




版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
四川省資陽(yáng)市安岳縣石羊中學(xué)2024屆高一下數(shù)學(xué)期末檢測(cè)試題注意事項(xiàng):1.答題前,考生先將自己的姓名、準(zhǔn)考證號(hào)碼填寫清楚,將條形碼準(zhǔn)確粘貼在條形碼區(qū)域內(nèi)。2.答題時(shí)請(qǐng)按要求用筆。3.請(qǐng)按照題號(hào)順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無(wú)效;在草稿紙、試卷上答題無(wú)效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本大題共10小題,每小題5分,共50分。在每個(gè)小題給出的四個(gè)選項(xiàng)中,恰有一項(xiàng)是符合題目要求的1.已知數(shù)列、、、、,可猜想此數(shù)列的通項(xiàng)公式是().A. B.C. D.2.已知扇形圓心角為,面積為,則扇形的弧長(zhǎng)等于()A. B. C. D.3.若,,且與夾角為,則()A.3 B. C.2 D.4.如圖所示,已知兩座燈塔A和B與海洋觀察站C的距離都等于akm,燈塔A在觀察站C的北偏東20°,燈塔B在觀察站C的南偏東40°,則燈塔A與燈塔B的距離為()A.a(chǎn)km B.a(chǎn)kmC.a(chǎn)km D.2akm5.已知圓與直線及都相切,圓心在直線上,則圓的方程為()A. B.C. D.6.已知,是兩個(gè)不同的平面,給出下列四個(gè)條件:①存在一條直線,使得,;②存在兩條平行直線,,使得,,,;③存在兩條異面直線,,使得,,,;④存在一個(gè)平面,使得,.其中可以推出的條件個(gè)數(shù)是()A.1 B.2 C.3 D.47.若,是夾角為的兩個(gè)單位向量,則與的夾角為()A. B. C. D.8.在中,,,,則()A. B.或 C.或 D.9.若不等式的解集是,則的值為()A.12 B. C. D.1010.在正三棱錐中,,則側(cè)棱與底面所成角的正弦值為()A. B. C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.在等比數(shù)列中,,的值為______.12.和2的等差中項(xiàng)的值是______.13.公比為2的等比數(shù)列的各項(xiàng)都是正數(shù),且,則的值為___________14.已知等差數(shù)列的公差為2,若成等比數(shù)列,則________.15.對(duì)于任意實(shí)數(shù)x,不等式恒成立,則實(shí)數(shù)a的取值范圍是______16.現(xiàn)用一半徑為,面積為的扇形鐵皮制作一個(gè)無(wú)蓋的圓錐形容器(假定銜接部分及鐵皮厚度忽略不計(jì),且無(wú)損耗),則該容器的容積為__________.三、解答題:本大題共5小題,共70分。解答時(shí)應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。17.如圖所示,在三棱柱中,側(cè)棱底面,,D為的中點(diǎn),.(1)求證:平面;(2)求與所成角的余弦值.18.已知向量,,其中為坐標(biāo)原點(diǎn).(1)若,求向量與的夾角;(2)若對(duì)任意實(shí)數(shù)都成立,求實(shí)數(shù)的取值范圍.19.已知數(shù)列滿足,,.(1)求數(shù)列的通項(xiàng)公式;(2)設(shè),求數(shù)列的前項(xiàng)和.20.設(shè)為正項(xiàng)數(shù)列的前項(xiàng)和,且滿足.(1)求的通項(xiàng)公式;(2)令,,若恒成立,求的取值范圍.21.在中,角A,B,C所對(duì)的邊分別為a,b,c,.(1)求角B;(2)若,求周長(zhǎng)的取值范圍.
