




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
2025屆廣東惠州市數(shù)學(xué)高一下期末監(jiān)測試題注意事項1.考生要認(rèn)真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.平面向量與的夾角為,,,則A. B.12 C.4 D.2.設(shè)復(fù)數(shù)(是虛數(shù)單位),則在復(fù)平面內(nèi),復(fù)數(shù)對應(yīng)的點的坐標(biāo)為()A. B. C. D.3.從四件正品、兩件次品中隨機(jī)取出兩件,記“至少有一件次品”為事件,則的對立事件是()A.至多有一件次品 B.兩件全是正品 C.兩件全是次品 D.至多有一件正品4.下列條件不能確定一個平面的是()A.兩條相交直線 B.兩條平行直線 C.直線與直線外一點 D.共線的三點5.若函數(shù)有零點,則實數(shù)的取值范圍為()A. B. C. D.6.在△ABC中,AC,BC=1,∠B=45°,則∠A=()A.30° B.60° C.30°或150° D.60°或120°7.如圖,網(wǎng)格紙上小正方形的邊長為,粗線畫出的是某幾何體的三視圖,則此幾何體的體積為()A. B. C. D.8.若且,則下列不等式成立的是()A. B. C. D.9.已知,,則等于()A. B. C. D.10.設(shè)矩形的長為,寬為,其比滿足∶=,這種矩形給人以美感,稱為黃金矩形.黃金矩形常應(yīng)用于工藝品設(shè)計中.下面是某工藝品廠隨機(jī)抽取兩個批次的初加工矩形寬度與長度的比值樣本:甲批次:0.5980.6250.6280.5950.639乙批次:0.6180.6130.5920.6220.620根據(jù)上述兩個樣本來估計兩個批次的總體平均數(shù),與標(biāo)準(zhǔn)值0.618比較,正確結(jié)論是A.甲批次的總體平均數(shù)與標(biāo)準(zhǔn)值更接近B.乙批次的總體平均數(shù)與標(biāo)準(zhǔn)值更接近C.兩個批次總體平均數(shù)與標(biāo)準(zhǔn)值接近程度相同D.兩個批次總體平均數(shù)與標(biāo)準(zhǔn)值接近程度不能確定二、填空題:本大題共6小題,每小題5分,共30分。11.已知等差數(shù)列的前n項和為,若,則的值為______________.12.住在同一城市的甲、乙兩位合伙人,約定在當(dāng)天下午4.00-5:00間在某個咖啡館相見商談合作事宜,他們約好當(dāng)其中一人先到后最多等對方10分鐘,若等不到則可以離去,則這兩人能相見的概率為__________.13.已知扇形的圓心角為,半徑為,則扇形的面積.14.函數(shù)的定義域________.15.若角的終邊經(jīng)過點,則___________.16.如圖,長方體中,,,,與相交于點,則點的坐標(biāo)為______________.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17.設(shè)矩形的周長為,把沿向折疊,折過去后交于,設(shè),的面積為.(1)求的解析式及定義域;(2)求的最大值.18.設(shè)數(shù)列是等差數(shù)列,其前n項和為;數(shù)列是等比數(shù)列,公比大于0,其前項和為.已知,,,.(1)求數(shù)列和數(shù)列的通項公式;(2)設(shè)數(shù)列的前n項和為,若對任意的恒成立,求實數(shù)m的取值范圍.19.已知點是重心,.(1)用和表示;(2)用和表示.20.已知四棱錐的底面ABCD是菱形,平面ABCD,,,F(xiàn),G分別為PD,BC中點,.(Ⅰ)求證:平面PAB;(Ⅱ)求三棱錐的體積;(Ⅲ)求證:OP與AB不垂直.21.(1)已知,,且、都是第二象限角,求的值.(2)求證:.
