![浙江省慈溪市三山高級中學(xué)等六校2025屆高一數(shù)學(xué)第二學(xué)期期末學(xué)業(yè)質(zhì)量監(jiān)測試題含解析_第1頁](http://file4.renrendoc.com/view3/M00/06/3A/wKhkFmZnLvKAASurAAIU_PDkwYc666.jpg)
![浙江省慈溪市三山高級中學(xué)等六校2025屆高一數(shù)學(xué)第二學(xué)期期末學(xué)業(yè)質(zhì)量監(jiān)測試題含解析_第2頁](http://file4.renrendoc.com/view3/M00/06/3A/wKhkFmZnLvKAASurAAIU_PDkwYc6662.jpg)
![浙江省慈溪市三山高級中學(xué)等六校2025屆高一數(shù)學(xué)第二學(xué)期期末學(xué)業(yè)質(zhì)量監(jiān)測試題含解析_第3頁](http://file4.renrendoc.com/view3/M00/06/3A/wKhkFmZnLvKAASurAAIU_PDkwYc6663.jpg)
![浙江省慈溪市三山高級中學(xué)等六校2025屆高一數(shù)學(xué)第二學(xué)期期末學(xué)業(yè)質(zhì)量監(jiān)測試題含解析_第4頁](http://file4.renrendoc.com/view3/M00/06/3A/wKhkFmZnLvKAASurAAIU_PDkwYc6664.jpg)
![浙江省慈溪市三山高級中學(xué)等六校2025屆高一數(shù)學(xué)第二學(xué)期期末學(xué)業(yè)質(zhì)量監(jiān)測試題含解析_第5頁](http://file4.renrendoc.com/view3/M00/06/3A/wKhkFmZnLvKAASurAAIU_PDkwYc6665.jpg)
版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
浙江省慈溪市三山高級中學(xué)等六校2025屆高一數(shù)學(xué)第二學(xué)期期末學(xué)業(yè)質(zhì)量監(jiān)測試題考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標(biāo)記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.已知,則的最小值為A.3 B.4 C.5 D.62.在中,邊,,分別是角,,的對邊,且滿足,若,則的值為A. B. C. D.3.傳說古希臘畢達(dá)哥拉斯學(xué)派的數(shù)學(xué)家經(jīng)常在沙灘上面畫點或用小石子表示數(shù).他們研究過如圖所示的三角形數(shù):將三角形數(shù)1,3,6,10記為數(shù)列,將可被5整除的三角形數(shù),按從小到大的順序組成一個新數(shù)列,可以推測:()A.1225 B.1275 C.2017 D.20184.在中,分別為角的對邊,若,且,則邊=()A. B. C. D.5.中國古代數(shù)學(xué)著作《孫子算經(jīng)》中有這樣一道算術(shù)題:“今有物不知其數(shù),三三數(shù)之余二,五五數(shù)之余三,問物幾何?”人們把此類題目稱為“中國剩余定理”,若正整數(shù)除以正整數(shù)后的余數(shù)為,則記為,例如.現(xiàn)將該問題以程序框圖的算法給出,執(zhí)行該程序框圖,則輸出的等于().A. B. C. D.6.已知向量,滿足,,,則與的夾角為()A. B. C. D.7.已知等差數(shù)列an的前n項和為18,若S3=1,aA.9 B.21 C.27 D.368.已知是的共軛復(fù)數(shù),若復(fù)數(shù),則在復(fù)平面內(nèi)對應(yīng)的點是()A. B. C. D.9.某學(xué)校高一、高二、高三教師人數(shù)分別為100、120、80,為了解他們在“學(xué)習(xí)強國”平臺上的學(xué)習(xí)情況,現(xiàn)用分層抽樣的方法抽取容量為45的樣本,則抽取高一教師的人數(shù)為()A.12 B.15 C.18 D.3010.