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個(gè)小題給出的四個(gè)選項(xiàng)中,恰有一項(xiàng)是符合題目要求的1、D【解析】
利用賦值法逐項(xiàng)排除可得出結(jié)果.【詳解】對(duì)于A選項(xiàng),,不合乎題意;對(duì)于B選項(xiàng),,不合乎題意;對(duì)于C選項(xiàng),,不合乎題意;對(duì)于D選項(xiàng),當(dāng)為奇數(shù)時(shí),,此時(shí),當(dāng)為偶數(shù)時(shí),,此時(shí),合乎題意.故選:D.【點(diǎn)睛】本題考查利用觀察法求數(shù)列的通項(xiàng),考查推理能力,屬于中等題.2、C【解析】
根據(jù)扇形面積公式得到半徑,再計(jì)算扇形弧長(zhǎng).【詳解】扇形弧長(zhǎng)故答案選C【點(diǎn)睛】本題考查了扇形的面積和弧長(zhǎng)公式,解出扇形半徑是解題的關(guān)鍵,意在考查學(xué)生的計(jì)算能力.3、B【解析】
由題意利用兩個(gè)向量數(shù)量積的定義,求得的值,再根據(jù),計(jì)算求得結(jié)果.【詳解】由題意若,,且與夾角為,可得,.故選:B.【點(diǎn)睛】本題考查向量數(shù)量積的定義、向量的模的方法,考查函數(shù)與方程思想、轉(zhuǎn)化與化歸思想,考查邏輯推理能力和運(yùn)算求解能力,求解時(shí)注意不要錯(cuò)選成A答案.4、B【解析】
先根據(jù)題意確定的值,再由余弦定理可直接求得的值.【詳解】在中知∠ACB=120°,由余弦定理得AB2=AC2+BC2-2AC·BCcos120°=2a2-2a2×=3a2,∴AB=a.故選:B.【點(diǎn)睛】本題主要考查余弦定理的應(yīng)用,屬于基礎(chǔ)題.5、B【解析】
由平行線間的距離公式求出圓的直徑,然后設(shè)出圓心,由點(diǎn)到兩條切線的距離都等于半徑,求出,即可求得圓的方程.【詳解】因?yàn)閮蓷l直線與平行,所以它們之間的距離即為圓的直徑,所以,所以.設(shè)圓心坐標(biāo)為,則點(diǎn)到兩條切線的距離都等于半徑,所以,,解得,故圓心為,所以圓的標(biāo)準(zhǔn)方程為.故選:.【點(diǎn)睛】本題主要考查求解圓的方程,同時(shí)又進(jìn)一步考查了直線與圓的位置關(guān)系,圓的切線性質(zhì)等.本題也注重考查審題能力,分析問(wèn)題和解決問(wèn)題的能力.難度較易.6、B【解析】當(dāng),不平行時(shí),不存在直線與,都垂直,,,故正確;存在兩條平行直線,,,,,,則,相交或平行,所以不正確;存在兩條異面直線,,,,,,由面面平行的判定定理得,故正確;存在一個(gè)平面,使得,,則,相交或平行,所以不正確;故選7、A【解析】
根據(jù)條件可求出,,從而可求出,這樣即可求出,根據(jù)向量夾角的范圍即可求出夾角.【詳解】由題得;,,所以;;又;的夾角為.故選.【點(diǎn)睛】考查向量數(shù)量積的運(yùn)算及計(jì)算公式,向量長(zhǎng)度的求法,向量夾角的余弦公式,向量夾角的范圍.8、B【解析】
利用正弦定理求出,然后利用三角形的內(nèi)角和定理可求出.【詳解】由正弦定理得,得,,,則或.當(dāng)時(shí),由三角形的內(nèi)角和定理得;當(dāng)時(shí),由三角形的內(nèi)角和定理得.因此,或.故選B.【點(diǎn)睛】本題考查利用正弦定理和三角形的內(nèi)角和定理求角,解題時(shí)要注意大邊對(duì)大角定理來(lái)判斷出角的大小關(guān)系,考查計(jì)算能力,屬于基礎(chǔ)題.9、B【解析】
將不等式解集轉(zhuǎn)化為對(duì)應(yīng)方程的根,然后根據(jù)韋達(dá)定理求出方程中的參數(shù),從而求出所求.【詳解】解:不等式的解集為,為方程的兩個(gè)根,根據(jù)韋達(dá)定理:解得,故選:B。【點(diǎn)睛】本題主要考查了一元二次不等式的應(yīng)用,以及韋達(dá)定理的運(yùn)用和一元二次不等式解集與所對(duì)應(yīng)一元二次方程根的關(guān)系,屬于中檔題.10、B【解析】
