形相似,如在△ABC與△A′B′C′中,∠A=A′,∠B=∠B′,∠C=∠C′EQ\f(AB,A′B′)=EQ\f(BC,B′C′)=EQ\f(AC,A′C′)那么△ABC與△A′B′C′相似,記作△ABC∽△A′B′C′;“∽”是表示相似的符號,讀作“相似于”,這樣兩三角形相似就讀作:“△ABC相似于△A′B′C′”。由于∠A=∠A′,∠B=∠B′,∠C=∠C′,所以點A的對應(yīng)頂點是A′,B與B′是對應(yīng)頂點,C與C′是對應(yīng)頂點,書寫相似時,通常把對應(yīng)頂點寫在對應(yīng)位置上,以便比較容易找到相似三角形中的對應(yīng)角、對應(yīng)邊.如果記EQ\f(AB,A′B′)=EQ\f(BC,B′C′)=EQ\f(AC,A′C′)=K,那么這個K就表示這兩個相似三角形的相似比.相似比就是它們的對應(yīng)邊的比,它有順序關(guān)系.如△ABC∽△A′B′C′,它的相似比為K,即指EQ\f(AB,A′B′)=K,那么△A′B′C′與△ABC的相似比應(yīng)是EQ\f(A′B′,AB),就不是K了,應(yīng)為多少呢?同學(xué)們想一想?2.△ABC中,D,E是AB、AC的中點,連結(jié)DE,那么△ADE與△ABC相似嗎?為什么?如果相似,它們的相似比為多少?如果點D不是AB中點,是AB上任意一點,過D作DE∥BC,交AC邊于E,那么△ADE與ABC是否也會相似呢?判斷它們是否相似,由①對應(yīng)角是否相等,②對應(yīng)邊是否成比例去考慮。能否得對應(yīng)角相等?根據(jù)平行線性質(zhì)與一個公共角可以推出①,而對應(yīng)邊是否成比例呢?目前還沒有什么依據(jù),同學(xué)們不妨用刻度尺量一量,算一算是否成比例?通過度量,計算發(fā)現(xiàn)EQ\f(AD,AB)=EQ\f(AE,AC)=EQ\f(DE,BC).所以可以判斷出△ADE與△ABC會相似。若是如圖DE∥BC,與BA、CA延長線交于D、E,那么△ADE與△ABC還會相似嗎?試一試看。如果相似寫出它們對應(yīng)邊的比例式.3.如果△ABC∽△A′B′C′,相似比K=1,你會發(fā)現(xiàn)什么呢?EQ\f(AB,A′B′)=EQ\f(BC,B′C′)=EQ\f(AC,A′C′)=1,所以可得AB=A′B′,BC=B′C′,AC=A′C′,因此這兩個三角形不僅形狀相同,且大小也相同,這樣的三角形稱之為全等三角形,全等三角形是相似三角形的特例,試問:全等的兩個三角形一定相似嗎?相似的兩個三角形會全等嗎?全等的符號與相似的符號之間有什么關(guān)系與區(qū)別?4.例:如果一個三角形的三邊長分別是5、12、13,與其相似的三角形的最長.邊是39,那么較大三角形的周長是多少?較小三角形與較大三角形的周長的比是多少?分析:這兩個三角形會相似,對應(yīng)邊是哪些邊?相似比是多少?哪一個三角形較大?要計算出它的周長還需求什么?根據(jù)什么來求?三、練習(xí)判斷下列兩個三角形是否相似?簡單說明理由,如果相似,寫出對應(yīng)邊的比例四、小結(jié)1.填空。_______的三角形叫做相似三角形。2.兩個相似三角形的相似比為1,這兩個三角形有什么關(guān)系?3、如果一條直線平行于三角形一邊,與其它兩邊或其延長線相交截得的三角形與原三角形相似嗎?指出它們的對應(yīng)邊。五、作業(yè)
24.3.2.相似三角形的判定(1)教學(xué)目標:1.會說出識別兩個三角形相似的方法,有兩個角分別相等的兩個三角形相似。2.會用這種方法判斷兩個三角形是否相似。教學(xué)過程:一、復(fù)習(xí)1.兩個矩形一定會相似嗎?為什么?2.如何判斷兩個三角形是否相似?根據(jù)定義:對應(yīng)角相等,對應(yīng)邊成比例。3.如圖△ABC與△′B′C′會相似嗎?為什么?是否存在識別兩個三角形相似的簡便方法?本節(jié)就是探索這方面的識別兩個三角形相似的方法二、新課講解同學(xué)們觀察你與你的同伴所用的三角尺,以及老師用的三角板,如有一個角是30°的直角三角尺,它們的大小不一樣。這些三角形是相似的,我們就從平常所用的三角尺入手探索。