設(shè)向量滿足,且,則向量在向量方向上的投影為A.1 B. C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.如圖,正方體的棱長為2,點在正方形的邊界及其內(nèi)部運動,平面區(qū)域由所有滿足的點組成,則的面積是__________.12.已知正實數(shù)滿足,則的最大值為_______.13.如圖,已知,,任意點關(guān)于點的對稱點為,點關(guān)于點的對稱點為,則向量_______(用,表示向量)14.已知函數(shù)fx=Asin15.已知,則________.16.等差數(shù)列{}前n項和為.已知+-=0,=38,則m=_______.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17.已知.(1)若對任意的,不等式上恒成立,求實數(shù)的取值范圍;(2)解關(guān)于的不等式.18.已知向量=,=,=,為坐標(biāo)原點.(1)若△為直角三角形,且∠為直角,求實數(shù)的值;(2)若點、、能構(gòu)成三角形,求實數(shù)應(yīng)滿足的條件.19.如圖是某神奇“黃金數(shù)學(xué)草”的生長圖.第1階段生長為豎直向上長為1米的枝干,第2階段在枝頭生長出兩根新的枝干,新枝干的長度是原來的,且與舊枝成120°,第3階段又在每個枝頭各長出兩根新的枝干,新枝干的長度是原來的,且與舊枝成120°,……,依次生長,直到永遠(yuǎn).(1)求第3階段“黃金數(shù)學(xué)草”的高度;(2)求第13階段“黃金數(shù)學(xué)草”的高度;20.已知函數(shù),.(1)求的最小正周期;(2)求在閉區(qū)間上的最大值和最小值.21.某企業(yè)為了解下屬某部門對本企業(yè)職工的服務(wù)情況,隨機訪問50名職工,根據(jù)這50名職工對該部門的評分,繪制頻率分布直方圖(如圖所示),其中樣本數(shù)據(jù)分組區(qū)間為(1)求頻率分布直方圖中的值;(2)估計該企業(yè)的職工對該部門評分不低于80的概率;(3)從評分在的受訪職工中,隨機抽取2人,求此2人評分都在的概率.
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、C【解析】
由,得,則,利用基本不等式,即可求解.【詳解】由題意,因為,則,所以,當(dāng)且僅當(dāng)時,即時取等號,所以的最小值為5,故選C.【點睛】本題主要考查了基本不等式的應(yīng)用,其中解答中熟記基本不等式的使用條件,合理構(gòu)造是解答的關(guān)鍵,著重考查了推理與運算能力,屬于基礎(chǔ)題.2、A【解析】
利用正弦定理把題設(shè)等式中的邊換成角的正弦,進(jìn)而利用兩角和公式化簡整理可得的值,由可得的值【詳解】在中,由正弦定理可得化為:即在中,,故,可得,即故選【點睛】本題以三角形為載體,主要考查了正弦定理,向量的數(shù)量積的運用,考查了兩角和公式,考查了分析問題和解決問題的能力,屬于中檔題。3、A【解析】
通過尋找規(guī)律以及數(shù)列求和,可得,然后計算,可得結(jié)果.【詳解】根據(jù)題意可知:則由…可得所以故選:A【點睛】本題考查不完全歸納法的應(yīng)用,本題難點在于找到,屬難題,4、B【解析】
由利用正弦定理化簡,再利用余弦定理表示出cosA,整理化簡得a2b2+c2,與,聯(lián)立即可求出b的值.【詳解】由sinB=8cosAsinC,利用正弦定理化簡得:b=8c?cosA,將cosA代入得:b=8c?,整理得:a2b2+c2,即a2﹣c2b2,∵a2﹣c2=3b,∴b2=3b,解得:b=1或b=0(舍去),則b=1.故選B【點睛】此題考查了正弦、余弦定理,熟練掌握定理,準(zhǔn)確計算是解本題的關(guān)鍵,是中檔題5、C【解析】從21開始,輸出的數(shù)是除以3余2,除以5余3,滿足條件的是23,故選C.6、B【解析】
將變形解出夾角的余弦值,從而求出與的夾角.【詳解】由得,即又因為,所以,所以,故選B.【點睛】本題考查向量的夾角,屬于簡單題.7、C【解析】
利用前n項和Sn的性質(zhì)可求n【詳解】因為S3而a1所以6Snn【點睛】一般地,如果an為等差數(shù)列,Sn為其前(1)若m,n,p,q∈N*,m+n=p+q,則am(2)Sn=n(3)Sn=An(4)Sn8、A【解析】由,得,所以在復(fù)平面內(nèi)對應(yīng)的點為,故選A.9、B【解析】