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、D【解析】
根據(jù),利用向量數(shù)量積的定義和運算律即可求得結(jié)果.【詳解】由題意得:,本題正確選項:【點睛】本題考查向量模長的求解,關(guān)鍵是能夠通過平方運算將問題轉(zhuǎn)化為平面向量數(shù)量積的求解問題,屬于??碱}型.2、A【解析】,所以復(fù)數(shù)對應(yīng)的點為,故選A.3、B【解析】
根據(jù)對立事件的概念,選出正確選項.【詳解】從四件正品、兩件次品中隨機(jī)取出兩件,“至少有一件次品”的對立事件為兩件全是正品.故選:B【點睛】本小題主要考查對立事件的理解,屬于基礎(chǔ)題.4、D【解析】
根據(jù)確定平面的公理和推論逐一判斷即可得解.【詳解】解:對選項:經(jīng)過兩條相交直線有且只有一個平面,故錯誤.對選項:經(jīng)過兩條平行直線有且只有一個平面,故錯誤.對選項:經(jīng)過直線與直線外一點有且只有一個平面,故錯誤.對選項:過共線的三點,有無數(shù)個平面,故正確;故選:.【點睛】本題主要考查確定平面的公理及推論.解題的關(guān)鍵是要對確定平面的公理及推論理解透徹,屬于基礎(chǔ)題.5、D【解析】
令,得,再令,得出,并構(gòu)造函數(shù),將問題轉(zhuǎn)化為直線與函數(shù)在區(qū)間有交點,利用數(shù)形結(jié)合思想可得出實數(shù)的取值范圍.【詳解】令,得,,令,則,所以,,構(gòu)造函數(shù),其中,由于,,,所以,當(dāng)時,直線與函數(shù)在區(qū)間有交點,因此,實數(shù)的取值范圍是,故選D.【點睛】本題考查函數(shù)的零點問題,在求解含參函數(shù)零點的問題時,若函數(shù)中只含有單一參數(shù),可以采用參變量分離法轉(zhuǎn)化為參數(shù)直線與定函數(shù)圖象的交點個數(shù)問題,難點在于利用換元法將函數(shù)解析式化簡,考查數(shù)形結(jié)合思想,屬于中等題.6、A【解析】
直接利用正弦定理求出sinA的大小,根據(jù)大邊對大角可求A為銳角,即可得解A的值.【詳解】因為:△ABC中,BC=1,AC,∠B=45°,所以:,sinA.因為:BC<AC,可得:A為銳角,所以:A=30°.故選:A.【點評】本題考查正弦定理在解三角形中的應(yīng)用,考查計算能力,屬于基礎(chǔ)題.7、B【解析】,,.選B.點睛:空間幾何體體積問題的常見類型及解題策略(1)若所給定的幾何體是可直接用公式求解的柱體、錐體或臺體,則可直接利用公式進(jìn)行求解.(2)若所給定的幾何體的體積不能直接利用公式得出,則常用轉(zhuǎn)換法、分割法、補(bǔ)形法等方法進(jìn)行求解.(3)若以三視圖的形式給出幾何體,則應(yīng)先根據(jù)三視圖得到幾何體的直觀圖,然后根據(jù)條件求解.8、D【解析】
利用不等式的性質(zhì)對四個選項逐一判斷.【詳解】選項A:,符合,但不等式不成立,故本選項是錯誤的;選項B:當(dāng)符合已知條件,但零沒有倒數(shù),故不成立,故本選項是錯誤的;選項C:當(dāng)時,不成立,故本選項是錯誤的;選項D:因為,所以根據(jù)不等式的性質(zhì),由能推出,故本選項是正確的,因此本題選D.【點睛】本題考查了不等式的性質(zhì),結(jié)合不等式的性質(zhì),舉特例是解決這類問題的常見方法.9、D【解析】
通過化簡可得,再根據(jù),可得,利用同角三角函數(shù)可得,則答案可得.【詳解】解:,又,得,即,又,且,解得,,故選:D.【點睛】本題考查三角恒等變形的化簡和求值,是中檔題.10、A【解析】甲批次的平均數(shù)為0.617,乙批次的平均數(shù)為0.613二、填空題:本大題共6小題,每小題5分,共30分。11、1【解析】
由等差數(shù)列的性質(zhì)可得a7+a9+a11=3a9,而S17=17a9,故本題可解.【詳解】∵a1+a17=2a9,∴S1717a9=170,∴a9=10,∴a7+a9+a11=3a9=1;故答案為:1.【點睛】本題考查了等差數(shù)列的前n項和公式與等差數(shù)列性質(zhì)的綜合應(yīng)用,屬于基礎(chǔ)題.12、【解析】
將甲、乙到達(dá)時間設(shè)為(以為0時刻,單位為分鐘).則相見需要滿足:畫出圖像,根據(jù)幾何概型公式得到答案.【詳解】根據(jù)題意:將甲、乙到達(dá)時間設(shè)為(以為0時刻,單位為分鐘)則相見需要滿足:畫出圖像:根據(jù)幾何概型公式:【點睛】本題考查了幾何概型的應(yīng)用,意在考查學(xué)生解決問題的能力.13、【解析】試題分析:由題可知,;考點:扇形面積公式14、.【解析】
根據(jù)反正弦函數(shù)的定義得出,解出可得出所求函數(shù)的定義域.【詳解】由反正弦的定義可得,解得,因此,函數(shù)的定義域為,故答案為:.【點睛】本題考查反正弦函數(shù)的定義域,解題的關(guān)鍵就是正弦值域的應(yīng)用,考查運算求解能力,屬于基礎(chǔ)題.15、3【解析】