(1)是45°角的三角尺,是等腰直角三角形會相似。(2)是30°的三角尺,那么另一個銳角為60°,有一個直角,因此它們的三個角都相等,同學(xué)們量一量它們的對應(yīng)邊,是否成比例呢?這樣,從直觀上看,一個三角形的三個角分別與另一個三角形三個角對應(yīng)相等,它們好像就會“相似”。是這樣嗎?請同學(xué)們動手試一試:1.畫兩個三角形,使它們的三個角分別相等。畫△ABC與△DEF,使∠A=∠D、∠B=∠E,∠C=∠F,在實際畫圖過程中,同學(xué)們畫幾個角相等?為什么?實際畫圖中,只畫∠A=∠D,∠B=∠E,則第三個角∠C與∠F一定會相等,這是根據(jù)三角形內(nèi)角和為180°所確定的。2.用刻度尺量一量各邊長,它們的對應(yīng)邊是否會成比例?與同伴交流,是否有相同結(jié)果。3.發(fā)現(xiàn)什么現(xiàn)象:發(fā)現(xiàn)如果一個三角形的三個角與另一個三角形的三個角對應(yīng)相等,那么這兩個三角形相似。4.兩個矩形的四個角也都分別相等,它們?yōu)槭裁床粫嗨颇?這是由于三角形具有它特殊的性質(zhì)。三角形有穩(wěn)定性,而四邊形有不穩(wěn)定性。于是我們得到識別兩個三角形相似的一個較為簡便的方法:如果一個三角形的兩角分別與另一個三角形的兩角對應(yīng)相等,那么這兩個三角形相似,簡單地說:兩角對應(yīng)相等,兩三角形相似。同學(xué)們思考,能否再簡便一些,僅有一對角對應(yīng)相等的兩個三角形,是否一定會相似呢?例題:1.如圖兩個直角三角形△ABC和△A′B′C′中,∠C=∠C′=90°,∠A=∠A′,判斷這兩個三角形是否相似。2.在△ABC與△A′B′C′中,∠A=∠A′=50°,∠B=70°,∠B′=60°,這兩個三角形相似嗎?3.如圖,△ABC中,DE∥BC,EF∥AB,試說明△ADE∽△EFC。三、練習(xí)1.△ABC中,∠ACB=90°,CD⊥AB于D,找出圖中所有的相似三角形。2.△ABC中,D是AB的邊上一點,過點D作一直線與AC相交于E,要使△ADE與△ABC會相似,你怎樣畫這條直線,并說明理由。和你的同伴交流作法是否一樣?四、小結(jié)本節(jié)課我們學(xué)習(xí)了識別兩個三角形相似的簡便方法:有兩個角對應(yīng)相等的兩個三角形相似。五、作業(yè)P641
24.3.2.相似三角形的判定(1)教學(xué)目標1.會說出識別兩個三角形相似的方法:有兩邊對應(yīng)成比例,且夾角相等的兩個三角形相似;三條邊對應(yīng)成比例的兩個三角形相似。2.能依據(jù)條件,靈活運用三種識別方法,正確判斷兩個三角形相似。教學(xué)過程一、復(fù)習(xí)1.現(xiàn)在要判斷兩個三角形相似有哪幾種方法?有兩種方法,(1)是根據(jù)定義;(2)是有兩個角對應(yīng)相等的兩個三角形相似。2.如圖△ABC中,D、E是AB、AC上三等分點(即AD=EQ\F(1,3)AB,AE=EQ\F(1,3)AC),那么△ADE與△ABC相似嗎?你用的是哪一種方法?由于沒有兩個角對應(yīng)相等,同學(xué)們可以動手量一量,量什么東西后可以判斷它們能否相似?(可能有一部分同學(xué)用量角器量角,有一部分同學(xué)量線段,看看能否成比例)無論哪一種,都應(yīng)肯定他們,是正確的,要求同學(xué)說出是應(yīng)用哪一種方法判斷出的。二、新課講解同學(xué)們通過量角或量線段計算之后,得出:△ADE∽△ABC。從已知條件看,△ADE與△ABC有一對應(yīng)角相等,即∠A=∠A(是公共角),而一個條件是AD=EQ\F(1,3)AB,AE=EQ\F(1,3)AC,即是EQ\F(AD,AB)=EQ\F(1,3),EQ\F(AE,AC)=EQ\F(1,3);因此EQ\F(AD,AB)=EQ\F(AE,AC)。△ADE的兩條邊AD、AE與△ABC的兩條邊AB、AC會對應(yīng)成比例,它們的夾角又相等,符合這樣條件的兩個三角形也會相似嗎?我們再做一次實驗。觀察圖,如果有一點E在邊AC上,那么點E應(yīng)該在什么位置才能使△ADE與△ABC相似呢?