版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領
文檔簡介
內(nèi)蒙古巴彥淖爾市臨河三中2024屆高一數(shù)學第二學期期末達標檢測試題注意事項:1.答題前,考生先將自己的姓名、準考證號填寫清楚,將條形碼準確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.在投資生產(chǎn)產(chǎn)品時,每生產(chǎn)需要資金200萬,需場地,可獲得300萬;投資生產(chǎn)產(chǎn)品時,每生產(chǎn)需要資金300萬,需場地,可獲得200萬,現(xiàn)某單位可使用資金1400萬,場地,則投資這兩種產(chǎn)品,最大可獲利()A.1350萬 B.1475萬 C.1800萬 D.2100萬2.若復數(shù)(是虛數(shù)單位)是純虛數(shù),則實數(shù)的值為()A. B. C. D.3.若程序框圖如圖所示,則該程序運行后輸出k的值是()A.5 B.6 C.7 D.84.某超市收銀臺排隊等候付款的人數(shù)及其相應概率如下:排隊人數(shù)01234概率0.10.160.30.30.10.04則至少有兩人排隊的概率為()A.0.16 B.0.26 C.0.56 D.0.745.半徑為的半圓卷成一個圓錐,它的體積是()A. B. C. D.6.在中,根據(jù)下列條件解三角形,其中有一解的是()A.,,B.,,C.,,D.,,7.如果3個正整數(shù)可作為一個直角三角形三條邊的邊長,則稱這3個數(shù)為一組勾股數(shù),從中任取3個不同的數(shù),則這3個數(shù)構(gòu)成一組勾股數(shù)的概率為()A. B. C. D.8.在中,角的對邊分別是,若,則角的大小為()A.或 B.或 C. D.9.圓與圓的位置關(guān)系為()A.相交 B.相離 C.相切 D.內(nèi)含10.在平行四邊形ABCD中,,,E是CD的中點,則()A.2 B.-3 C.4 D.6二、填空題:本大題共6小題,每小題5分,共30分。11.正方形和內(nèi)接于同一個直角三角形ABC中,如圖所示,設,若兩正方形面積分別為=441,=440,則=______12.甲、乙兩人要到某地參加活動,他們都隨機從火車、汽車、飛機三種交通工具中選擇一種,則他們選擇相同交通工具的概率為_________.13.已知正實數(shù)x,y滿足,則的最小值為________.14.把“五進制”數(shù)轉(zhuǎn)化為“十進制”數(shù)是_____________15.在中,.以為圓心,2為半徑作圓,線段為該圓的一條直徑,則的最小值為_________.16.已知,,若,則____三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17.如圖,已知圓:,點.(1)求經(jīng)過點且與圓相切的直線的方程;(2)過點的直線與圓相交于、兩點,為線段的中點,求線段長度的取值范圍.18.已知以點(a∈R,且a≠0)為圓心的圓過坐標原點O,且與x軸交于點A,與y軸交于點B.(1)求△OAB的面積;(2)設直線l:y=﹣2x+4與圓C交于點P、Q,若|OP|=|OQ|,求圓心C到直線l的距離.19.底面半徑為3,高為的圓錐有一個內(nèi)接的正四棱柱(底面是正方形,側(cè)棱與底面垂直的四棱柱).(1)設正四棱柱的底面邊長為,試將棱柱的高表示成的函數(shù);(2)當取何值時,此正四棱柱的表面積最大,并求出最大值.20.為了評估A,B兩家快遞公司的服務質(zhì)量,從兩家公司的客戶中各隨機抽取100名客戶作為樣本,進行服務質(zhì)量滿意度調(diào)查,將A,B兩公司的調(diào)查得分分別繪制成頻率分布表和頻率分布直方圖.規(guī)定分以下為對該公司服務質(zhì)量不滿意.分組頻數(shù)頻率0.4合計(Ⅰ)求樣本中對B公司的服務質(zhì)量不滿意的客戶人數(shù);(Ⅱ)現(xiàn)從樣本對A,B兩個公司服務質(zhì)量不滿意的客戶中,隨機抽取2名進行走訪,求這兩名客戶都來自于B公司的概率;(Ⅲ)根據(jù)樣本數(shù)據(jù),試對兩個公司的服務質(zhì)量進行評價,并闡述理由.21.設等差數(shù)列的前n項和為,,.(1)求;(2)設,求數(shù)列的前n項和.
