2024屆昆明市第二中學數(shù)學高一下期末統(tǒng)考試題含解析_第1頁
2024屆昆明市第二中學數(shù)學高一下期末統(tǒng)考試題含解析_第2頁
2024屆昆明市第二中學數(shù)學高一下期末統(tǒng)考試題含解析_第3頁
2024屆昆明市第二中學數(shù)學高一下期末統(tǒng)考試題含解析_第4頁
2024屆昆明市第二中學數(shù)學高一下期末統(tǒng)考試題含解析_第5頁
已閱讀5頁,還剩13頁未讀 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2024屆昆明市第二中學數(shù)學高一下期末統(tǒng)考試題考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.函數(shù)的最小正周期是()A. B. C. D.2.在空間中,可以確定一個平面的條件是()A.一條直線B.不共線的三個點C.任意的三個點D.兩條直線3.以下給出了4個命題:(1)兩個長度相等的向量一定相等;(2)相等的向量起點必相同;(3)若,且,則;(4)若向量的模小于的模,則.其中正確命題的個數(shù)共有()A.3個 B.2個 C.1個 D.0個4.《算法統(tǒng)宗》是中國古代數(shù)學名著,由明代數(shù)學家程大位編著,它對我國民間普及珠算和數(shù)學知識起到了很大的作用,是東方古代數(shù)學的名著,在這部著作中,許多數(shù)學問題都是以歌訣形式呈現(xiàn)的.“九兒問甲歌”就是其中一首:一個公公九個兒,若問生年總不知,自長排來差三歲,共年二百又零七,借問小兒多少歲,各兒歲數(shù)要誰推,這位公公年齡最小的兒子年齡為()A.8歲 B.11歲 C.20歲 D.35歲5.已知正數(shù)、滿足,則的最小值為()A. B. C. D.6.已知,則的最小值為()A.2 B.0 C.-2 D.-47.已知圓O1:x2+y2=1與圓O2:(x﹣3)2+(x+4)2=16,則圓O1與圓O2的位置關系為()A.外切 B.內切 C.相交 D.相離8.已知a,b為不同的直線,為平面,則下列命題中錯誤的是()A.若,,則 B.若,,則C.若,,則 D.若,,則9.已知直線yx+2,則其傾斜角為()A.60° B.120° C.60°或120° D.150°10.如圖所示,在一個長、寬、高分別為2、3、4的密封的長方體裝置中放一個單位正方體禮盒,現(xiàn)以點D為坐標原點,、、分別為x、y、z軸建立空間直角坐標系,則正確的是()A.的坐標為 B.的坐標為C.的長為 D.的長為二、填空題:本大題共6小題,每小題5分,共30分。11.已知斜率為的直線的傾斜角為,則________.12.在等比數(shù)列中,,的值為______.13.在直角坐標系中,已知任意角以坐標原點為頂點,以軸的非負半軸為始邊,若其終邊經過點,且,定義:,稱“”為“的正余弦函數(shù)”,若,則_________.14.已知,,與的夾角為鈍角,則的取值范圍是_____;15.在四面體A-BCD中,AB=AC=DB=DC=BC,且四面體A-BCD的最大體積為,則四面體A-BCD外接球的表面積為________.16.已知方程的四個根組成一個首項為的等差數(shù)列,則_____.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17.在我國古代數(shù)學名著《九章算術》中將由四個直角三角形組成的四面體稱為“鱉臑”.已知三棱維P-ABC中,PA⊥底面ABC.(1)從三棱錐P-ABC中選擇合適的兩條棱填空_________⊥________,則該三棱錐為“鱉臑”;(2)如圖,已知AD⊥PB垂足為D,AE⊥PC,垂足為E,∠ABC=90°.(i)證明:平面ADE⊥平面PAC;(ii)作出平面ADE與平面ABC的交線l,并證明∠EAC是二面角E-l-C的平面角.(在圖中體現(xiàn)作圖過程不必寫出畫法)18.已知關于的函數(shù).(Ⅰ)當時,求不等式的解集;(Ⅱ)若對任意的恒成立,求實數(shù)的最大值.19.已知向量a=(sinθ,1),b(1)若a⊥b,求(2)求|a20.已知函數(shù)的最小正周期為,且直線是其圖象的一條對稱軸.(1)求函數(shù)的解析式;(2)在中,角、、所對的邊分別為、、,且,,若角滿足,求的取值范圍;(3)將函數(shù)的圖象向右平移個單位,再將所得的圖象上每一點的縱坐標不變,橫坐標伸長為原來的倍后所得到的圖象對應的函數(shù)記作,已知常數(shù),,且函數(shù)在內恰有個零點,求常數(shù)與的值.21.已知點是函數(shù)的圖象上一點,等比數(shù)列的前n項和為,數(shù)列的首項為c,且前n項和滿足:當時,都有.(1)求c的值;(2)求證:為等差數(shù)列,并求出.(3)若數(shù)列前n項和為,是否存在實數(shù)m,使得對于任意的都有,若存在,求出m的取值范圍,若不存在,說明理由.