圖中兩個三角形的一組對應(yīng)邊AD與AB的長度的比值為EQ\F(1,3),將點E由點A開始在AC上移動,可以發(fā)現(xiàn)當AE=EQ\F(1,3)AC時,△ADE與△ABC相似。此時EQ\F(AD,AB)=EQ\F(AE,AC)同學(xué)們畫兩個三角形,△ABC與△A′B′C′,使之∠A=∠A′,AB=2A′B′,AC=2A′C′,量一量BC與B′C′的長,計算BC:B′C′與同伴交流,EQ\f(BC,B′C′)是否與EQ\f(AB,A′B′),EQ\f(AC,A′C′)相等?再量一量∠B與∠B′、∠C與∠C′,它們是否對應(yīng)相等呢?這樣的兩個三角形相似嗎?于是有識別兩個三角形相似的第二種簡便方法:如果一個三角形的兩條邊與另一個三角形的兩條邊對應(yīng)成比例,并且夾角相等,那么這兩個三角形相似。簡單地說;兩邊對應(yīng)成比例且夾角相等,兩三角形相似。強調(diào)對應(yīng)相等的角必須是成比例的邊的夾角,如果不是夾角,它們不一定會相似。你能畫出有兩邊會對應(yīng)成比例,有一個角相等,但它們不相似的兩個三角形嗎?(畫頂角與底角相等的兩個等腰三角形)∠B=∠B′,EQ\f(AB,A′B′)=EQ\f(AC,A′C′)例題:1.(課本中例3)判斷圖中△AEB與△FEC是否相似?2.如圖△ABC中,D、E是AB、AC上點,AB=7.8,AD=3,AC=6,CE=2.1,試判斷△ADE與△ABC是否會相似,小張同學(xué)的判斷理由是這樣的:解:因為AC=AE+CE,而AC=6,CE=2.1,故AE=6-2.1=3.9由于EQ\f(AD,AB)≠EQ\f(AE,AC)所以△ADE與△ABC不會相似。你同意小張同學(xué)的判斷嗎?請你說說理由。小張同學(xué)的判斷是錯誤的。因為EQ\f(AD,AC)=EQ\f(3,6),EQ\f(AE,AB)=EQ\f(3.9,7.8)=EQ\f(1,2)所以EQ\f(AD,AC)=EQ\f(AE,AB)而∠A是公共角,∠A=∠A,所以△ADE∽△ACB.請同學(xué)再做一次實驗,看看如果兩個三角形的三條邊都成比例,那么這兩個三角形是否相似?看課本58頁“做一做”。通過實驗得出:如果一個三角形的三條邊與另一個三角形的三條邊對應(yīng)成比例,那么這兩個三角形相似.簡單說成:三邊成比例兩三角形相似。例:△ABC和△A′B′C′中,AB=6cm,BC=8cm,AC=l0cm,A′B′=18cm,B′C′=24cm,A′C′=30cm,試判定它們是否相似,并說明理由。三、練習(xí)課本59頁練習(xí)1、2,3.四、小結(jié)到現(xiàn)在我們學(xué)習(xí)了識別兩個三角形是否相似的三種較簡便的方法,請同學(xué)回憶說出.五、作業(yè):P64424.3.3相似三角形的性質(zhì)教學(xué)目標會說出相似三角形的性質(zhì):對應(yīng)角相等,對應(yīng)邊成比例,對應(yīng)中線、角平分線、高的比等于相似比,周長比等于相似比,面積比等于相似比的平方。教學(xué)過程一、復(fù)習(xí)1.識別兩個三角形相似的簡便方法有哪些?2.在△ABC與△A′B′C′中,AB=l0cm,AC=6cm,BC=8cm,A′B′=5cm,A′C′=3cm,B′C′=4cm,這兩個三角形相似嗎?說明理由。如果相似,它們的相似比是多少?二、新課講解上述兩個三角形是相似的,它們對應(yīng)邊的比就是相似比,△ABC∽△A′B′C′,相似比為EQ\f(AC,A′C′)=2。相似的兩個三角形,它們的對應(yīng)角相等,對應(yīng)邊會成比例,除此之外,還會得出什么結(jié)果呢?一個三角形內(nèi)有三條主要線段;高、中線、角平分線。如果兩個三角形相似,那么這些對應(yīng)的線段有什么關(guān)系呢?我們先探索一下它們的對應(yīng)高之間的關(guān)系。同學(xué)畫出上述的兩個三角形,作對應(yīng)邊AB和A′B′邊上的高,用刻度尺量一量CD與C′D′的長,EQ\f(CD,C′D′)等于多少呢?與它們的相似比相等嗎?得出結(jié)論相似三角形對應(yīng)高的比等于相似比。我們能否用說理的方法來說明這個結(jié)論呢?