2024年中考數(shù)學 整式與因式分解(原卷版)_第1頁
2024年中考數(shù)學 整式與因式分解(原卷版)_第2頁
2024年中考數(shù)學 整式與因式分解(原卷版)_第3頁
2024年中考數(shù)學 整式與因式分解(原卷版)_第4頁
2024年中考數(shù)學 整式與因式分解(原卷版)_第5頁
已閱讀5頁,還剩5頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領

文檔簡介

分式及其運算

目錄一覽

知識目標(新課程標準提煉)

中考解密(分析中考考察方向,厘清命題趨勢,精準把握重難點)

考點回歸(梳理基礎考點,清晰明了,便于識記)

重點考向(以真題為例,探究中考命題方向)

A考向一分式有意義的條件

A考向二分式的值為零的條件

A考向三分式的值

A考向四分式的乘除法

A考向五分式的加減法

A考向六分式的混合運算

A考向七分式的化簡求值

A考向八零指數(shù)幕與負整數(shù)指數(shù)幕的運算

最新真題薈萃(精選最新典型真題,強化知識運用,優(yōu)化解題技巧)

星厘標

1.T解分式和最簡分式的概念;

2.能利用分式的基本性質(zhì)進行約分和通分;

3.能進行簡單的分式加、減、乘、除法運算.

J;/十一用牛H

分式是歷年中考的考察重點,年年考查,分值為10分左右。預計2024年各地中考還將繼續(xù)重視對分式的

有關(guān)概念、分式的性質(zhì)和分式的混合運算等的考查,且考查形式多樣,為避免丟分,學生應扎實掌握。

考點回歸

分式的概念1.分式的概念:一般地,如果A、B表示兩個整式,并且B中含有字母,

A

那么式子上叫做分式。

B

【注意】A、B都是整式,B中含有字母,且B/)。

2.因為0不能做除數(shù),所以分式的分母不能為0.

3.分式是兩個整式相除的商,分子就是被除式,分母就是除式,而分數(shù)線

可以理解為除號,還兼有括號的作用.

4.分式的分母必須含有字母,而分子可以含字母,也可以不含字母,亦即

從形式上看是彩的形式,從本質(zhì)上看分母必須含有字母,同時,分母不等

于零,且只看初始狀態(tài),不要化簡.

5.分式是一種表達形式,如x+工+2是分式,如果形式都不是A的形式,那

xB

就不能算是分式了,如:(x+1)+(x+2),它只表示一種除法運算,而

不能稱之為分式,但如果用負指數(shù)次鬲表示的某些代數(shù)式如(a+b)-2,

y-1,則為分式,因為y-1=工僅是一種數(shù)學上的規(guī)定,而非一種運算形

y

式.

分式有意義的1.分式有意義的條件是分母不等于零.

條件2.分式無意義的條件是分母等于零.

3.分式的值為正數(shù)的條件是分子、分母同號.

4.分式的值為負數(shù)的條件是分子、分母異號.

分式的值為零分式值為零的條件是分子等于零且分母不等于零.

的條件注意:“分母不為零”這個條件不能少.

分式的值分式求值歷來是各級考試中出現(xiàn)頻率較高的題型,而條件分式求值是較難

的一種題型,在解答時應從已知條件和所求問題的特點出發(fā),通過適當?shù)?/p>

變形、轉(zhuǎn)化,才能發(fā)現(xiàn)解題的捷徑.

分式的基本性1.分式的基本性質(zhì)

質(zhì)及其運用分式的分子與分母乘(或除以)同一個不等于0的整式,分式的值不變。

AACAA^C/、

—=----;—=------(C#0)o

BBCBB;C

2.分式的約分和通分

(1)約分:根據(jù)分式的基本性質(zhì),把一個分式的分子與分母的公因式約

去叫做分式的約分。

(2)通分:根據(jù)分式的基本性質(zhì),把幾個異分母的分式分別化成與原來

的分式相等的同分母的分式叫做分式的通分。

(3)最簡分式:分子與分母沒有公因式的分式,叫做最簡分式。

(4)最簡公分母:各分母的所有因式的最高次鬲的積叫做最簡公分母。

【注意11約分的根據(jù)是分式的基本性質(zhì).約分的關(guān)鍵是找出分子和分母

的公因式。

【注意2】通分的根據(jù)是分式的基本性質(zhì).通分的關(guān)鍵是確定幾個分式的

最簡公分母。

分式的乘除法1.分式的乘法法則:分式乘分式,用分子的枳作枳的分子,分母的枳作枳

的分母.巴.上=上上

bdb-d

2.分式的除法法則:分式除以分式,把除式的分子、分母顛倒位置后,與

'占人—acada-d

被除式相乘.一+一==——

bdbcb'C

3.分式的乘方法則:把分子、分母分別乘方.(巳]=—

UJbn

4.分式的乘、除、乘方混合運算.運算順序應先把各個分式進行乘方運算,

再進行分式的乘除運算,即“先乘方,再乘除”.