利用正三棱錐的性質(zhì),作出側(cè)棱與底面所成角,利用直角三角形進(jìn)行計(jì)算.【詳解】連接P與底面正△ABC的中心O,因?yàn)槭钦忮F,所以面,所以為側(cè)棱與底面所成角,因?yàn)椋?,所以,故選B.【點(diǎn)睛】本題考查線面角的計(jì)算,考查空間想象能力、邏輯推理能力及計(jì)算求解能力,屬于中檔題.二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】
由等比中項(xiàng),結(jié)合得,化簡(jiǎn)即可.【詳解】由等比中項(xiàng)得,得,設(shè)等比數(shù)列的公比為,化簡(jiǎn).故答案為:4【點(diǎn)睛】本題考查了等比中項(xiàng)的性質(zhì),通項(xiàng)公式的應(yīng)用,屬于基礎(chǔ)題.12、【解析】
根據(jù)等差中項(xiàng)性質(zhì)求解即可【詳解】設(shè)等差中項(xiàng)為,則,解得故答案為:【點(diǎn)睛】本題考查等差中項(xiàng)的求解,屬于基礎(chǔ)題13、2【解析】
根據(jù)等比數(shù)列的性質(zhì)與基本量法求解即可.【詳解】由題,因?yàn)?又等比數(shù)列的各項(xiàng)都是正數(shù),故.故.故答案為:【點(diǎn)睛】本題主要考查了等比數(shù)列的等積性與各項(xiàng)之間的關(guān)系.屬于基礎(chǔ)題.14、【解析】
利用等差數(shù)列{an}的公差為1,a1,a3,a4成等比數(shù)列,求出a1,即可求出a1.【詳解】∵等差數(shù)列{an}的公差為1,a1,a3,a4成等比數(shù)列,
∴(a1+4)1=a1(a1+2),
∴a1=-8,
∴a1=-2.
故答案為-2..【點(diǎn)睛】本題考查等比數(shù)列的性質(zhì),考查等差數(shù)列的通項(xiàng),考查學(xué)生的計(jì)算能力,屬基礎(chǔ)題..15、【解析】
對(duì)a分類討論,利用判別式,即可得到結(jié)論.【詳解】(1)a﹣2=0,即a=2時(shí),﹣4<0,恒成立;(2)a﹣2≠0時(shí),,解得﹣2<a<2,∴﹣2<a≤2故答案為:.【點(diǎn)睛】對(duì)于二次函數(shù)的研究一般從以幾個(gè)方面研究:一是,開口;二是,對(duì)稱軸,主要討論對(duì)稱軸與區(qū)間的位置關(guān)系;三是,判別式,決定于x軸的交點(diǎn)個(gè)數(shù);四是,區(qū)間端點(diǎn)值.16、【解析】分析:由圓錐的幾何特征,現(xiàn)用一半徑為,面積為的扇形鐵皮制作一個(gè)無(wú)蓋的圓錐形容器,則圓錐的底面周長(zhǎng)等于扇形的弧長(zhǎng),圓錐的母線長(zhǎng)等于扇形的半徑,由此計(jì)算出圓錐的高,代入圓錐體積公式,即可求出答案.解析:設(shè)鐵皮扇形的半徑和弧長(zhǎng)分別為R、l,圓錐形容器的高和底面半徑分別為h、r,則由題意得R=10,由,得,由得.由可得.該容器的容積為.故答案為.點(diǎn)睛:涉及弧長(zhǎng)和扇形面積的計(jì)算時(shí),可用的公式有角度表示和弧度表示兩種,其中弧度表示的公式結(jié)構(gòu)簡(jiǎn)單,易記好用,在使用前,應(yīng)將圓心角用弧度表示.三、解答題:本大題共5小題,共70分。解答時(shí)應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。17、(1)證明見解析;(2).【解析】
