![云南省昆明八中2024年高一數(shù)學(xué)第二學(xué)期期末調(diào)研試題含解析_第1頁](http://file4.renrendoc.com/view4/M00/3C/3E/wKhkGGZiMqeAbOrYAAGVSPLRIFU398.jpg)
![云南省昆明八中2024年高一數(shù)學(xué)第二學(xué)期期末調(diào)研試題含解析_第2頁](http://file4.renrendoc.com/view4/M00/3C/3E/wKhkGGZiMqeAbOrYAAGVSPLRIFU3982.jpg)
![云南省昆明八中2024年高一數(shù)學(xué)第二學(xué)期期末調(diào)研試題含解析_第3頁](http://file4.renrendoc.com/view4/M00/3C/3E/wKhkGGZiMqeAbOrYAAGVSPLRIFU3983.jpg)
![云南省昆明八中2024年高一數(shù)學(xué)第二學(xué)期期末調(diào)研試題含解析_第4頁](http://file4.renrendoc.com/view4/M00/3C/3E/wKhkGGZiMqeAbOrYAAGVSPLRIFU3984.jpg)
![云南省昆明八中2024年高一數(shù)學(xué)第二學(xué)期期末調(diào)研試題含解析_第5頁](http://file4.renrendoc.com/view4/M00/3C/3E/wKhkGGZiMqeAbOrYAAGVSPLRIFU3985.jpg)
版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
云南省昆明八中2024年高一數(shù)學(xué)第二學(xué)期期末調(diào)研試題考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標(biāo)記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔。考試結(jié)束后,請將本試卷和答題卡一并交回。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.某程序框圖如圖所示,若輸出的結(jié)果為,則判斷框內(nèi)應(yīng)填入的條件可以為()A. B. C. D.2.中,,,,則()A.1 B. C. D.43.甲、乙兩名選手參加歌手大賽時,5名評委打的分?jǐn)?shù)用如圖所示的莖葉圖表示,s1,s2分別表示甲、乙選手分?jǐn)?shù)的標(biāo)準(zhǔn)差,則s1與s2的關(guān)系是().A.s1>s2 B.s1=s2 C.s1<s2 D.不確定4.已知:平面內(nèi)不再同一條直線上的四點、、、滿足,若,則()A.1 B.2 C. D.5.中,則A. B. C. D.6.對于數(shù)列,定義為數(shù)列的“好數(shù)”,已知某數(shù)列的“好數(shù)”,記數(shù)列的前項和為,若對任意的恒成立,則實數(shù)的取值范圍為()A. B. C. D.7.為了得到函數(shù)的圖象,只需把函數(shù)的圖象上所有點的()A.橫坐標(biāo)縮短到原來的倍(縱坐標(biāo)不變),再將所得的圖像向左平移.B.橫坐標(biāo)縮短到原來的倍(縱坐標(biāo)不變),再將所得的圖像向左平移.C.橫坐標(biāo)伸長到原來的2倍(縱坐標(biāo)不變),再將所得的圖像向左平移.D.橫坐標(biāo)縮短到原來的倍(縱坐標(biāo)不變),再將所得的圖像向右平移.8.已知,,則()A. B. C. D.9.若復(fù)數(shù)(是虛數(shù)單位)是純虛數(shù),則實數(shù)的值為()A. B. C. D.10.下列函數(shù)中,在區(qū)間上為增函數(shù)的是A. B.C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.分形幾何學(xué)是美籍法國數(shù)學(xué)家伯努瓦.B.曼德爾布羅特在20世紀(jì)70年代創(chuàng)立的一門新學(xué)科,它的創(chuàng)立,為解決傳統(tǒng)科學(xué)眾多領(lǐng)域的難題提供了全新的思路,下圖是按照一定的分形規(guī)律生長成一個數(shù)形圖,則第13行的實心圓點的個數(shù)是________12.已知,則的最小值為__________.13.一條河的兩岸平行,河的寬度為560m,一艘船從一岸出發(fā)到河對岸,已知船的靜水速度,水流速度,則行駛航程最短時,所用時間是__________(精確到).14.若、、這三個的數(shù)字可適當(dāng)排序后成為等差數(shù)列,也可適當(dāng)排序后成等比數(shù)列,則________________.15.已知角的終邊經(jīng)過點,則的值為____________.16.有下列四個說法:①已知向量,,若與的夾角為鈍角,則;②先將函數(shù)的圖象上各點縱坐標(biāo)不變,橫坐標(biāo)縮小為原來的后,再將所得函數(shù)圖象整體向左平移個單位,可得函數(shù)的圖象;③函數(shù)有三個零點;④函數(shù)在上單調(diào)遞減,在上單調(diào)遞增.其中正確的是__________.(填上所有正確說法的序號)三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17.已知集合,數(shù)列是公比為的等比數(shù)列,且等比數(shù)列的前三項滿足.(1)求通項公式;(2)若是等比數(shù)列的前項和,記,試用等比數(shù)列求和公式化簡(用含的式子表示)18.請解決下列問題:(1)已知,求的值;(2)計算.19.已知函數(shù)f(x)=2sinωxcosωx+cos2ωx(ω>0)的最小正周期為π.(Ⅰ)求ω的值;(Ⅱ)求f(x)的單調(diào)遞增區(qū)間.20.在四棱錐P-ABCD中,四邊形ABCD是正方形,PD⊥平面ABCD,且PD=AD=4,點E為線段PA的中點.(1)求證:PC∥平面BDE;(2)求三棱錐E-BCD的體積.21.如圖,在中,,D為延長線上一點,且,,.(1)求的長度;(2)求的面積.