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、B【解析】
設生產(chǎn)產(chǎn)品x百噸,生產(chǎn)產(chǎn)品百噸,利潤為百萬元,先分析題意,找出相關(guān)量之間的不等關(guān)系,即滿足的約束條件,由約束條件畫出可行域;要求應作怎樣的組合投資,可使獲利最大,即求可行域中的最優(yōu)解,在線性規(guī)劃的解答題中建議使用直線平移法求出最優(yōu)解,即將目標函數(shù)看成是一條直線,分析目標函數(shù)與直線截距的關(guān)系,進而求出最優(yōu)解.【詳解】設生產(chǎn)產(chǎn)品百噸,生產(chǎn)產(chǎn)品百噸,利潤為百萬元則約束條件為:,作出不等式組所表示的平面區(qū)域:目標函數(shù)為.由解得.使目標函數(shù)為化為要使得最大,即需要直線在軸的截距最大即可.由圖可知當直線過點時截距最大.此時應作生產(chǎn)產(chǎn)品3.25百噸,生產(chǎn)產(chǎn)品2.5百噸的組合投資,可使獲利最大.
故選:B.【點睛】在解決線性規(guī)劃的應用題時,其步驟為:①分析題目中相關(guān)量的關(guān)系,列出不等式組,即約束條件?②由約束條件畫出可行域?③分析目標函數(shù)Z與直線截距之間的關(guān)系?④使用平移直線法求出最優(yōu)解?⑤還原到現(xiàn)實問題中.屬于中檔題.2、C【解析】,且是純虛數(shù),,故選C.3、A【解析】試題分析:第一次循環(huán)運算:;第二次:;第三次:;第四次:;第五次:,這時符合條件輸出,故選A.考點:算法初步.4、D【解析】
利用互斥事件概率計算公式直接求解.【詳解】由某超市收銀臺排隊等候付款的人數(shù)及其相應概率表,得:至少有兩人排隊的概率為:.故選:D.【點睛】本題考查概率的求法、互斥事件概率計算公式,考查運算求解能力,是基礎題.5、A【解析】
根據(jù)圓錐的底面圓周長等于半圓弧長可計算出圓錐底面圓半徑,由勾股定理可計算出圓錐的高,再利用錐體體積公式可計算出圓錐的體積.【詳解】設圓錐的底面圓半徑為,高為,則圓錐底面圓周長為,得,,所以,圓錐的體積為,故選:A.【點睛】本題考查圓錐體積的計算,解題的關(guān)鍵就是要計算出圓錐底面圓的半徑和高,解題時要從已知條件列等式計算,并分析出一些幾何等量關(guān)系,考查空間想象能力與計算能力,屬于中等題.6、D【解析】
根據(jù)三角形解的個數(shù)的判斷條件得出各選項中對應的解的個數(shù),于此可得出正確選項.【詳解】對于A選項,,,此時,無解;對于B選項,,,此時,有兩解;對于C選項,,則為最大角,由于,此時,無解;對于D選項,,且,此時,有且只有一解.故選D.【點睛】本題考查三角形解的個數(shù)的判斷,解題時要熟悉三角形個數(shù)的判斷條件,考查推理能力,屬于中等題.7、C【解析】
試題分析:從中任取3個不同的數(shù)共有10種不同的取法,其中的勾股數(shù)只有3,4,5,故3個數(shù)構(gòu)成一組勾股數(shù)的取法只有1種,故所求概率為,故選C.考點:古典概型8、B【解析】
通過給定條件直接利用正弦定理分析,注意討論多解的情況.【詳解】由正弦定理可得:,,∵,∴為銳角或鈍角,∴或.故選B.【點睛】本題考查解三角形中正弦定理的應用,難度較易.出現(xiàn)多解時常借助“大邊對大角,小邊對小角”來進行取舍.9、B【解析】
首先把兩個圓的一般方程轉(zhuǎn)化為標準方程,求出其圓心坐標和半徑,再比較圓心距與半徑的關(guān)系即可.【詳解】有題知:圓,即:,圓心,半徑.圓,即:,圓心,半徑.所以兩個圓的位置關(guān)系是相離.故選:B【點睛】本題主要考查圓與圓的位置關(guān)系,比較圓心距和半徑的關(guān)系是解決本題的關(guān)鍵,屬于簡單題.10、A【解析】