(1)連接,設(shè)與相交于點(diǎn)O,連接OD.證明OD為的中位線,得,即可證明;(2)由(1)可知,為與所成的角或其補(bǔ)角,在中,利用余弦定理求解即可【詳解】(1)證明:如圖,連接,設(shè)與相交于點(diǎn)O,連接OD.∵四邊形是平行四邊形.∴點(diǎn)O為的中點(diǎn).∵D為AC的中點(diǎn),∴OD為的中位線,平面,平面,平面.(2)由(1)可知,為與所成的角或其補(bǔ)角在中,D為AC的中點(diǎn),則同理可得,在中,與BD所成角的余弦值為.【點(diǎn)睛】本題考查線面平行的判定,異面直線所成的角,考查空間想象能力與計(jì)算能力是基礎(chǔ)題18、(1)或;(2)或.【解析】
(1)按向量數(shù)量積的定義先求夾角余弦,再求得夾角;(2)不等式化為恒成立,令取1和-1代入解不等式組即可得.【詳解】(1)由題意,,記向量與的夾角為,又,則,當(dāng)時(shí),,,當(dāng)時(shí),,.(2),由得,∵,∴,∴,解得或.【點(diǎn)睛】本題考查向量模與夾角,考查不等式恒成立問(wèn)題,不等式中把作為一個(gè)整體,它是關(guān)于的一次不等式,因此要使它恒成立,只要取1和-1時(shí)均成立即可.19、(1);(2)【解析】
(1)由,構(gòu)造是以為首項(xiàng),為公比等比數(shù)列,利用等比數(shù)列的通項(xiàng)公式可得結(jié)果;(2)由(1)得,利用裂項(xiàng)相消可求.【詳解】(1)由得:,即,且數(shù)列是以為首項(xiàng),為公比的等比數(shù)列數(shù)列的通項(xiàng)公式為:(2)由(1)得:【點(diǎn)睛】關(guān)系式可構(gòu)造為,中檔題。20、(1)(2)【解析】
(1)代入求得,根據(jù)與的關(guān)系可求得,可知數(shù)列為等差數(shù)列,利用等差數(shù)列通項(xiàng)公式求得結(jié)果;驗(yàn)證后可得最終結(jié)果;(2)由(1)可得,采用裂項(xiàng)相消的方法求得,可知,從而得到的范圍.【詳解】(1)由題知:,……①令得:,解得:當(dāng)時(shí),……②①-②得:∴,即是以為首項(xiàng),為公差的等差數(shù)列經(jīng)驗(yàn)證滿足(2)由(1)知:即【點(diǎn)睛】本題考查等差數(shù)列通項(xiàng)公式的求解、裂項(xiàng)相消法求和,關(guān)鍵是能夠利
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年注會(huì)考試中的知識(shí)點(diǎn)整合與早期規(guī)劃的必要性探討試題及答案
- 電聲器件在智能語(yǔ)音助手平板中的應(yīng)用考核試卷
- 2025年注會(huì)考生反饋試題及答案
- 糧食大豆生產(chǎn)方案范本
- 2025年會(huì)計(jì)核算方法試題及答案
- 財(cái)務(wù)報(bào)表分析技巧試題及答案2025
- 2024年行政管理師考前準(zhǔn)備試題及答案
- 項(xiàng)目管理財(cái)務(wù)知識(shí)考題試題及答案
- 項(xiàng)目管理主動(dòng)溝通試題及答案
- 石棉水泥制品國(guó)際貿(mào)易實(shí)務(wù)考核試卷
- 誤用藥的應(yīng)急預(yù)案
- 殘疾人照護(hù)保姆聘用合同
- 2024年招錄考試-軍轉(zhuǎn)干考試近5年真題集錦(頻考類試題)帶答案
- 綿陽(yáng)小升初數(shù)學(xué)試題-(綿中英才學(xué)校)
- 2024年共青團(tuán)團(tuán)課考試測(cè)試題庫(kù)及答案
- 數(shù)字編碼(拔尖練習(xí))2024-2025學(xué)年人教版數(shù)學(xué)三年級(jí)上冊(cè)
- 退休人員出國(guó)探親申請(qǐng)書
- DB43-T 3020-2024 不動(dòng)產(chǎn)登記業(yè)務(wù)規(guī)范
- 2024年全國(guó)職業(yè)院校技能大賽高職組(環(huán)境檢測(cè)與監(jiān)測(cè)賽項(xiàng))考試題庫(kù)(含答案)
- 蘇科版(2024)八年級(jí)下冊(cè)物理期末復(fù)習(xí)重要知識(shí)點(diǎn)考點(diǎn)提綱
- 2024木托盤賣買合同協(xié)議書范本
評(píng)論
0/150
提交評(píng)論