分式的加減法1,同分母分式加減法法則:同分母的分式相加減,分母不變,把分子相加

4aba+b

減.一±_=----

CCC

2.異分母分式加減法法則把分母不相同的幾個分式化成分母相同的分式,

叫做通分,經(jīng)過通分,異分母分式的加減就轉(zhuǎn)化為同分母分式的加減.

_a+_c—ad±be—_a_d__±__b_e

bdbdbdbd

說明:

(1)分式的通分必須注意整個分子和整個分母,分母是多項式時,必須

先分解因式,分子是多項式時,要把分母所乘的相同式子與這個多項式相

乘,而不能只同其中某一項相乘.

(2)通分是和約分是相反的一種變換.約分是把分子和分母的所有公因

式約去,將分式化為較簡單的形式;通分是分別把每一個分式的分子分母

同乘以相同的因式,使幾個較簡單的分式變成分母相同的較復雜的形

式.約分是對一個分式而言的;通分則是對兩個或兩個以上的分式來說

的.

分式的混合運1.分式的混合運算,要注意運算順序,式與數(shù)有相同的混合運算順序;先

算乘方,再乘除,然后加減,有括號的先算括號里面的.

2.最后結(jié)果分子、分母要進行約分,注意運算的結(jié)果要化成最簡分式或整

式.

3.分式的混合運算,一般按常規(guī)運算順序,但有時應先根據(jù)題目的特點,

運用乘法的運算律進行靈活運算.

分式的化簡求先把分式化簡后,再把分式中未知數(shù)對應的值代入求出分式的值.

值在化簡的過程中要注意運算順序和分式的化簡.化簡的最后結(jié)果分子、分

母要進行約分,注意運算的結(jié)果要化成最簡分式或整式.

【規(guī)律方法】分式化簡求值時需注意的問題

1.化簡求值,一般是先化簡為最簡分式或整式,再代入求值.化簡時不

能跨度太大,而缺少必要的步驟,代入求值的模式一般為“當...時,原式

—,,

一?.."

2.代入求值時,有直接代入法,整體代入法等常用方法.解題時可根據(jù)

題目的具體條件選擇合適的方法.當未知數(shù)的值沒有明確給出時,所選取

的未知數(shù)的值必須使原式中的各分式都有意義,且除數(shù)不能為0.

A考向一分式有意義的條件

解題技方/易錯易混7特別提醒一

分式的三要素:(1)形如—的式子;(2)48均為整式;(3)分母8中含有字母.

B

(方言?廣西)若分式…].有意義]則方的取值范圍是《……V

T?T

A.#-1B.xr0C.#1D.#2

2.(2023?鎮(zhèn)江)使分式1有意義的x的取值范圍是.

x-5

3.(2022?南京)若2在實數(shù)范圍內(nèi)有意義,則x的取值范圍是____.

x-3

A考向二分式的值為零的條件

廨題技時/易錯易混?特到提醒一

分式的意義:

(1)有意義的條件是分式中的字母取值不能使分母等于零,即BHO.

(2)無意義的條件是分母為0.(3)分式值為0要滿足兩個條件,分子為0,分母不為0.

一4:…,疝23;濠田麗丁芬武;萬二俅遁為6「廁工的值-是7-…-)…

x-1

A.0B.-1C.1D.0或1

5.(2023?常州)若代數(shù)式的值是0,則實數(shù)x的值是()

X

x2-l

A.-1B.0C.1D.2

6.(2023?湖州)若分式X-1的值為0,則X的值是()

3x+l

A.1B.0C.-1D.-3

A考向三分式的值

解題技巧/易錯易混/特別提醒

應用完全平方公式時,要注意:

①公式中的a,b可是單項式,也可以是多項式;

②對形如兩數(shù)和(或差)的平方的計算,都可以用這個公式;

③對于三項的可以把其中的兩項看做一項后,也可以用完全平方公式.