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、D【解析】
由已知可得,該程序是利用循環(huán)結(jié)構(gòu)計算輸出變量S的值,模擬過程分別求出變量的變化情況可的結(jié)果.【詳解】程序在運行過程中,判斷框前的變量的值如下:k=1,S=1;k=2,S=4;k=3,S=11,k=4,S=26;此時應(yīng)該結(jié)束循環(huán)體,并輸出S的值為26,所以判斷框應(yīng)該填入條件為:故選D【點睛】本題主要考查了程序框圖,屬于基礎(chǔ)題.2、C【解析】
利用三角形內(nèi)角和為可求得;利用正弦定理可求得結(jié)果.【詳解】由正弦定理得:本題正確選項:【點睛】本題考查正弦定理解三角形,屬于基礎(chǔ)題.3、C【解析】
先求均值,再根據(jù)標(biāo)準(zhǔn)差公式求標(biāo)準(zhǔn)差,最后比較大小.【詳解】乙選手分?jǐn)?shù)的平均數(shù)分別為所以標(biāo)準(zhǔn)差分別為因此s1<s2,選C.【點睛】本題考查標(biāo)準(zhǔn)差,考查基本求解能力.4、D【解析】
根據(jù)向量的加法原理對已知表示式轉(zhuǎn)化為所需向量的運算對照向量的系數(shù)求解.【詳解】根據(jù)向量的加法原理得所以,,解得且故選D.【點睛】本題考查向量的線性運算,屬于基礎(chǔ)題.5、B【解析】試題分析:由余弦定理,故選擇B考點:余弦定理6、B【解析】分析:由題意首先求得的通項公式,然后結(jié)合等差數(shù)列的性質(zhì)得到關(guān)于k的不等式組,求解不等式組即可求得最終結(jié)果.詳解:由題意,,則,很明顯n?2時,,兩式作差可得:,則an=2(n+1),對a1也成立,故an=2(n+1),則an?kn=(2?k)n+2,則數(shù)列{an?kn}為等差數(shù)列,故Sn?S6對任意的恒成立可化為:a6?6k?0,a7?7k?0;即,解得:.實數(shù)的取值范圍為.本題選擇B選項.點睛:“新定義”主要是指即時定義新概念、新公式、新定理、新法則、新運算五種,然后根據(jù)此新定義去解決問題,有時還需要用類比的方法去理解新的定義,這樣有助于對新定義的透徹理解.對于此題中的新概念,對閱讀理解能力有一定的要求.但是,透過現(xiàn)象看本質(zhì),它們考查的還是基礎(chǔ)數(shù)學(xué)知識,所以說“新題”不一定是“難題”,掌握好三基,以不變應(yīng)萬變才是制勝法寶.7、B【解析】
利用三角函數(shù)的平移和伸縮變換的規(guī)律求出即可.【詳解】為了得到函數(shù)的圖象,先把函數(shù)圖像的縱坐標(biāo)不變,橫坐標(biāo)縮短到原來的倍到函數(shù)y=3sin2x的圖象,再把所得圖象所有的點向左平移個單位長度得到y(tǒng)=3sin(2x+)的圖象.故選:B.【點睛】本題考查的知識要點:三角函數(shù)關(guān)系式的恒等變變換,正弦型函數(shù)性質(zhì)的應(yīng)用,三角函數(shù)圖象的平移變換和伸縮變換的應(yīng)用,屬于基礎(chǔ)題.8、C【解析】
利用二倍角公式變形為,然后利用弦化切的思想求出的值,可得出角的值.【詳解】,化簡得,,則,,因此,,故選C.【點睛】本題考查二倍角公式的應(yīng)用,考查弦切互化思想的應(yīng)用,考查給值求角的問題,著重考查學(xué)生對三角恒等變換思想的應(yīng)用能力,屬于中等題.9、C【解析】,且是純虛數(shù),,故選C.10、A【解析】試題分析:對A,函數(shù)在上為增函數(shù),符合要求;對B,在上為減函數(shù),不符合題意;對C,為上的減函數(shù),不符合題意;對D,在上為減函數(shù),不符合題意.故選A.考點:函數(shù)的單調(diào)性,容易題.二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】