同學(xué)們用上面類似方法,得出:相似三角形對應(yīng)中線的比等于相似比;相似三角形對應(yīng)角平分線的比等于相似比。兩個相似三角形的周長比會等于相似比嗎?兩個相似三角形的面積之間有什么關(guān)系呢?看如圖的三個三角形,三角形(2)的各邊長分別是(1)的2倍,(3)的各邊長分別是(1)的3倍,所以它們都是相似的,填空:(2)與(1)的相似比為(),(2)與(1)的面積比為(),(3)與(1)的相似比為(),(3)與(1)的面積比為()(3)與(2)的相似比為(),(3)與(2)的面積比為()。以上可以看出當相似比為K時,面積比為K2。對于一般相似的三角形都具有這種關(guān)系,可以得出結(jié)論:相似三角形的面積比等于相似比的平方三、練習(xí)1.△ABC∽△A′B′C′,相似比為3:2,則對應(yīng)中線的比等于()。2.相似三角形對應(yīng)角平分線比為0.2,則相似比為(),周長比為(),面積比為()3.△ABC∽△A′B′c′,相似比為EQ\f(1,3),已知△A′B′C′的面積為18cm2,那么△ABC的面積為()。四、小結(jié)(填空形式,同學(xué)回答)相似三角形()相等,()的比等于相似比,面積的比等于()。五、作業(yè)24.3.4相似三角形的應(yīng)用教學(xué)目標會應(yīng)用相似三角形的有關(guān)性質(zhì),測量簡單的物體的高度或?qū)挾?。教學(xué)過程一、復(fù)習(xí)1、相似三角形有哪些性質(zhì)?2.如圖,B、C、E、F是在同一直線上,AB⊥BF,DE⊥BF,AC∥DF,(1)△DEF與△ABC相似嗎?為什么?(2)若DE=1,EF=2,BC=10,那么AB等于多少?二、例題講解第二題我們根據(jù)兩個三角形相似,對應(yīng)邊成比例,列出比例式計算出AB的長。人們從很早開始,就懂得應(yīng)用這種方法來計算那些不能直接測量的物體的高度或?qū)挾?。?:古代的數(shù)學(xué)家想出了一種測量金字塔高度的方法:為了測量金字塔的高度OB,先豎一根已知長度的木棒O′B′,比較棒子的影長A′B′與金字塔的影長AB,即可近似算出金字塔的高度OB,如果O′B′=l,A′B′=2,AB=274,求金字塔的高度OB。這實際上與上述問題是一樣的。例2.我軍一小分隊到達某河岸,為了測量河寬,只用簡單的工具,就可以很快計算河的寬度,在河對岸選定一個目標作為點A,再在河的這一岸上選點B和C,使AB⊥BC
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 天津市八校聯(lián)考2024-2025學(xué)年高三上學(xué)期1月期末生物試題(含答案)
- 山東省棗莊市滕州市2024-2025學(xué)年七年級上學(xué)期1月期末考試地理試卷(無答案)
- 河北省邯鄲市2024-2025學(xué)年高三(上)模擬預(yù)測聯(lián)考物理試卷(八)(含答案)
- 28報關(guān)員資格全國統(tǒng)考試試題A卷與答案
- 2024物業(yè)管理與社區(qū)文化活動策劃合作協(xié)議3篇
- 2024股權(quán)轉(zhuǎn)讓中的業(yè)務(wù)承接協(xié)議
- 2024年鋼筋工程勞務(wù)分包專用合同
- 2024遺產(chǎn)分割與遺產(chǎn)傳承管理及權(quán)益分配協(xié)議3篇
- 2025年度冷鏈物流安全運輸服務(wù)質(zhì)量認證合同3篇
- 福建省南平市莒口中學(xué)2021-2022學(xué)年高一語文模擬試題含解析
- 起重吊裝及安裝拆卸工程專家論證(192頁)
- 心臟手術(shù)后的急性腎功能不全
- 廣西水功能區(qū)劃報告-廣西水利信息網(wǎng)
- 人力資源部各崗位績效考核表
- 格力離心機技術(shù)服務(wù)手冊
- 注塑機成型工藝參數(shù)表
- 糖廠熱力衡算(6000噸每天)
- XX鎮(zhèn)“我為群眾辦實事”滿意度調(diào)查問卷
- 常用嗎啡劑量滴定方法ppt課件
- 有關(guān)DPM的問題
- 石油石化用化學(xué)劑產(chǎn)品質(zhì)量認可實施細則
評論
0/150
提交評論