亍…,56五?百爸廠當工二二工時廠方式;%二二;的值是7)"

oX一/<

9+6x+x2

A.-15B.-3C.3D.15

8.(2022?湖州)當。=1時,分式2+1的值是.

a

9.(2022?福建)已知非零實數(shù)》,歹滿足>=x,則x-y+3xy的值等于

x+1xy

A考向四分式的乘除法

解題技巧/易錯易混/特別提醒

分式乘除法的運算,歸根到底是乘法的運算,當分子和分母是多項式時,一般應先進行因式分解,再約

分.

10.(2023?河北)化簡3的結(jié)果是()

x3(5

X

A.xy6B.xy5C.x2y5D.x2y6

11.(2022?德陽)下列計算正確的是()

A.(a-b)2=a2-b1

C.]=QD.(-1仍2)3=-^a3b6

a26

A考向五分式的加減法

解題技時/戛錯易混?特即提醒…

有關(guān)代數(shù)式的常見題型為用代數(shù)式表示數(shù)字或圖形的變化規(guī)律.數(shù)與圖形的規(guī)律探索問題,關(guān)鍵要能夠通過

觀察、分析、聯(lián)想與歸納找出數(shù)或圖形的變化規(guī)律,并用代數(shù)式表示出來.

12.(2023?廣東)計算32的結(jié)果為()

一十—

aa

A.1B.$c-5.D.$

aa2aa

13.(2023?河南)化簡a-11的結(jié)果是()

-----4-

aa

A.0B.1C.aD.a-2

14.(2023?溫州)計算:

(1)-l|+3y--^+(])-2-(-4);

y

⑵a?+2-3.

a+11+a

A考向六分式的混合運算

廨題技i引易錯藪良■褥珂提醒一....................................

1.整式和分式進行運算時,可以把整式看成分母為1的分式.

2.注意運算順序:分式的混合運算,先乘方,再乘除,然后加減,有括號的先算括號里面的.

5mi3,2=

15.[5應丁?濟苧知一列均本為的藪內(nèi),念,。滿足如下關(guān)系。]+a[,的=l+a2,i+a3

1-?11~?2a41-a3

上3,若。尸2,則例023的值是()

2*11-

A.-]B.]C.-3D.2

萬~3

16.(2023?綏化)化簡:(x+2-x-l)

x2-2xx2-4x+4

17.(2023?襄陽)化簡:(1

A考向七分式的化簡求值

解題技巧/易錯易混/特別提醒

1.注意化簡結(jié)果:運算的結(jié)果要化成最簡分式或整式.分子、分母中有公因式的要進行約分化為最簡分式

或整式.

2.注意運算律的應用:分式的混合運算,一般按常規(guī)運算順序,但有時應先根據(jù)題目的特點,運用乘法的

運算律運算,會簡化運算過程.

is.72023?武漢)3知x£-x-i=6,計算2的值是()

(2)x-x

x+1T'X2+2X+1

A.1B.-1C.2D.-2

19.(2023?衡陽)已知x=5,則代數(shù)式3-的值為.

x-4

20.(2023?湘潭)先化簡,再求值:(1+2)?,其中尤=6.

x+1

A考向八零指數(shù)幕與負整數(shù)指數(shù)幕的運算

21.(2023?攀枝花)計算-1。,以下結(jié)果正確的是()

A.-10=-1B.-10=0C.-10=1D.-1。無意義

22.(2023?綏化)計算|-5|+2。的結(jié)果是()

A.-3B.7C.-4D.6

23.(2023?重慶)計算:2」+3。=____.

最新直能套率

1.(2020?隨州)二-1的計算結(jié)果為()

A.*B-_2x_c2D-2

7^2~^2x-2x(x+2)

2.(2023?赤峰)化簡4+%-2的結(jié)果是()

7^2

A.1B.2C.xD.2

XX

X2-4x+2x+2

3.(2023?南充)若x+1=0,貝1Jx的值為—

x-2

(?上海)

4.2023化簡:2一2x的結(jié)果為.—

l-x1-X

5.(2023?福建)已知]+2=1,且Q聲-6,則辿二的值為_

aba-H>

6.(2023?大慶)若x滿足(x-2)計1=1,則整數(shù)x的值為

7.(2023?湖北)計算:1C=

1產(chǎn)+弓)-----------------

8.(2023?北京)己知x+2y-1=0,求代數(shù)式外+4y的值?

o.2

x+4xy+4y

9.(2023?揚州)計算:

(1)(2->/3)0~7i2+tan60°;(2)b4"Qb-a).

a+b

2

10.(2023?通遼)以下是某同學化簡分式af2ab-b

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論