參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、C【解析】

將函數(shù)化為,再根據(jù)周期公式可得答案.【詳解】因為=,所以最小正周期.故選:C【點睛】本題考查了兩角和的正弦公式的逆用,考查了正弦型函數(shù)的周期公式,屬于基礎題.2、B【解析】試題分析:根據(jù)平面的基本性質及推論,即確定平面的幾何條件,即可知道答案.解:對于A.過一條直線可以有無數(shù)個平面,故錯;對于C.過共線的三個點可以有無數(shù)個平面,故錯;對于D.過異面的兩條直線不能確定平面,故錯;由平面的基本性質及推論知B正確.故選B.考點:平面的基本性質及推論.3、D【解析】

利用向量的概念性質和向量的數(shù)量積對每一個命題逐一分析判斷得解.【詳解】(1)兩個長度相等的向量不一定相等,因為它們可能方向不同,所以該命題是錯誤的;(2)相等的向量起點不一定相同,只要它們方向相同長度相等就是相等向量,所以該命題是錯誤的;(3)若,且,則是錯誤的,舉一個反例,如,不一定相等,所以該命題是錯誤的;(4)若向量的模小于的模,則,是錯誤的,因為向量不能比較大小,因為向量既有大小又有方向,故該命題不正確.故選:D【點睛】本題主要考查向量的概念和數(shù)量積的計算,意在考查學生對這些知識的理解掌握水平.4、B【解析】

九個兒子的年齡成等差數(shù)列,公差為1.【詳解】由題意九個兒子的年齡成等差數(shù)列,公差為1.記最小的兒子年齡為a1,則S9=9故選B.【點睛】本題考查等差數(shù)列的應用,解題關鍵正確理解題意,能用數(shù)列表示題意并求解.5、B【解析】

由得,再將代數(shù)式與相乘,利用基本不等式可求出的最小值.【詳解】,所以,,則,所以,,當且僅當,即當時,等號成立,因此,的最小值為,故選.【點睛】本題考查利用基本不等式求最值,對代數(shù)式進行合理配湊,是解決本題的關鍵,屬于中等題.6、D【解析】

根據(jù)不等式組畫出可行域,借助圖像得到最值.【詳解】根據(jù)不等式組畫出可行域得到圖像:將目標函數(shù)化為,根據(jù)圖像得到當目標函數(shù)過點時取得最小值,代入此點得到z=-4.故答案為:D.【點睛】利用線性規(guī)劃求最值的步驟:(1)在平面直角坐標系內作出可行域;(2)考慮目標函數(shù)的幾何意義,將目標函數(shù)進行變形.常見的類型有截距型(型)、斜率型(型)和距離型(型);(3)確定最優(yōu)解:根據(jù)目標函數(shù)的類型,并結合可行域確定最優(yōu)解;(4)求最值:將最優(yōu)解代入目標函數(shù)即可求出最大值或最小值。7、A【解析】

先求出兩個圓的圓心和半徑,再根據(jù)它們的圓心距等于半徑之和,可得兩圓相外切.【詳解】圓的圓心為,半徑等于1,圓的圓心為,半徑等于4,它們的圓心距等于,等于半徑之和,兩個圓相外切.故選A.【點睛】判斷兩圓的位置關系時常用幾何法,即利用兩圓圓心之間的距離與兩圓半徑之間的關系,一般不采用代數(shù)法.8、D【解析】