由平面向量的線性運算可得,再結(jié)合向量的數(shù)量積運算即可得解.【詳解】解:由,,所以,,,則,故選:A.【點睛】本題考查了平面向量的線性運算,重點考查了向量的數(shù)量積運算,屬中檔題.二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】
首先根據(jù)在正方形S1和S2內(nèi),S1=441,S2=440,分別求出兩個正方形的邊長,然后分別表示出AF、FC、AM、MC的長度,最后根據(jù)AF+FC=AM+MC,列出關(guān)于α的三角函數(shù)等式,求出sin2α的值即可.【詳解】因為S1=441,S2=440,所以FD21,MQ=MN,因為AC=AF+FC2121,AC=AM+MCMNcosαcosα,所以:21cosα,整理,可得:(sinαcosα+1)=21(sinα+cosα),兩邊平方,可得110sin22α﹣sin2α﹣1=0,解得sin2α或sin2α(舍去),故sin2α.故答案為:.【點睛】本題主要考查了三角函數(shù)的求值問題,考查了正方形、直角三角形的性質(zhì),屬于中檔題,解答此題的關(guān)鍵是分別表示出AF、FC、AM、MC的長度,最后根據(jù)AF+FC=AM+MC,列出關(guān)于α的三角函數(shù)等式.12、【解析】
利用古典概型的概率求解.【詳解】甲、乙兩人選擇交通工具總的選擇有種,他們選擇相同交通工具有3種情況,所以他們選擇相同交通工具的概率為.故答案為:.【點睛】本題考查古典概型,要用計數(shù)原理進行計數(shù),屬于基礎題.13、4【解析】
將變形為,展開,利用基本不等式求最值.【詳解】解:,當時等號成立,又,得,此時等號成立,故答案為:4.【點睛】本題考查基本不等式求最值,特別是掌握“1”的妙用,是基礎題.14、194【解析】由.故答案為:194.15、-10【解析】
向量變形為,化簡得,轉(zhuǎn)化為討論夾角問題求解.【詳解】由題線段為該圓的一條直徑,設夾角為,可得:,當夾角為時取得最小值-10.故答案為:-10【點睛】此題考查求平面向量數(shù)量積的最小值,關(guān)鍵在于根據(jù)平面向量的運算法則進行變形,結(jié)合線性運算化簡求得,此題也可建立直角坐標系,三角換元設坐標利用函數(shù)關(guān)系求最值.16、【解析】
由,,得的坐標,根據(jù)得,由向量數(shù)量積的坐標表示即可得結(jié)果.【詳解】∵,,∴又∵,∴,即,所以,解得,故答案為.【點睛】本題主要考查了向量的坐標運算,兩向量垂直與數(shù)量積的關(guān)系,屬于基礎題.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17、(1)或;(2).【解析】試題分析:(1)設直線方程點斜式,再根據(jù)圓心到直線距離等于半徑求斜率;最后驗證斜率不存在情況是否滿足題意(2)先求點的軌跡:為圓,再根據(jù)點到圓上點距離關(guān)系確定最值試題解析:(1)當過點直線的斜率不存在時,其方程為,滿足條件.當切線的斜率存在時,設:,即,圓心到切線的距離等于半徑3,,解得.切線方程為,即故所求直線的方程為或.(2)由題意可得,點的軌跡是以為直徑的圓,記為圓.則圓的方程為.從而,所以線段長度的最大值為,最小值為,所以線段長度的取值范圍為.18、(1)4(2)【解析】