直接根據(jù)任意角三角函數(shù)的定義求解,再利用兩角和的正切展開代入求解即可【詳解】由任意角三角函數(shù)的定義可得:.則故答案為3【點睛】本題主要考查了任意角三角函數(shù)的定義和兩角和的正切計算,熟記公式準(zhǔn)確計算是關(guān)鍵,屬于基礎(chǔ)題.16、【解析】
易知是的中點,求出的坐標(biāo),根據(jù)中點坐標(biāo)公式求解.【詳解】可知,,由中點坐標(biāo)公式得的坐標(biāo)公式,即【點睛】本題考查空間直角坐標(biāo)系和中點坐標(biāo)公式,空間直角坐標(biāo)的讀取是易錯點.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)(2)的最大值為.【解析】
(1)利用周長,可以求出的長,利用平面幾何的知識可得,再利用勾股定理,可以求出的值,由矩形的周長為,可求出的取值范圍,最后利用三角形面積公式求出的解析式;(2)化簡(1)的解析式,利用基本不等式,可以求出的最大值.【詳解】(1)如下圖所示:∵設(shè),則,又,即,∴,得,∵,∴,∴的面積.(2)由(1)可得,,當(dāng)且僅當(dāng),即時取等號,∴的最大值為,此時.【點睛】本題考查了求函數(shù)解析式,考查了基本不等式,考查了數(shù)學(xué)運算能力.18、(1);;(2)【解析】
(1)根據(jù)等比數(shù)列與等差數(shù)列,分別設(shè)公比與公差再用基本量法求解即可.(2)由(1)有再錯位相減求解,利用不等式恒成立的方法求解即可.【詳解】解:(1)設(shè)等比數(shù)列的公比為q,由,,可得.∵,可得.故;設(shè)等差數(shù)列的公差為d,由,得,由,得,∴.故;(2)根據(jù)題意知,①②①—②得∴,對任意的恒成立,∴【點睛】本題主要考查了等差等比數(shù)列的基本量求解方法以及錯位相減和不等式恒成立的問題.屬于中檔題.19、(1)(2).【解析】
(1)設(shè)的中點為,可得出,利用重心性質(zhì)得出,由此可得出關(guān)于、的表達(dá)式;(2)由,得出,再由,可得出關(guān)于、的表達(dá)式.【詳解】(1)設(shè)的中點為,則,,為的重心,因此,;(2),,因此,.【點睛】本題考查利基底表示向量,應(yīng)充分利用平面幾何中一些性質(zhì),將問題中所涉及的向量利用基底表示,并結(jié)合平面向量的線性運算法則進(jìn)行計算,考查分析問題和解決問題的能力,屬于中等題.20、(Ⅰ)見解析(Ⅱ)(Ⅲ)見解析【解析】
(Ⅰ)連接,,由已知結(jié)合三角形中位線定理可得平面,再由面面平行的判斷可得平面平面,進(jìn)而可得平面;(Ⅱ)首先證明平面,而為的中點,然后利用等積法求三棱錐的體積;(Ⅲ)直接利用反證法證明與不垂直.【詳解】(Ⅰ)如圖,連接,∵是中點,是中點,∴,而平面,平面,∴平面,又∵是中點,是中點,∴,而平面,平面,∴平面,又∴平面平面,即平面.(Ⅱ)∵底面,∴,又四邊形為菱形,∴,又,∴平面,而為的中點,∴.(Ⅲ)假設(shè),又,且,∴平面,則,與矛盾,∴假設(shè)錯誤,故與不垂直.【點睛】本題考查直線與平面平行的判定,考查空間想象能力與思維能力,訓(xùn)練了利用反證法證明線線垂直問題,訓(xùn)練了利用等積法求解多
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025 CASS清算直接借款合同
- 事業(yè)編合同樣本
- 京東合作合同樣本
- 2025上海市國內(nèi)旅游合同
- 雀巢的銷售合同范本
- 陽光備考計劃 稅務(wù)師考試試題及答案
- 2025至2030年中國單只水表檢定標(biāo)準(zhǔn)裝置市場調(diào)查研究報告
- 2025餐飲管理系統(tǒng)服務(wù)合同
- 2025至2030年中國加纖塑膠行業(yè)發(fā)展研究報告001
- 2025至2030年中國分液頭行業(yè)投資前景及策略咨詢報告
- 2025年境外投資融資顧問服務(wù)合同范本3篇
- 2024-2025學(xué)年人教新目標(biāo)英語八年級下冊期末綜合檢測卷(含答案)
- 331金屬晶體課件高二化學(xué)人教版選擇性必修2
- 礦山礦石采購合同模板
- 2024年浪潮數(shù)字企業(yè)技術(shù)有限公司社會招聘(105人)筆試核心備考題庫及答案解析
- 第47屆世界技能大賽江蘇省選拔賽競賽技術(shù)文件-混凝土建筑項目
- 國開2024年《數(shù)據(jù)庫運維》形考1-3
- 勞動合同(模版)4篇
- 137案例黑色三分鐘生死一瞬間事故案例文字版
- 藥物研發(fā)監(jiān)管的國際協(xié)調(diào)
- 生豬屠宰獸醫(yī)衛(wèi)生檢驗人員理論考試題及答案
評論
0/150
提交評論