根據(jù)線面垂直與平行的性質與判定分析或舉出反例即可.【詳解】對A,根據(jù)線線平行與線面垂直的性質可知A正確.對B,根據(jù)線線平行與線面垂直的性質可知B正確.對C,根據(jù)線面垂直的性質知C正確.對D,當,時,也有可能.故D錯誤.故選:D【點睛】本題主要考查了空間中平行垂直的判定與性質,屬于中檔題.9、B【解析】

根據(jù)直線方程求出斜率,根據(jù)斜率和傾斜角之間的關系即可求出傾斜角.【詳解】由已知得直線的斜率,則傾斜角為120°,故選:B.【點睛】本題考查斜率和傾斜角的關系,是基礎題.10、D【解析】

根據(jù)坐標系寫出各點的坐標分析即可.【詳解】由所建坐標系可得:,,,.故選:D.【點睛】本題考查空間直角坐標系的應用,考查空間中距離的求法,考查計算能力,屬于基礎題.二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】

由直線的斜率公式可得=,分析可得,由同角三角函數(shù)的基本關系式計算可得答案.【詳解】根據(jù)題意,直線的傾斜角為,其斜率為,則有=,則,必有,即,平方有:,得,故,解得或(舍).故答案為﹣【點睛】本題考查直線的傾斜角,涉及同角三角函數(shù)的基本關系式,屬于基礎題.12、【解析】

由等比中項,結合得,化簡即可.【詳解】由等比中項得,得,設等比數(shù)列的公比為,化簡.故答案為:4【點睛】本題考查了等比中項的性質,通項公式的應用,屬于基礎題.13、【解析】試題分析:根據(jù)正余弦函數(shù)的定義,令,則可以得出,即.可以得出,解得,.那么,,所以故本題正確答案為.考點:三角函數(shù)的概念.14、【解析】

與的夾角為鈍角,即數(shù)量積小于0.【詳解】因為與的夾角為鈍角,所以與的數(shù)量積小于0且不平行.且所以【點睛】本題考查兩向量的夾角為鈍角的坐標表示,一定注意數(shù)量積小于0包括平角.15、【解析】

當面ABC面與BCD垂直時,四面體A-BCD的體積最大,根據(jù)最大體積為求出四面體的邊長,又△ABC和△BCD是等腰直角三角形,所以四面體A-BCD外接球的球心位于的中點,從而得到半徑,即可求解.【詳解】如圖所示:當面ABC面與BCD垂直時,四面體A-BCD的體積最大為,又AB=AC=DB=DC=BC,所以△ABC和△BCD是等腰直角三角形,所以四面體A-BCD外接球的球心為的中點,又,解得,,,所以四面體A-BCD外接球的半徑故四面體A-BCD外接球的表面積為.【點睛】本題考查多面體的外接圓及相關計算,多面體外接圓問題關鍵在圓心和半徑.16、【解析】

把方程(x2﹣2x+m)(x2﹣2x+n)=0化為x2﹣2x+m=0,或x2﹣2x+n=0,設是第一個方程的根,代入方程即可求得m,則方程的另一個根可求;設另一個方程的根為s,t,(s≤t)根據(jù)韋達定理可知∴s+t=2根據(jù)等差中項的性質可知四個跟成的等差數(shù)列為,s,t,,進而根據(jù)數(shù)列的第一項和第四項求得公差,則s和t可求,進而根據(jù)韋達定理求得n,最后代入|m﹣n|即可.【詳解】方程(x2﹣2x+m)(x2﹣2x+n)=0可化為x2﹣2x+m=0①,或x2﹣2x+n=0②,設是方程①的根,則將代入方程①,可解得m,∴方程①的另一個根為.設方程②的另一個根為s,t,(s≤t)則由根與系數(shù)的關系知,s+t=2,st=n,又方程①的兩根之和也是2,∴s+t由等差數(shù)列中的項的性質可知,此等差數(shù)列為,s,t,,公差為[]÷3,∴s,t,∴n=st∴|m﹣n|=||.故答案為【點睛】本題主要考查了等差數(shù)列的性質.考查了學生創(chuàng)造性思維和解決問題的能力.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17、(1)BC⊥AB或BC⊥AC或BC⊥PB或BC⊥PC.(2)(i)見證明;(ii)見解析【解析】