觀察圖像可知每一個實心圓點的下一行均分為一個實心圓點與一個空心圓點,每個空心圓點下一行均為實心圓點.再利用規(guī)律找到行與行之間的遞推關(guān)系即可.【詳解】由圖像可得每一個實心圓點的下一行均分為一個實心圓點與一個空心圓點,每個空心圓點下一行均為實心圓點.故從第三行開始,每行的實心圓點數(shù)均為前兩行之和.即.故第1到第13行中實心圓點的個數(shù)分別為:.故答案為:【點睛】本題主要考查了遞推數(shù)列的實際運用,需要觀察求得行與行之間的實心圓點的遞推關(guān)系,屬于中等題型.12、【解析】
根據(jù)均值不等式即可求出的最小值.【詳解】因為所以,根據(jù)均值不等式可得:當(dāng)且僅當(dāng),即時等號成立.【點睛】本題主要考查了均值不等式,屬于中檔題.13、6【解析】
先確定船的方向,再求出船的速度和時間.【詳解】因為行程最短,所以船應(yīng)該朝上游的方向行駛,所以船的速度為km/h,所以所用時間是.故答案為6【點睛】本題主要考查平面向量的應(yīng)用,意在考查學(xué)生對該知識的理解掌握水平,屬于基礎(chǔ)題.14、【解析】
由,,可知,、、成等比數(shù)列,可得出,由、、或、、成等差數(shù)列,可得出關(guān)于、的方程組,解出這兩個未知數(shù)的值,即可計算出的值.【詳解】由于,,若不是等比中項,則有或,兩個等式左邊均為正數(shù),右邊均為負(fù)數(shù),不合題意,則必為等比中項,所以,將三個數(shù)由大到小依次排列,則有、、成等差數(shù)列或、、成等差數(shù)列.①若、、成等差數(shù)列,則,聯(lián)立,解得,此時,;②若、、成等差數(shù)列,則,聯(lián)立,解得,此時,.綜上所述,.故答案為:.【點睛】本題考查等比數(shù)列和等差數(shù)列定義的應(yīng)用,根據(jù)題意列出方程組是解題的關(guān)鍵,考查推理能力與計算能力,屬于中等題.15、【解析】
由題意和任意角的三角函數(shù)的定義求出的值即可.【詳解】由題意得角的終邊經(jīng)過點,則,所以,故答案為.【點睛】本題考查任意角的三角函數(shù)的定義,屬于基礎(chǔ)題.16、②③④【解析】
根據(jù)向量,函數(shù)零點,函數(shù)的導(dǎo)數(shù),以及三角函數(shù)有關(guān)知識,對各個命題逐個判斷即可.【詳解】對①,若與的夾角為鈍角,則且與不共線,即,解得且,所以①錯誤;對②,先將函數(shù)的圖象上各點縱坐標(biāo)不變,橫坐標(biāo)縮小為原來的后,得函數(shù)的圖象,再將圖象整體向左平移個單位,可得函數(shù)的圖象,②正確;對③,函數(shù)的零點個數(shù),即解的個數(shù),亦即函數(shù)與的圖象的交點個數(shù),作出兩函數(shù)的圖象,如圖所示:由圖可知,③正確;對④,,當(dāng)時,,當(dāng)時,,故函數(shù)在上單調(diào)遞減,在上單調(diào)遞增,④正確.故答案為:②③④.【點睛】本題主要考查命題的真假判斷,涉及向量數(shù)量積,三角函數(shù)圖像變換,函數(shù)零點個數(shù)的求法,以及函數(shù)單調(diào)性的判斷等知識的應(yīng)用,屬于中檔題.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)(2)【解析】
(1)觀察式子特點可知,只有2,4,8三項符合等比數(shù)列特征,再根據(jù)題設(shè)條件求解即可;(2)根據(jù)等比數(shù)列通項公式表示出,再采用分組求和法化簡的表達(dá)式即可【詳解】(1)由題可知,只有2,4,8三項符合等比數(shù)列特征,又,故,故,;(2),,所以【點睛】本題考查等比數(shù)列通項公式的求法,等比數(shù)列前項和公式的用法,分組求和法的應(yīng)用,屬于中檔題18、(1)(2)3【解析】