由分層抽樣方法即按比例抽樣,運算即可得解.【詳解】解:由分層抽樣方法可得抽取高一教師的人數(shù)為,故選:B.【點睛】本題考查了分層抽樣方法,屬基礎(chǔ)題.10、D【解析】
先由題中條件,求出向量的數(shù)量積,再由向量數(shù)量積的幾何意義,即可求出投影.【詳解】因為,,所以,所以,故向量在向量方向上的投影為.故選D【點睛】本題主要考查平面向量的數(shù)量積,熟記平面向量數(shù)量積的幾何意義即可,屬于??碱}型.二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】,所以點平面區(qū)域是底面內(nèi)以為圓心,以1為半徑的外面區(qū)域,則的面積是12、【解析】
對所求式子平邊平方,再將代入,從而將問題轉(zhuǎn)化為求【詳解】∵∵,∴,∴,等號成立當(dāng)且僅當(dāng).故答案為:.【點睛】本題考查條件等式下利用基本不等式求最值,考查函數(shù)與方程思想、轉(zhuǎn)化與化歸思想,考查邏輯推理能力和運算求解能力,求解時注意等號成立的條件.13、【解析】
先求得,然后根據(jù)中位線的性質(zhì),求得.【詳解】依題意,由于分別是線段的中點,故.【點睛】本小題主要考查平面向量減法運算,考查三角形中位線,屬于基礎(chǔ)題.14、f【解析】分析:首先根據(jù)函數(shù)圖象得函數(shù)的最大值為2,得到A=2,然后算出函數(shù)的周期T=π,利用周期的公式,得到ω=2,最后將點(5π代入,得:2=2sin(2×5π12+φ所以fx的解析式是f詳解:根據(jù)函數(shù)圖象得函數(shù)的最大值為2,得A=2,又∵函數(shù)的周期34T=5π將點(5π12,2)代入,得:2=2sin所以fx的解析式是f點睛:本題給出了函數(shù)y=Asin(ωx+φ)的部分圖象,要確定其解析式,著重考查了三角函數(shù)基本概念和函數(shù)y=Asin(ωx+φ)的圖象與性質(zhì)的知識點,屬于中檔題.15、【解析】
利用向量內(nèi)積的坐標(biāo)運算以及向量模的坐標(biāo)表示,準(zhǔn)確運算,即可求解.【詳解】由題意,向量,則,,所以.故答案為【點睛】本題主要考查了向量內(nèi)積的坐標(biāo)運算,以及向量模的坐標(biāo)運算的應(yīng)用,其中解答中熟記向量的數(shù)量積的運算公式,準(zhǔn)確運算是解答的關(guān)鍵,著重考查了推理與運算能力,屬于基礎(chǔ)題.16、10【解析】
根據(jù)等差數(shù)列的性質(zhì),可得:+=2,又+-=0,則2=,解得=0(舍去)或=2.則,,所以m=10.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17、(1);(2)見解析.【解析】
(1)參變分離后可得在上恒成立,利用基本不等式可求的最小值,從而得到參數(shù)的取值范圍.(2)原不等式可化為,就對應(yīng)方程的兩根的大小關(guān)系分類討論可得不等式的解集.【詳解】(1)對任意的,恒成立即恒成立.因為當(dāng)時,(當(dāng)且僅當(dāng)時等號成立),所以即.(2)不等式,即,①當(dāng)即時,;②當(dāng)即時,;③當(dāng)即時,.綜上:當(dāng)時,不等式解集為;當(dāng)時,不等式解集為;當(dāng)時,不等式解集為.【點睛】含參數(shù)的一元二次不等式,其一般的解法是:先考慮對應(yīng)的二次函數(shù)的開口方向,再考慮其判別式的符號,其次在判別式大于零的條件下比較兩根的大小,最后根據(jù)不等號的方向和開口方向得到不等式的解.一元二次不等式的恒成立問題,參變分離后可以轉(zhuǎn)化為函數(shù)的最值進(jìn)行討論,后者可利用基本不等式來求.18、(1);(2)【解析】
(1)利用向量的運算法則求出,,再利用向量垂直的充要條件列出方程求出m;(2)由題意得A,B,C三點不共線,則與不共線,列出關(guān)于m的不等式即可.【詳解】(1)因為=,=,=,所以,,若△ABC為直角三角形,且∠A為直角,則,∴3(2﹣m)+(1﹣m)=0,解得.(2)若點A,B,C能構(gòu)成三角形,則這三點不共線,即與不共線,得3(1﹣m)≠2﹣m,∴實數(shù)時,滿足條件.【點睛】本題考查向量垂直、向量共線的充要條件、利用向量共線解決三點共線、三點不共線等問題,屬于基礎(chǔ)題.19、(1)(2)【解析】