(1)根據(jù)已知填BC⊥AB或BC⊥AC或BC⊥PB或BC⊥PC均可;(2)(i)先證明PC⊥平面ADE,再證明平面ADE⊥平面PAC;(ii)在平面PBC中,記DE∩BC,=F,連結AF,則AF為所求的l.再證明∠EAC是二面角E-l-C的平面角.【詳解】(1)BC⊥AB或BC⊥AC或BC⊥PB或BC⊥PC.(2)(i)在三棱錐P-ABC中,BC⊥AB,BC⊥PA,BC∩PA=A,所以BC⊥平面PAB,又AD?平面PAB,所以BC⊥AD,又AD⊥PB,PB∩BC=B,所以AD⊥平面PBC.又PC?平面PBC,所以PC⊥AD,因為AE⊥PC且AE∩AD=A,所以PC⊥平面ADE,因為PC?平面PAC,所以平面ADE⊥平面PAC.(ii)在平面PBC中,記DE∩BC=F,連結AF,則AF為所求的l.因為PC⊥平面AED,l?平面AED,所以PC⊥l,因為PA⊥平面ABC,l?平面ABC,所以PA⊥l,又PA∩PC=P,所以l⊥平面PAC.又AE?平面PAC且AC?平面PAC,所以AE⊥l,AC⊥l.所以∠EAC就是二面角E-l-C的一個平面角.【點睛】本題主要考查空間線面位置關系,面面角的作圖及證明,屬于中檔題.18、(Ⅰ);(Ⅱ)【解析】

(Ⅰ)由時,根據(jù),利用一元二次不等式的解法,即可求解;(Ⅱ)由對任意的恒成立,得到,利用基本不等式求得最小值,即可求解.【詳解】(Ⅰ)由題意,當時,函數(shù),由,即,解得或,所以不等式的解集為.(Ⅱ)因為對任意的恒成立,即,又由,當且僅當時,即時,取得最小值,所以,即實數(shù)的最大值為.【點睛】本題主要考查了一元二次不等式的求解,以及基本不等式的應用,其中解答中熟記一元二次不等式的解法,以及合理利用基本不等式求得最小值是解答的關鍵,著重考查了推理與運算能力,屬于基礎題.19、(1)-π4【解析】

(1)兩向量垂直,坐標關系滿足x1x2+y1y2=0,由已知可得關于sin【詳解】(1)∵a⊥b,∴sinθ+cosθ=0(2)|a+b|=(1+sinθ)2+【點睛】本題考查向量的坐標運算,兩向量垂直,求兩向量之和的模的最大值,當計算到最大值為3+22時,由平方和公式還可以繼續(xù)化簡,即3+220、(1);(2);(3),.【解析】

(1)由函數(shù)的周期公式可求出的值,求出函數(shù)的對稱軸方程,結合直線為一條對稱軸結合的范圍可得出的值,于此得出函數(shù)的解析式;(2)由得出,再由結合銳角三角函數(shù)得出,利用正弦定理以及內角和定理得出,由條件得出,于此可計算出的取值范圍;(3)令,得,換元得出,得出方程,設該方程的兩根為、,由韋達定理得出,分(ii)、;(ii),;(iii),三種情況討論,計算出關于的方程在一個周期區(qū)間上的實根個數(shù),結合已知條件得出與的值.【詳解】(1)由三角函數(shù)的周期公式可得,,令,得,由于直線為函數(shù)的一條對稱軸,所以,,得,由于,,則,因此,;(2),由三角形的內角和定理得,.,且,,.,由,得,由銳角三角函數(shù)的定義得,,由正弦定理得,,,,且,,,.,因此,的取值范圍是;(3)將函數(shù)的圖象向右平移個單位,得到函數(shù),再將所得的圖象上每一點的縱坐標不變,橫坐標伸長為原來的倍后所得到的圖象對

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論