(1)求得圓的半徑,設出圓的標準方程,由此求得兩點坐標,進而求得三角形的面積.(2)根據(jù),判斷出,由直線的斜率求得直線的斜率,以此列方程求得,根據(jù)直線和圓相交,圓心到直線的距離小于半徑,確定,同時得到圓心到直線的距離.【詳解】(1)根據(jù)題意,以點(a∈R,且a≠0)為圓心的圓過坐標原點O,設圓C的半徑為r,則r2=a2,圓C的方程為(x﹣a)2+(y)2=a2,令x=0可得:y=0或,則B(0,),令y=0可得:x=0或2a,則A(2a,0),△OAB的面積S|2a|×||=4;(2)根據(jù)題意,直線l:y=﹣2x+4與圓C交于點P、Q,則|CP|=|CQ|,又由|OP|=|OQ|,則直線OC與PQ垂直,又由直線l即PQ的方程為y=﹣2x+4,則KOC,解可得a=±2,當a=2時,圓心C的坐標為(2,1),圓心到直線l的距離d,r,r>d,此時直線l與圓相交,符合題意;當a=2時,圓心C的坐標為(﹣2,﹣1),圓心到直線l的距離d,r,r<d,此時直線l與圓相離,不符合題意;故圓心C到直線l的距離d.【點睛】本小題主要考查圓的標準方程,考查直線和圓的位置關(guān)系,考查兩條直線的位置關(guān)系,考查運算求解能力,屬于中檔題.19、(1);(2)正四棱柱的底面邊長為時,正四棱柱的表面積最大值為48.【解析】試題分析:(1)根據(jù)比例關(guān)系式求出關(guān)于的解析式即可;(2)設該正四棱柱的表面積為,得到關(guān)系式,根據(jù)二次函數(shù)的性質(zhì)求出的最大值即可.試題解析:(1)根據(jù)相似性可得:,解得:;(2)設該正四棱柱的表面積為.則有關(guān)系式,因為,所以當時,,故當正四棱柱的底面邊長為時,正四棱柱的表面積最大值為.點睛:本題考查了數(shù)形結(jié)合思想,考查二次函數(shù)的性質(zhì)以及求函數(shù)的最值問題,是一道中檔題;該題中的難點在于必須注意圓錐軸截面圖時,三角形內(nèi)的矩形的寬為正四棱柱的底面對角線的長度,除了二次函數(shù)求最值以外還有基本不等式法、轉(zhuǎn)化法:如求的最小值,那么可以看成是數(shù)軸上的點到和的距離之和,易知最小值為2、求導法等.20、(Ⅰ)3人;(Ⅱ)0.3;(Ⅲ)見解析【解析】
(Ⅰ)對B公司的服務質(zhì)量不滿意的頻率為,即概率為0.03,易求解.(Ⅱ)共有5名客服不滿意,將每種情況都列出來即可算出全來自于B公司的概率.(Ⅲ)可通過頻率對比,服務質(zhì)量得分的眾數(shù),服務質(zhì)量得70分(或80分)以上的頻率幾個方面進行對比.【詳解】(Ⅰ)樣本中對B公司的服務質(zhì)量不滿意的頻率為,所以樣本中對B公司的服務質(zhì)量不滿意的客戶有人.(Ⅱ)設“這兩名客戶都來自于B公司”為事件M.對A公司的服務質(zhì)量不滿
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 二零二五年度燃料油質(zhì)量檢測與分析服務合同
- 2025年度養(yǎng)老院護理區(qū)簡易裝修合同
- 2025年度餐廳股權(quán)激勵計劃合同范本
- 2025年度物流倉儲中心經(jīng)營托管服務合同
- 可行性論證報告編制合同
- 酒店用品運輸保險合同優(yōu)化
- 電子商務物流合同變更
- 醫(yī)療器械質(zhì)量管理體系建設項目咨詢服務合同
- 校車照管員聘用合同
- 物流配送損害免責合同書
- 2024夏季廣東廣州期貨交易所招聘高頻難、易錯點500題模擬試題附帶答案詳解
- 浙江省2024年高考化學模擬試題(含答案)2
- 2024新人教七年級英語上冊 Unit 2 Were Family!(大單元教學設計)
- 材料力學之材料疲勞分析算法:S-N曲線法:疲勞分析案例研究與項目實踐.Tex.header
- 中國醫(yī)美行業(yè)2024年度洞悉報告-德勤x艾爾建-202406
- 藥用植物種植制度和土壤耕作技術(shù)
- 《火力發(fā)電企業(yè)設備點檢定修管理導則》
- 重慶市渝北區(qū)2024年八年級下冊數(shù)學期末統(tǒng)考模擬試題含解析
- 保安服務項目信息反饋溝通機制
- 《團隊介紹模板》課件
- 運動技能學習與控制課件第十一章運動技能的練習
評論
0/150
提交評論