(1)根據(jù)示意圖,計算出第階段、第階段生長的高度,即可求解出第階段“黃金數(shù)學(xué)草”的高度;(2)考慮第偶數(shù)階段、第奇數(shù)階段“黃金數(shù)學(xué)草”高度的生長量之間的關(guān)系,構(gòu)造數(shù)列,利用數(shù)列求和完成第階段“黃金數(shù)學(xué)草”的高度的計算.【詳解】(1)因為第一階段:,所以第階段生長:,第階段的生長:,所以第階段“黃金數(shù)學(xué)草”的高度為:;(2)設(shè)第個階段生長的“黃金數(shù)學(xué)草”的高度為,則第個階段生長的“黃金數(shù)學(xué)草”的高度為,第階段“黃金數(shù)學(xué)草”的高度為,所以,所以數(shù)列按奇偶性分別成公比為等比數(shù)列,所以.所以第階段“黃金數(shù)學(xué)草”的高度為:.【點睛】本題考查等比數(shù)列以及等比數(shù)列的前項和的實際應(yīng)用,難度較難.處理數(shù)列的實際背景問題,第一步要能從實際背景中分離出數(shù)列的模型,然后根據(jù)給定的條件處理對應(yīng)的數(shù)列計算問題,這對分析問題的能力要求很高.20、(1);(2)最大值為,最小值為【解析】
(1)由三角函數(shù)恒等變換的應(yīng)用可得,利用正弦函數(shù)的周期性可求最小正周期.
(2)通過,求得,再利用正弦函數(shù)的性質(zhì)可求最值.【詳解】解答:解:(1)由已知,有
,
所以的最小正周期;
(2),當(dāng),即時,取最大值,且最大值為;當(dāng),即時,取最小值,且最小值為.【點睛】本題主要考查了三角函數(shù)恒等變換的應(yīng)用,正弦函數(shù)性質(zhì)的應(yīng)用,考查了轉(zhuǎn)化思想,屬于基礎(chǔ)題.21、(Ⅰ)0.006;(Ⅱ);(Ⅲ)【解析】
試題分析:(Ⅰ)在頻率分布直方圖中,由頻率總和即所有矩形面積之和為,可求;(Ⅱ)在頻率分布直方圖中先求出50名受訪職工評分不低于80的頻率為,由頻率與概率關(guān)系可得該部門評分不低于80的概率的估計值為;(Ⅲ)受訪職工評分在[50,60)的有3人,記為,受訪職工評分在[40,50)的有2人,記為,列出從這5人中選出兩人所有基本事件,即可求相應(yīng)的概率.試題解析:(Ⅰ)因為,所以……..4分)(Ⅱ)由所給頻率分布直方圖知,50名受訪職工評分不低于80的頻率為,所以該企業(yè)職工對該部門評分不低于80的概率的估計值為………8分(Ⅲ)受訪職工評分在[50,60)的有:50×0.006×10=3
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年中國激光切割機行業(yè)市場調(diào)研及投資戰(zhàn)略規(guī)劃報告
- 中國家禽養(yǎng)殖設(shè)備市場運行態(tài)勢及行業(yè)發(fā)展前景預(yù)測報告
- 2025年度教師繼續(xù)教育項目合同模板
- 天然氣申請書
- 2025年度環(huán)保節(jié)能產(chǎn)品定制采購合同
- 2025年度新材料研發(fā)與應(yīng)用合作協(xié)議書
- 2025年度農(nóng)業(yè)項目經(jīng)營權(quán)轉(zhuǎn)讓合同范本
- 中國高端輸液器行業(yè)市場深度分析及投資戰(zhàn)略規(guī)劃報告
- 教師留任申請書
- 高中轉(zhuǎn)學(xué)申請書
- IEC-62368-1-差異分享解讀
- 雙溪漂流可行性報告
- 力士樂工程機械液壓培訓(xùn)資料(共7篇)課件
- 英語單詞詞根
- 問題學(xué)生轉(zhuǎn)化策略課件
- GMP附錄計算機化系統(tǒng)整體及條款解讀
- 腰椎間盤突出癥中醫(yī)特色療法課件
- 如何當(dāng)好學(xué)校的中層干部
- 2022-2023學(xué)年廣東省佛山市順德區(qū)高三(下)模擬英語試卷
- 無權(quán)代理與表見代理
- 創(chuàng)傷的現(xiàn)場檢傷分類法傷情程的快速評估方法
評論
0/150
提交評論