(1)分子分母同時除以即可得解;(2)由對數(shù)的運算求解即可.【詳解】解:(1)由,分子分母同時除以可得,原式.(2)原式.【點睛】本題考查了三角求值中的齊次式求值問題,重點考查了對數(shù)的運算,屬基礎(chǔ)題.19、(Ⅰ)(Ⅱ)().【解析】試題分析:(Ⅰ)運用兩角和的正弦公式對f(x)化簡整理,由周期公式求ω的值;(Ⅱ)根據(jù)函數(shù)y=sinx的單調(diào)遞增區(qū)間對應(yīng)求解即可.試題解析:(Ⅰ)因為,所以的最小正周期.依題意,,解得.(Ⅱ)由(Ⅰ)知.函數(shù)的單調(diào)遞增區(qū)間為().由,得.所以的單調(diào)遞增區(qū)間為().【考點】兩角和的正弦公式、周期公式、三角函數(shù)的單調(diào)性.【名師點睛】三角函數(shù)的單調(diào)性:1.三角函數(shù)單調(diào)區(qū)間的確定,一般先將函數(shù)式化為基本三角函數(shù)標(biāo)準(zhǔn)式,然后通過同解變形或利用數(shù)形結(jié)合方法求解.關(guān)于復(fù)合函數(shù)的單調(diào)性的求法;2.利用三角函數(shù)的單調(diào)性比較兩個同名三角函數(shù)值的大小,必須先看兩角是否同屬于這一函數(shù)的同一單調(diào)區(qū)間內(nèi),不屬于的,可先化至同一單調(diào)區(qū)間內(nèi).若不是同名三角函數(shù),則應(yīng)考慮化為同名三角函數(shù)或用差值法(例如與0比較,與1比較等)求解.20、(1)見解析(2)16【解析】
(1)證明EO∥PC得到PC∥平面BDE.(2)先證明EF就是三棱錐E-BCD的高,再利用體積公式得到三棱錐E-BCD的體積.【詳解】(1)證明:連結(jié)AC交BD于O,連結(jié)EO.∵四邊形ABCD是正方形,在ΔPAC中,O為AC中點,又∵E為PA中點∴EO∥PC.又∵PC?平面BDE,EO?平面BDE.∴PC∥平面BDE.(2)解:取AD中點F,
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 50件運動服合同范例
- 保密協(xié)議在合同范本
- 2025年節(jié)能助劑項目可行性研究報告
- 保安顧問合同范本
- 2025-2030年手勢識別座艙技術(shù)企業(yè)制定與實施新質(zhì)生產(chǎn)力戰(zhàn)略研究報告
- 2025-2030年歷史名人故居纜車游行業(yè)深度調(diào)研及發(fā)展戰(zhàn)略咨詢報告
- 2025-2030年堅果養(yǎng)生保健品行業(yè)跨境出海戰(zhàn)略研究報告
- 2025-2030年口腔清新飲料行業(yè)深度調(diào)研及發(fā)展戰(zhàn)略咨詢報告
- 2025-2030年戶外定向越野比賽行業(yè)跨境出海戰(zhàn)略研究報告
- 2025-2030年微生物多樣性保護(hù)與研究平臺行業(yè)深度調(diào)研及發(fā)展戰(zhàn)略咨詢報告
- 【高考作文指導(dǎo)】用思辨來寫現(xiàn)象類作文(共39張PPT)
- GB/T 4214.1-2017家用和類似用途電器噪聲測試方法通用要求
- GB/T 11822-2000科學(xué)技術(shù)檔案案卷構(gòu)成的一般要求
- 水輪發(fā)電機(jī)組及其附屬設(shè)備招標(biāo)文件
- 壓力管道基本知識課件
- 讀李玫瑾教授《心理撫養(yǎng)》有感
- 小學(xué)英語 國際音標(biāo) 練習(xí)及答案
- 優(yōu)秀班主任經(jīng)驗交流課件-班主任經(jīng)驗交流課件
- HP-DL380-Gen10-服務(wù)器用戶手冊
- 2023年廣州金融控股集團(tuán)有限公司招聘筆試題庫及答案解析
- YB∕T 105-2014 冶金石灰物理檢驗方法
評論
0/150
提交評論